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Rezumat. Lucrarea analizează două căi de a demonstra natura fractală a 

internetului. În primul rând, prezintă autosimilaritatea traficului pe Internet şi 

propune un model fractal pentru acesta. În al doilea rând, propune un model 

independent de scară a topologiei Internet-ului. În continuare, autorii demonstrează 

că structura fractală a topologiei influenţează comportarea fractală a traficului pe 

Internet. Această afirmaţie este susţinută prin câteva rezultate experimentale. 

Abstract. The paper analyses two ways to demonstrate the fractal nature of 

Internet. First, it presents the self-similarity of the Internet traffic and proposes a 

fractal model of this traffic. Secondly, it proposes a scale-free model of the Internet 

topology. Furthermore, the authors demonstrate that the fractal structure of the 

topology influences the fractal behaviour of the Internet traffic. This assertion is 

sustained by some experimental results. 
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1. Introduction 

Traffic flowing through the telecommunication networks in the pre-internet age 

was predominantly „voice‟. The number of calls arriving at a station, namely the 

counting process, approximated a Poisson or renewal process. In either case 

arrivals were memory less in the Poisson case, or memory less at renewal points, 

and interarrival intervals were exponentially distributed. The Poisson arrival 

model and exponentially distributed holding time model allowed analytically and 

computationally simple Markov chains to be used for much of the telephone 

traffic modeling. An M/M/1/K chain can be used to accurately model a single 

server finite queue system with exponential service and Poisson arrivals yielding 

closed form solutions for queue length distribution, waiting time distribution, 

blocking probability etc. 

Internet traffic, which behave very differently from such simple Markovian 

models. Traffic measurements made at the Local Area Networks (LAN) and Wide 

Area Networks (WAN) suggest that traffic exhibits variability (traditionally called 

„burstiness‟) over multiple time scales [1]. The second order properties of the 

counting process of the observed traffic displayed behavior that is associated with 

self-similarity, multi-fractals and/or long range dependence (LRD). This indicates 

that there is a certain level of dependence in the arrival process. 
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Near-range and long-range dependencies often manifest themselves in a network 

by causing frequent and irremediable packet losses and other serious effects in the 

network. 

Dependencies and burstiness in traffic hence brought in an enormous amount of 

attention from researchers. They attempted to develop mathematically-based 

models that would help explain the nature of the systems exhibiting such 

phenomena and provide critical insight into the actual mechanisms that led to this 

behavior. Models like fractional Brownian motion, chaotic maps etc. were suited 

to capture the second order self-similar behavior of traffic [2]. Their results were 

difficult to get and harder to apply, and such models did not provide insight into 

the actual mechanism of traffic generation. Many analytically simpler modeling 

attempts to capture the first and second order properties of counts did not predict 

the queuing behavior well enough. In the late 90s researchers discussed the impact 

of other properties of the self-similar process, such as marginal distributions, in 

accurately predicting the queuing behavior. A simpler, more accurate and 

analytically tractable model that provides more physical insight into why they are 

meaningful on physical grounds would help the network designers produce more 

effective and efficient designs. 

Some ideas generated in the last decade offer promise towards crafting the model. 

Anderson and Nielsen [3] illustrated that continuous parameter Markov chains 

(cpMc) can model the dependencies in network traffic over multiple time scales; 

the advantage of such models is the availability of ready-made tools for analysis. 

Their model matched the second order properties of the self-similar process 

closely, but it was not sufficient for accurate prediction of queuing behavior. 

Grossglauser and Bolot [4] discussed both the importance of limiting the view to 

the finite range of time scales of interest, and the influence of marginal 

distributions in performance evaluation and prediction problems. From the above 

discussions, one can infer that both the second order and marginal properties of 

the process need to be matched for more accurate results. Salvador et al. [5] 

achieved some degree of success by using a fitting procedure that matched both 

the marginal distribution and auto covariance of the counting process, but a 

solution form that provides deep insight into the system was still missing. 

