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Rezumat. Demonstrăm că pentru problemele de programare matematică continue un 

algoritm de optimizare trebuie să încapsuleze într-o manieră explicită sau implicită un 

model intern pătratic al problemei de rezolvat care reprezintă esenţa problemei din punctul 

de vedere al algoritmului de optimizare. Modelele de optimizare se scriu pe baza legilor de 

conservare. Pentru acele sisteme care verifică principiul minimei acţiuni, teorema Noether 

exprimă echivalenţa dintre legile de conservare şi simetrii. Dar matematic simetriile sunt 

exprimate prin forme pătratice. Deci, la baza oricărui model real de optimizare se află o 

formă pătratică. Principiul modelului intern pătratic zice că această formă pătratică 

modificată pentru a include principalele ingrediente ale algoritmului de optimizare 

reprezintă modelul intern pătratic al algoritmului de optimizare. 

Abstract. We show that for mathematical programming problems an optimization 

algorithm must encapsulate implicitly or explicitly a quadratic internal model of the 

problem to be solved which represents the essence of the problem from the view point of the 

algorithm. Optimization models are coming from the conservation laws. For systems which 

obey the principle of least action the Noether’s theorem expresses the equivalence between 

the conservation laws and symmetries. But mathematically, symmetries are expressed by 

quadratic forms. Therefore, at the heart of every real optimization model is a quadratic 

form. The quadratic internal model principle says that this quadratic form modified in order 

to imbed the main ingredients of the optimization algorithm represents the quadratic 

internal model of the optimization algorithm. 

Keywords: Nonlinear optimization, line search methods, Newton system, quadratic programming, 

Noether theorem 

1. Introduction 

Starting with an initial point 0x  every algorithm for solving the general 

continuous nonlinear optimization problem 

 min ( )f x  

subject to (1) 

 ( ) 0h x  , 

where : nf R R  and : n mh R R , can be considered as a generator of a 

sequence of points  kx  which satisfy the constraints of the problem in such a 
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way that *( ) ( )kf x f x , where *x  is a local solution of the problem. The line 

search methods are characterized by two main actions. At the iteration k  a search 

direction kd  is generated and then a suitable point k k kx d  is computed by a 

step length k  so that a reduction of the minimizing function or of a merit 

function (a penalty function) is obtained. The main action in any optimization 

algorithm is the design of the generator of directions .kd  The steplength is 

computed using the standard procedures of Armijo or of Wolfe in order to reduce 

the values of the function f  or of a merit function. Plenty of nonlinear 

optimization algorithms are known and there are a lot of papers and books 

presenting them from the viewpoint of theoretical and computational aspects. 

To solve problem (1), or a more general version of it with inequality 

constraints, each optimization algorithm must “understand” it. There is a large 

diversity of optimization algorithms. Many of them solve a constrained 

optimization problem by converting it to a sequence of unconstrained problems 

via Lagrangian multipliers or via penalty or barrier functions. Another class of 

methods solves nonlinear programming problems by moving from a feasible point 

to a new improved one along a feasible direction. However, every optimization 

algorithm, in one way or another, is based on the Karush-Kuhn-Tucker optimality 

conditions. Generally, these conditions are expressed as a nonlinear algebraic 

system. In the framework of the Newton machine this nonlinear system is reduced 

to a sequence of linear algebraic systems, which is equivalent to a sequence of 

quadratic programming problems. The quadratic internal model principle in 

mathematical programming states that “an optimization algorithm must 

encapsulate implicitly or explicitly a quadratic internal model of the problem to 

be solved”. Every optimization algorithm uses its own quadratic internal model 

which takes into account the main ingredients defining the algorithm. This is the 

minimal part that must be encapsulated by the algorithm in order to solve the 

problem. 

