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Rezumat. Sistemele actuale de comunicaţii optice au fost studiate pentru a constata 

existenţa (sau absenţa) principalelor caracteristici ale sistemelor complexe pentru 

componentele lor, respectiv pentru înşişi aceste sisteme ca reţele. A fost studiată 

prezenţa: a) legilor de tip putere, b) posibilităţilor de ieşire din stările de haos 

(îndeosebi prin formarea pulsurilor solitonice), c) altor relaţii specifice 

transformărilor de fază (ex. a relaţiilor de tipul Arrhenius), d) relaţiilor specifice 

proceselor de creştere (extinderea reţelelor de comunicaţii), etc. Constatările 

rezultate pot fi utilizate pentru perfecţionarea acestor sisteme, spre ex. pentru mai 

buna menţinere a profilului pulsurilor solitonice în cursul propagării lor. 

Abstract. The present optical communications systems were studied in order to find 

if their components and themselves as a network system have the basic features of 

the complex systems. There were studied the presence of the: a) power laws, 

b) specific exits from chaos states (as those corresponding to solitary pulses), c) 

other relations specific to phase transforms (as the Arrhenius’ ones), d) the typical 

growth relations (for the communications systems development), etc. The resulted 

findings can be used for the improvement of these systems, e.g. for a better 

maintenance of the solitary pulses profiles during their propagation.  

Key words: Optical communications systems, Power laws, Solitons, Arrhenius’ relations, 

Communications systems extension 

1. Introduction 

While the first modern studies of the Information transmission systems appeared 

in 1928 [1], the first syntheses of the mathematical theories of Communications, 

of the Information and Complexity, resp. were elaborated by Claude E. Shannon 

[2] and Warren Weaver [3]. 

The study of the main modern treatises [4] on the optical transmission of 

information points out that the: a) solitonic signals present the lowest energy 

losses (that could be theoretically null in some conditions), b) optical fibers ensure 

also reduced energy losses, as well as a high rate of the transmitted information, c) 

lasers with rare earths ions ensure optical signals compatible with the best present 

optical fibers (those using the silicon dioxide, or with fluorides, resp.), with 
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multiple variants (Er
3+

, Nb
3+

 ions, etc) in the optical range of interest of the 

optical fibers. For this reason, the communications systems using the transmission 

of some solitonic signals through optical fibers doped with rare earths ions, 

represent now the most efficient manner of information transmission. The 

principle scheme of a such type of optical communications is presented by Fig. 1. 

Fig. 1. Block scheme of a modern optical communications system 

The detailed scheme of one of the first modern systems of optical communications 

using the propagation of some solitonic pulses through optical fibers [5] is 

presented by Fig. 2. 

Fig. 2. Structure of an opto-electronic system used for the generation 

(with the frequency of 70 GHz) of solitonic pulses of 1.3 ps [5] 

2. Basic Complexity features of physical systems  

P. W. Anderson [6] explained the macroscopic behavior of the complex systems 

by means of the appearance of some discontinuities (“seeds”, as the vortices from 

the turbulent flows, the genetic mutations, etc) as a consequence of a Spontaneous 

Symmetry Breaking [7]. The stochastic auto-catalytic growth of  these “seeds” is 

correlated with other important features of the complex systems, as their fractal 

scaling, the power laws, etc. [7], [8], while another Complexity features referring 
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to the self-organization in systems in non-equilibrium states, their chaotic 

behaviors, the transition towards the ordered la states (to some solitonic states, 

particularly) etc. were studied by I. Prigogine [9]. 

The detailed quantitative description of the complex physical processes was 

achieved by K. G. Wilson
4
, by means of his method of the “re-normalization 

group” [10], consisting in the successive integration of fluctuations, starting from  

the atomic level fluctuations and continuing for the higher levels of matter 

organization, up to fluctuations averaging for all matter organization levels. 

It results that some notions, organized in universal sequences (i.e.: microscopic 

discontinuity ≡ “seed” → auto-catalytic growth → power laws → fractals, etc), 

allow the description of properties of complex systems of very different natures. 

This finding points out the existence of some Universality features [11] (described 

by numbers, as the so-called similitude criteria [12]) that govern the structures 

and evolutions of complex systems of arbitrary natures
5
. 

Among the numerous typical features of the complex systems, we consider as 

most characteristic: a) the preferential use of (similitude) numbers in the 

description of complex systems, which determines the fundamental role of the 

power laws in the description of such systems [13], b) the phase transitions, with  

their associated Arrhenius’ type relations, etc. c) the type (fractal, statistical, 

solitonic, etc) of the order installed at the exit from the chaos states represents 

another essential feature of the complex systems, with very important implications 

for the modern optical communications systems, d) the development (growth) 

features, etc.  

The above basic complexity features can be identified both for the components of 

the modern optical communications systems, as well as for the whole 

communication system as a (complex) network. Of course, we will examine in 

following only some typical complexity features of the basic components and of 

the entire network. 

3. Typical power laws intervening in the photo-detectors functioning  

a) Even the most usual photo-detector – the human eye presents a complex 

character, attested by Stanley’s power law [14] , correlating the intensity I of the 

visual excitation and the produced senzation S: nIkS  , (1) 

where the exponent n is an irrational number, dependent on the excitation type. 

b) Similarly, for very strong electrical fields (~10
8
 V/m), the width of the 

forbidden band corresponding to the photo-diodes with avalanche (used as photo-

                                                 
4
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detectors) reduces to very small values 
E

E
w

g
 ~ 100 Å (see Fig. 3), determining 

so high tunneling probabilities (of the potential barrier between the  valence band 

and the conduction one), and the appearance of the breakdown current for rather 

small (<~5 V) breakdown voltages (the Zener effect, see [14]). 

