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Rezumat. Această lucrare prezintă o metodă pentru determinarea tensiunilor 

mecanice şi variaţia lor în cazul sistemelor de transmitere şi amplificare a 

vibraţiilor mecanice produse de transductoarele piezoelectrice de mare intensitate. 

Metoda permite rapid vizualizarea a 3 parametrii: forma de variaţie a secţiunii, 

forma de variaţie a amplitudinii de vibraţie (care se poate verifica prin măsurători 

cu un accelerometru, cu un microscop sau cu metoda descrisă în [2]) şi forma de 

variaţie a tensiunilor mecanice pentru orice variaţie de secţiune care poate fi 

descrisă printr-o ecuaţie matematică. 

Abstract. This paper presents a method for the determination of mechanical 

tensions and their variations in the case of transmitting and amplifying systems for 

mechanical vibrations produces by high intensity piezoelectric transducers. The 

method quickly enables the viewing of 3 parameters: the shape of section variation, 

the shape of the amplitude vibration variation (which may be checked by measuring 

with an accelerometer, with a microscope or with the method described in 2) and 

the shape of the mechanical tensions variation for any section variation which may 

be described through a mathematical equation.  
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1. Introduction 

The method enables the drawing of the three variation shapes for any sections 

variation which can be mathematically described and for more complex systems 

formed by systems which transmit and amplify the ultrasonic energy vibrations. 

2. Methods 

The propagation relation of longitudinal plane waves through bars with variable 

sections is given by 1: 
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with condition: 
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- the vibration amplitude is maximum at the 

ends. 

Where:  - (x,t) -the vibration amplitude in Ox direction;  

- A(x) - represents the transversal section area at x distance;  

- c- represents the propagation velocity of waves through the bar;  

- E - represents the resilience module; 

-   - represents the density of the bar material. 

We have solved this equation and we have calculated the following parameters: 

 the vibration amplitude in Ox direction: 


1
 (x,t) = X

1
(x)  cos 1 t  or   
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1
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 the amplification of acoustic chain:  
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 the ratio of the areas at the two ends:  
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 if we name X0=q the distance where the vibration amplitude  (x,t) is null, we 

have: 
1
 (q,0) = 0 

The resultant X0 represents the point of rigid catch of the acoustic chain without 

affecting its functioning. 

 the vibration amplitudes at the two ends: 
1
(0,0) and 

1
(l,0). 

 the variation curve of mechanical tensions: Tm. 

We have the relation Tm = cvm,  

Where:  -  - is the density of the bar material; 

- c  - is the ultrasound velocity through the bar material; 

- vm -  is the velocity of the vibrating particle. 

The movement of the ultrasonic wave through the bar material follows a 

sinusoidal law given by relation: u(t) = Um  sin t 

where:  - u(t) - is the momentary amplitude of vibration; 

- Um - is the maximum amplitude of vibration; 

-  = 2f, f is the frequency of the ultrasonic vibrations. 

The velocity of the particles, the derivative of the movement will be given by 

relation tU
dt

tdu
tv m  cos

)(
)(   and the acceleration of the particles which are in 

an ultrasonic vibration field will be: tU
dt

tdv
ta m  sin

)(
)( 2  .  

From the above relations results the proportionality between the mechanical 

tension Tm, the velocity of particles and the derivative of vibration amplitudes. So, 

we have: Tm  vm   )0,(1 x
dx

d
 . 
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3. Results. 

The resonance bodies is formed from bars with diminishing variable sections 

(exponential, by steps, in the shape of a truncated cone) The acoustic chain is 

formed from two or more resonance bodies which are fastened together by a 

screw and it is excited by a piezoelectric transducer with a resonant frequency of 

ultrasonic propagation through the material bar. In fig. 1 it is presented a 

resonance body with variable section by steps. In fig. 2 it is presented a resonance 

body with variable section by steps connected by circular radius rac. In fig. 3 it is 

presented a resonance body with variable section by step connected by 

exponential radius. In fig. 4 it is presented a resonance body with variable section 

in the shape of a truncated cone. With the help of the calculation program and a 

presented method we have obtained the following conclusions: 

 measured the resonance frequency of these resonance bodies by using 

the echo method of an ultrasound which has a variable frequency. We determined 

the maximum echo; 

 determined the propagation velocity, through calculation, for these 

resonance bodies by v =  f and compared with the geometrical dimensions for 

make a verification of this method with experimental results. 

 determined the shapes of the vibration amplitude variation in Ox 

direction given by 
1
 curve. Notice the null vibration point where it is possible to 

catch the mechanical ensemble. 

 determined the areas of the resonance bodies sections which are given 

by expression 210
)(




pzA
; 

 determined the points with maximum demand; experiments have also 

shown that because high level of mechanical tension, when acoustic systems are 

subjected to high ultrasonic fields they break or fissure along the points with 

maximum demand. 

 determined the influence of the variation of geometrical dimensions on 

the shapes of mechanical tensions and on the position of the null vibration point. 

 determined the mechanical tensions in the resonance bodies which are 

given by (1p)10
-2

, where 1(x,t)= ),(1 tx
dx

d
 . 
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We observe that the mechanical tension is at its maximum immediately after the 

section step jump takes place, while its level is mitigated when the passage 

between two sections happens through a connection radius.  

Fig. 1. Resonance body with variable section by steps. 

-- The variation of vibration amplitude of resonance body. 

----- -- The variation of resonance body section. 

- -The variation of mechanical tensions in resonance body. 

Fig. 2. Resonance body with variable section by steps connected by circular radius rac. 

----The variation of vibration amplitude of resonance body. 

----- -- The variation of resonance body section. 

- - - The variation of mechanical tensions in resonance body. 
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Fig. 3. Resonance body with variable section by step connected by exponential radius. 

---- The variation of vibration amplitude of resonance body. 

----- -- The variation of resonance body section. 

- - - The variation of mechanical tensions in resonance body. 

Fig. 4. Resonance body with variable section in the shape of a truncated cone. 

---- The variation of vibration amplitude of resonance body. 

----- -- The variation of resonance body section. 

- - - The variation of mechanical tensions in resonance body. 
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Conclusions 

With the method presented in this paper, I have realized and verified the acoustic 

chain systems. The method has the following advantages: 

a) allows to quickly determine the shapes of the variation for: the mechanical 

tension, the vibration amplitude, the sections areas; 

b) allows to follow the influence of different factors on these variation shapes: the 

material that makes up the acoustic chain, the connection radius and its variation 

law, the length of elements; 

c) allows to expand to more complex shapes of the acoustic chain system with a 

length of n/2; n=1, 2, 3. 
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