The philosophical motivation behind the quadratic internal model principle in 

mathematical programming is as follows. As known, the mathematical model of a 

physical reality is based on the conservation laws. In physics, a conservation law 

states that a particular measurable property of an isolated system does not change 

while the system evolves. Any particular conservation law is a mathematical 

identity to certain symmetry of a physical system. For systems which obey the 

principle of the least action and therefore have a Lagrangian [Lagrange, 1797], 

[Fourier, 1798] the Noether’s theorem [Noether, 1971] expresses the equivalence 

between conservation laws and the invariance of physical laws with respect to 

certain transformations called symmetries. The behavior of a physical system can 

often be expressed in terms of a specific function of the system variables, called 
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Lagrangian. The system follows a path through the phase space such that the 

integral of the Lagrangian is stationary. For a system with Lagrangian L of the 

variables q  and /q dq dt  the equation of motion is 

.
d L L

dt q q

  
 

  
 

From this equation Noether specified that if the quantity on the right hand term is 

zero (meaning that L  is symmetrical over q ), then the rate of change of the 

quantity in parentheses on the left side is also zero, i.e. it is a conserved quantity. 

Generally, any symmetry of the Lagrangian function corresponds to a conserved 

quantity, and vice versa. It seems that at the fundamentals of our cognoscible 

universe lie the concept of symmetry.  

But, mathematically symmetries are expressed by quadratic forms – a 

homogeneous polynomial of degree two in a number of variables. It is worth 

saying that the quadratic forms are central objects in mathematics and they are 

ubiquitous in physics and chemistry. Quadratic forms occur in number theory, 

Riemannian geometry, Lie theory and they always express energy of a system, 

particularly in relation to the 2L  norm, which leads us to the use of the concept of 

Hilbert spaces. Therefore, it is quite natural to see that at the heart of every 

mathematical model is a quadratic form. This quadratic form must be replicated in 

an optimization algorithm in order to get a solution of the corresponding problem. 

2. Quadratic Internal Model Principle. 

In his synthesis, Yuan [2003] has shown that using the Newton machine for every 

method for solving a constrained optimization problem a linear algebraic system 

can be associated in a most natural way. All the linear systems corresponding to 

different methods are similar in form and can be expressed as: 

 
1

2

( )( , ) ( )
,

( )( )

k T
kk k k

kk k

f xdW x T h x

h xh x S





      
           

 (2) 

where 2 2

1

( , ) ( ) ( )
m

k k

k k i i k

i

W x f x h x 


    is the Hessian matrix of the Lagrange 

function ( , ) ( ) ( ),TL x f x h x    n n

kT R   is a symmetric matrix, m m

kS R   is a 

null or a diagonal matrix whose elements are nonpositive, 1

nR   and 2

mR   

are two vectors. In (2) d  is the searching direction and   is an auxiliary vector 

which for some methods could be the Lagrange multiplier. In the following we 

shall consider two cases. 



Copyright © Editura Academiei Oamenilor de Știință din România, 2010
Watermark Protected 

 

 

 

10 Neculai Andrei  

 

1) Let us assume that 0.kS   Therefore, from (2) we get   

 
1

2

( )( , ) ( )
,

( )( ) 0

k T
kk k k

kk

f xdW x T h x

h xh x





      
           

 (3) 

It is easy to see that the system (3) corresponds to the Newton method for 

optimization with equality nonlinear constraints or to the sequential quadratic 

programming method. The augmented system (3) can be considered as the 

necessary condition for d  to be a solution of the following quadratic 

programming problem 

 1

1
min ( ( , ) ) ( ( ) )

2

T k T

k k kd W x T d f x d      

subject to  (4) 

 2( ) ( ( ) ) 0.k kh x d h x      

It is well known that if ( ( , ) )k

k kW x T   is positive definite on the null space of 

( )kh x  and ( )kh x  is a full-rank matrix, then the quadratic problem (4) has a 

unique global solution .d  This solution can be obtained by solving the augmented 

system (3), where d  is the solution of the problem and   is the Lagrange 

multiplier associated to the equality constraint. The problem (4) is the quadratic 

internal model of problem (1) associated to the methods involving the linear 

system (3) (with 0kS  ).  