Fig. 3. Mechanism of the Zener’s type tunnel effect and the associated avalanche breakdown. 

For these photo-detectors (avalanche photo-diodes), the average number of pairs 

electrons-holes produced at each collision in avalanche (the multiplication factor, 

M), is given by the power law: 

n

sV

V

M 











1
1  , (2) 

where V [Vb = the breaking (polarization) voltage] is the inverse bias (see fig. 4) 

and n is the irrational number associated to this power law. 

c) The display devices (of received signals) with liquid crystals have also a 

complex character, which leads a certain power law correlating the inter-

molecular potential ui on the molecular volume V (see e.g. [15], pp. 92-96):  
m

i Vu  , (3) 

where m is again an irrational number (different of the classical theoretical value: 

m = 2). This power law is corresponds to the transition between the nematic and 

the isotropic phases of the liquid crystal. 

4. Arrhenius’ type relations  

As it is well-known [16], the rate v of a di-molecular reaction BA  is given by 

the expression: 
   

   BAk
dt

Bd

dt

Ad
v  , where    BA ,  are the 

concentrations of the 2 substances at time t, and k is the rate constant of the 

considered reaction. The temperature dependence of the reaction constant k is 

given by the  Arrhenius’ relation: 









RT

E
ATk aexp)( , (4) 

where Ea is the activation energy of the considered chemical reaction. 

 

c) 
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Relations of the Arrhenius’ type are frequently met also in the description of some 

processes intervening in the manufacturing technologies of the optical guides, e.g. 

in the cases of the: a) manufacturing technology of the optical guides with 

Er:Ti:LiNbO3 , described by the Fick’s law: 
t

C

x

C
D

x 



















 , (5) 

the temperature dependence of the diffusion coefficient D being given by the 

Arrhenius’ relation [17]: 









RT

E
DTD aexp)( 0  , (6) 

b) the manufacturing technology of the optical guides by means of an ionic 

exchange between a salt involving the ion 1 and glass, involving the ion 2, when 

the diffusion Fick’s law is: 
t

C

x

C
D

x

ii






















 , (6) 

with [17]: 
 

2211

2121

CDCD

CCDD
D







 , and: 










RT

E
DTD a

ii exp)( 0  . (7) 

The analogy of relations (4), (6) and (7) corresponds to the presence of phase 

transitions, hence of the complex character of the optical guides with “implant” of 

ions in their substrate (glass, lithium niobium, etc). We have to underline that the 

diffusion and the depletion dark currents in the metal-oxide-semiconductor 

(MOS) photo-sensors present also a temperature dependence described by 

Arrhenius’ relations [18]. 

5. Specific features of the non-linear Schrödinger solitons used by some 

optical communications systems 

Unlike the mechanical solitons, which are sometimes naturally obtained (in 

complete agreement with the corresponding propagation medium, e.g. [19]), the 

optical ones are usually obtained by the modulation of electromagnetic waves of 

high frequency [4e], hence they are “artificial” solitons, in incomplete agreement 

with the specific parameters of their propagation medium. For this reason, the 

optical solitons (non-linear Schrödinger, particularly) are subject to a certain 

(rather small, but non-negligible for large distances) attenuation, described by the 

equation [17]: qiqq
T

q

X

q
i 








 2

2

2

2

1
, (8) 

where   is the non-dimensional losses coefficient. 

The optical amplification processes (as those affecting the Stokes’ components in 

frame of the Brillouin’s and Raman’s effects, or corresponding to lasers when the 

optical fibers are doped with Er
3+

 ions, etc) are described by a term of opposite 

sign to that corresponding to losses, hence the non-linear Schrödinger equation of 
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optical solitons through a real optical fiber (implying both attenuation and optical 

amplification processes of solitons) becoming: 

qXiGqiqq
T

q

X

q
i 









)(

2

1 2

2

2

, (9) 

where G(X) is the non-dimensional coefficient of the optical gain (amplification), 

dependent on the non-dimensional distance X in the optical fiber. 

The achievement of equilibrium of the losses and gain terms from the right part of 

equation (9) ensures the maintenance of the solitons shape and amplitude. 

Additional aspects referring to: a) the computer simulations of the optical solitons 

propagation through different media and: b) the procedures intended to their 

parameters maintenance, were studied by our recent work [20]. 

6. Complex character of the modern optical communications networks  

The usual theoretical models of the solid samples take into consideration the 

crystalline lattices formed by a limited number (small, usually) of micro-particles 

types (atoms, ions) among whom are exerted local interactions (with the nearest 

neighbors). When both the interactions at small distance, as well as those at rather 

large distances are taken into consideration, the specific statistical models (Néel, 

Ising, Heisenberg) lead to some power laws, e.g. of the Domb-Fisher’s type for 

ferri-magnetic materials [21]. 

A high interest corresponds also to the complex networks formed by a large 

number of different elements, presenting specific interactions at distance 

(described by topological networks whose vertices represent the network 

elements, while their sides correspond to the interactions among these elements). 

Such networks involve the complex systems from table 1 [22a], the modern 

optical communications systems, inclusively. 

The basic theoretical models of the complex networks (random graphs) can be 

classified as: a) static models (the Erdös-Renyi’s (ER) models [23] and the Watts-

Strogatz’s (WS) one [24], mainly), b) the linearly growing models (the Barabási-

Albert’s (BA) model [22a-c]), c) the generalized growing models [22d]. 

Conclusions 

The accomplished study pointed out the complex character both of the 

components of the modern optical communications systems, as well as of the 

whole network. 

The obtained findings could contribute to a better knowledge of the components 

of the modern optical communications systems, as well as of the basic features of 

the corresponding complex networks development. 
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Table 1. Features of the main types of complex networks 
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