The Internet is a prime example of a self-organizing complex system, having 

grown mostly in the absence of centralized control or direction. In this network, 

information is transferred in the form of packets from the sender to the receiver 

via routers, computers which are specialized to transfer packets to another router 

“closer” to the receiver. A router decides the route of the packet using only local 

information obtained from its interaction with neighboring routers, not by 

following instructions from a centralized server. A router stores packets in its 

finite queue and processes them sequentially. 
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However, if the queue overflows due to excess demand, the router will discard 

incoming packets, a situation corresponding to congestion. A number of studies 

have probed the topology of the Internet and its implications for traffic dynamics. 

[6,7]. 

To efficiently control and route the traffic on an exponentially expanding Internet, 

one must not only capture the structure of current Internet, but allow for long-term 

network design. Until recently all Internet topology generators provided versions 

of random graphs but in 1999 discovery of Faloutsos [8]: Internet is a scale-free 

network with a power-law degree distribution. Several contributors found that the 

Internet flow is strongly localized: most of the traffic takes place on a spanning 

network connecting a small number of routers which can be classified either as 

“active centers,” which are gathering information, or “databases,” which provide 

information. Experimental evidence for self-similarity in various types of data 

network traffic is already overwhelming and continues to grow. So far, 

simulations and analytical studies have shown that it may have a considerable 

impact on network performance that could not be predicted by the traditional 

short-range-dependent models. The most serious consequence of self-similar 

traffic concerns the size of bursts. Within a wide range of time-scales, the burst 

size is unpredictable, at least with traditional modeling methods.  

This is the point from which the authors of this paper assume that the traffic 

behavior is strong influenced and depends of the network free-scale structure. We 

have also demonstrated that the scale-free Internet model displays a number of 

properties that distinguishes it from random graphs: wiring redundancy and 

clustering, non-trivial eigenvalue spectra of the connectivity matrix and a scale-

free degree distribution.  

2. Evidence of traffic self-similarity 

2.1. General considerations 

Using a number of experiments, the following results towards characterizing and 

quantifying the network traffic processes have been achieved: 

First, self-similarity is an adaptability of traffic in networks. Many factors are 

involved in creating this characteristic. A new view of this self-similar traffic 

structure is provided. This view is an improvement over the theory used in most 

current literature, which assumes that the traffic self-similarity is solely based on 

the heavy-tailed file-size distribution. 

Second, the scaling region for traffic self-similarity is divided into two timescale 

regimes: short-range dependence (SRD) and long-range dependence (LRD). 

Experimental results show that the network transmission delay (RTT time) 

separates the two scaling regions. 
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This gives us a physical source of the periodicity in the observed traffic. Also, 

bandwidth, TCP window size, and packet size have impacts on SRD. The 

statistical heavy-tailedness (Pareto shape parameter) affects the structure of LRD. 

In addition, a formula to quantify traffic burstiness is derived from the self-

similarity property. 

Furthermore, studies of fractal traffic with multifractal analysis have given more 

interesting and applicable results. (1) At large timescales, increasing bandwidth 

does not improve throughput (or network performance). The two factors affecting 

traffic throughput are network delay and TCP window size. On the other hand, 

more simultaneous connections smooth traffic, which could result in an 

improvement of network efficiency. (2) At small timescales, traffic burstiness 

varies. In order to improve network efficiency, we need to control bandwidth, 

TCP window size, and network delay to reduce traffic burstiness. There are the 

tradeoffs from each other, but the effect is nonlinear. (3) In general, network 

traffic processes have a Hölder exponent α ranging between 0.7 and 1.3. Their 

statistics differ from Poisson processes. To apply this prior knowledge from traffic 

analysis and to improve network efficiency, a notion of the efficient bandwidth, 

EB, is derived to represent the fractal concentration set. Above that bandwidth, 

traffic appears bursty and cannot be reduced by multiplexing. But, below it, traffic 

is congested. An important finding is that the relationship between the bandwidth 

and the transfer delay is nonlinear. 