For example, the quadratic internal model of the problem (1) corresponding to 

the Newton method is: 

 
1

min ( , ) ( ( ) ( ) )
2

T k k T

k k kd W x d f x h x d     

subject to  (5) 

 ( ) ( ) 0.k kh x d h x    

2) Let us suppose that 0.kS   Normally, kS  is a diagonal matrix, whose diagonal 

elements are all negative. In this case it is easy to see that the system (2) 

corresponds to the following methods: the augmented Lagrange function, the 

inverse barrier function, the log-barrier function, the interior point algorithms, the 

path-following methods, the affine scaling interior point methods etc. From (2) we 

get 

 1 1 1

2( ) ( ) .k k k k kS h x d S h x S         (6) 
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Therefore, using (6) in (2) it follows that 

 1( , ) ( ) ( )k T

k k k k kW x T h x S h x d       

 1 1

2 1( ) ( ) ( ) ( ) .T T

k k k k k kh x S h x h x S f x        (7) 

But, (7) is equivalent with the following quadratic problem 

 11
min ( , ) ( ) ( )

2

T k T

k k k k kd W x T h x S h x d       

 1 1

2 1( ) ( ) ( ) ( )
T

T T

k k k k k kh x S h x h x S f x d          (8) 

which is called the quadratic internal model of problem (1) associated to the 

methods involving the linear system (2) (with 0kS  ).  

Therefore, an optimization algorithm for solving (1) must encapsulate a 

procedure for solving (in an iterative way) the quadratic internal model (8), 

which represents the essence of the problem from the view point of the algorithm 

involving (2). 

Observe that the quadratic internal model of (1), as expressed by (8), is dependent 

on the algorithm we consider for solving the problem (1). In particular, for 

example, the quadratic internal model of problem (1) corresponding to the 

augmented Lagrange function method, in which the augmented Lagrange function 

is 

 
2

2

1
( , , ) ( ) ( ) ( ) ,

2

TL x f x h x h x       (9) 

where mR  is the Lagrange multiplier and 0   is the penalty parameter, is: 

 
1

min ( ( , ( )) ( ) ( ))
2

T k T

k k k kd W x h x h x h x d      

 ( ( ) ( ) ( ( ))) .T k

k k kf x h x h x d     (10) 

In this case mR  is given by ( ) ( ).k kh x d h x      

It is worth saying that for the unconstrained problem ( 0m  ) the Newton step can 

be obtained by solving the following quadratic problem 

 21
min ( ) ( )

2

T T

k kd f x d f x d   (11) 

which is the quadratic internal model of the problem min ( )f x  corresponding to 
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the Newton method. Of course, the Newton step 2 1( ( )) ( )k kd f x f x     is 

obtained by solving the linear system 2( ( )) ( ),k kf x d f x    but as we know, it 

comes from the quadratic problem (11). Similarly, we can say that for the 

unconstrained problem the quasi-Newton step can be obtained by solving the 

following quadratic problem 

 
1

min ( )
2

T T

k kd B d f x d  (12) 

which is the quadratic internal model of the problem min ( )f x  corresponding to 

the quasi-Newton method, where kB  is a positive definite matrix satisfying the 

quasi-Newton equation 1 1( ) ( ) ( ).k k k k kB x x f x f x     

Conclusion 

To solve a mathematical programming problem an algorithm must encapsulate in 

an implicitly or explicitly manner a quadratic internal model of the problem. This 

is the quadratic internal model principle in mathematical programming. This 

quadratic internal model reflects the ingredients of the algorithm and represents its 

essence. The philosophical support of this principle is coming from the Noether 

Theorem which expresses the equivalence between the conservation laws and 

symmetries which can be represented by quadratic forms. These quadratic forms 

are the fundamentals of every line search optimization algorithm. 
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