The past few decades have seen an exponential growth in the amount of data 

being carried across packet switched networks, and particularly the Internet. This 

growth has brought packet switched networks to the point where the amount of 

traffic being carried on them is expected to exceed that carried on traditional 

circuit switched technology in the very near future.  Packet switched networks are 

not new. They have been around for over 30 years. During that time, a number of 

models for the traffic carried across them have also been proposed. Early attempts 

at  odeling network traffic  odelin on Markovian models, such as the Markov-

Modulated Poisson Process (MMPP) [9]. Markovian models were familiar to 

teletrafficists, due to their long association with the  odeling of telephony traffic, 

and have the advantage of being generally tractable. 

In recent analyses of traffic measurements, evidence of non-Markovian effects, 

such as burstiness across multiple time scales, long range dependence and self 

similarity; have been observed in a wide variety of traffic sources. As is clearly 

shown in [10, 11, 12], the performance of processes exhibiting these properties is 

radically different from that of the traditional models. Given the evidence of long 

range dependence and self-similarity in such a wide variety of sources, it is clear 

that any general model for data traffic must account for these properties. This has 

led to the development of a number of new models. 
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2.2. Testing a fractal traffic model 

Mandelbrot and his co-workers introduced an analogy between self-similar (SS) 

processes and fractal processes [8]. Referring directly to the incremental process 

Xs,t = Xt-Xs, he defines stochastic self-similarity as: 

Xt0,t0+rt = r
H
 Xt0, t0+t,  t0, t, r>0   (1) 

Mandelbrot constructs his SS process (fractional Brownian motion, fBm) starting 

with two properties of the Brownian motion (Bm): it has independent increments 

and it is self-similar with Hurst parameter H= 0.5 

Denoting Bm as B(t) and fBm as BH(t), here is a simplified version of 

Mandelbrot‟s definition of the fBm: BH(0) = 0, H  [0,1] and 
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An SS process is called a long-range dependence (LRD) process if there are 

constants α(0,1) and C >  
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where  is the autocorrelation of lag k. 

When represented in logarithmic coordinates, eq. (3) is called the correlogram of 

the process, and has an asymptote of slope –α. It is to note that there are SS 

processes which are not LRD and, conversely, there are LRD processes which are 

not SS. However, the fBm with H > 0.5 is both SS and LRD type. 

In his landmark paper [1], Leland at al. report the discovery of self-similarity in 

local area network (LAN) traffic, more precisely Ethernet traffic. To be precise, 

we note that all methods used in [1] (and in numerous papers that followed) detect 

and estimate LRD rather than SS. Indeed, the only “proof” offered for SS per se is 

the visual inspection of the time series at different time-scales. “Self-similarity” 

(actually LRD) has since been reported in various types of data traffic: LAN, 

WAN, Variable-Bit-Rate video, SS7 control, HTTP etc. Lack of access to high-

speed, high-aggregation links, and lack of devices capable of measuring such 

links have until recently prevented similar studies from being performed on 

Internet backbone links. In principle, traffic on the backbone could be 

qualitatively different from the types enumerated above, due to factors such as 

much higher level of aggregation, traffic conditioning (policing and shaping) 

performed at the edge, and much larger round-trip-time (RTT) for TCP sessions. 

Actually, some researches have even claimed that aggregating Internet traffic 

causes convergence to a Poisson limit. 
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For reasons presented in the next section and based on the remarks that on shorter 

time scales, effects due to the network transport protocols are believed to 

dominate traffic correlations and on longer time scales, non-stationary effects 

such as diurnal traffic load patterns become significant, we disagree. 

In our tests we have simulated link speeds ranging from 10 Mbps to 622 Mbps, 

average bandwidths between 1.4 and 42 Mbps, minimum time-scale of 1ms (in 

only one instance – usually above 10-100ms), and at most 6 orders of magnitude 

for time-scales. The correlograms (see fig.1) shown that traffic considered specific 

for the Internet backbone is indeed asymptotically SS, and also reported a new 

autocorrelation structure for short lags. The autocorrelation function for short lags 

has the same power form as for long lags, i.e. 
–α

, but the parameter α 

turns out to assume values which are significantly larger: α  [0.55, 0.71] for k 

[50μs, 10ms], compared to α  [0.1, 0.18] for k[100ms, 500s].  

Fig. 1. Graphic representation of a network with 200 nodes 

The first plot in fig.1 shows the correlogram for the shortest time unit used in our 

analysis. Although the linear trend is clearly present, the dependence is too 

chaotic to be of much use. For the second plot, the bytes arrived are aggregated in 

0.4 ms time intervals, and the two slopes corresponding to the two values of α are 

easily seen. 
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The third is a variance-time plot – just another way of looking at LRD. The 

straight line corresponds to a Hurst parameter H = 0.5, so clearly the asymptote of 

the function represented has a larger slope (between 0.84 and 0.96, to be precise). 

This being an arrival process with an average speed of about 700 Mbps, the 

hypothesis that at high speeds the traffic becomes Poissonian (H  0.5) is 

rejected. 

3. A scale-free internet model 

3.1. Scale free topology 

To model a distributed network environment like the Internet, it is necessary to 

integrate data collected from multiple points in a network in order to get a 

complete picture of network-wide view of the traffic. Knowledge of dynamic 

characteristics is essential to network management (e.g., detection of 

failures/congestion, provisioning, and traffic engineering like QoS routing or 

server selections). However, because of a huge scale and access rights, it is 

expensive (sometime impossible) to measure such characteristics directly. To 

solve this, methods and tools for inferencing of unobservable network 

performance characteristics are used in large scale networking environment. A 

model where inference based on self similarity and fractal behavior can be applied 

is the scale free network. 

Scale-free networks are complex networks in which some nodes are very well 

connected while most nodes have a very small number of connections. An 

important characteristic of scale-free networks is that they are size independent, 

that is they preserve the same characteristics regardless of the network size N. 

Scale-free networks have a degree distribution that follows a power relationship, 

P(k) = k^(-λ), where the coefficient λ may vary approximately from 2 to 3 for 

most real networks. Many real networks have a scale-free degree distribution, 

including the Internet. The algorithm used for the generation of the scale-free 

network topology is generating networks with a cyclical degree that can be 

controlled, in our case, approximately 4% of the added nodes form a cycle. 

The generated topology consists of three types of nodes: 

 Routers, defined as nodes with one or several links. Routers do not initiate 

traffic and do not accept connections.  

 Servers are defined as nodes with one connection but sometimes could have 

two or even three connections. Servers only accept traffic connections but do 

not initiate traffic. 

 Customers (end-users) defined as nodes that have only one connection, very 

seldom two connections. Customers initiate traffic connections towards 

servers at random moments but usually in a time succession. For our proposed 

model, we chose a 20:80 customers to servers ratio. 
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3.2. Scale-free network design algorithm 

Several models have been presented for the evolution of scale-free networks, each 

of which may lead to a different ensemble. The first suggestion was the 

preferential attachment model by Barabasi and Albert, which came to be known 

as the “Barabasi-Albert (BA)” model [13]. Several variants have been suggested 

to this model. One of them, known as the “Molloy-Reed construction” [14], which 

ignores the evolution and assumes only the degree distribution and no correlations 

between nodes, will be considered in the following. Thus, the site reached by 

following a link is independent of the origin. We designed and implemented an 

algorithm that generates those subsets of the scale-free networks that are close to a 

real computer network such as the Internet. Our application is able to handle very 

large collections of nodes, to control the generation of network cycles, and the 

number of isolated nodes. The application was written in Python being, as such, 

portable. It runs very fast on a decent machine (less than 5 minutes for 100.000 

nodes model).  

Network generation algorithm: 

1. set node_count and λ 

2. compute the optimal number of nodes per degree 

3. create manually a small network of 3 nodes 

4. for each node from 4 to node_count 

4.1. call add_node procedure 

4.2. while adding was not successful 

4.2.1. call recompute procedure 

4.2.2. call add_node procedure 

5. save network description file  

add_node procedure 

1. according to the preferential attachment, compute the degree of the parent node 

2. if degree could be chosen then exit procedure 

3. compute the number of links that the new node shall establish with descendants 

of its future parent, according to copy model 

4. chose randomly a parent from the nodes having the degree as computed above  

5. compute the descendant_list, the list of descendants of the newly chosen parent 

6. create the new node and links 

7. for each descendant of the descendant_list create the corresponding links 

8. exit procedure with success code 

recompute procedure 

1. for each degree category 

1.1. calculate the factor needed to increase the optimal count of nodes per degree 

1.2. if necessary increase the optimal number of nodes per degree 

2. exit procedure 
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The algorithm starts with a manually created network of several nodes, then using 

preferential attachment and growth algorithms, new nodes are added. 

We introduced an original component, the computation in advance of the number 

of nodes on each degree-level. The preferential attachment rule is followed by 

obeying to the restriction of having the optimal number of nodes per degree. 

Fig. 2 presents an example of a network with 128 nodes, the initial number of 

nodes being m0 = 5 and an incremental growth of one link per step. 

Fig. 2. Graphic representation of a network with 128 nodes 

One can see that poor connected nodes have smaller chances of getting new 

connections. Besides following the repartition law mentioned above, some other 

restrictions (for example those related to cycles and long chains) had to be applied 

in order to make the generated model more realistic and similar to the Internet. A 

more subtle restriction is related to the TTL (Time-to-living) which is a way to 

avoid routing loops in a real Internet. This translates in a restriction for our 

topology – there can be no more that 30 nodes to get from any node to any other 

node. 
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4. Influence of network topology on traffic behavior 

The fractal nature of both traffic and topology of an Internet network and their 

reciprocal influence was tested considering simulated web traffic on the Internet 

SFN based model. After the generation of a huge network model, we have split it 

in several sub-networks (federations) and then we have verified the traffic 

similarities investigating measurement series having fractal properties. Self-

similarity is a rigorous statistical property. Let assume we have (very long) time 

series data with finite mean and variance (i.e., covariance stationary stochastic 

process). Self-similarity implies a “fractal-like” behavior: no matter what time 

scale is used to examine the data, similar patterns are obtained. The main features 

deduced from self-similarity are: slowly decaying variance, long range 

dependence and non-degenerate autocorrelations. The “variance-time plot” is one 

of the means to test for the slowly decaying variance property. For example, if we 

plot the variance of the sample versus the sample size, on a log-log plot, it results 

for most processes a straight line with slope -1; for self-similar, the line is much 

flatter. Furthermore, the autocorrelation function for the aggregated process is 

indistinguishable from that of the original process. For the simulation of self-

similar traffic it was used a superposition of ON-OFF sources after a Pareto 

distribution, with 21  . The Pareto distribution has two parameters, the 

parameter of shape α and the low-cutting parameter β. The Cumulate Distribution 

Function (CDF) Pareto is

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relationated with the Hurst parameter H as 
2

3 
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In the simulation the whole network was splitted in subnetworks with at most 40 

nodes. The parameter for simulation of such a subset were the total number of 

nodes/subnetwork is N = 40, the number of the initial nodes is m0 = 5 and a value 

m = 2 (i.e. at each incremental step one add two links in order to maintain a non-

zero grouping coefficient). For the simulation we have used 32 associated traffic 

sources randomly associated to TCP traffic agents. The value of the shape 

coefficient α was 1,4 which lead to an expected value of H = 0,8. In fig. 3 are 

shown the diagrams of the aggregate number of packets on three time units: 

1 second, 100 milliseconds and 10 milliseconds. The gray color represents the 

zoom. The strong burstiness of the traffic in all three diagrams confirms the 

presence of the self-similarity phenomenon. 

The Hurst parameter, H, for a given sequence was calculated using a number of 

three different estimation methods: the diagram of the rescaled domain, the 

diagram dispersion-time and the periodogram. In theory, the expected value of 
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Hurst is 0.8, but the real results are, in the order in which the methods were 

presented: 0.8115, 0.9761 and 1.1325. Quite the coefficients for the last two 

methods are over evaluated, one can conclude that the tested model presents 

statistical self-similarity. 

Fig.3. Number of packets/s for three time scales: 1, 0.1 and 0.01 seconds. 

Conclusions 

The advantage of the model proposed here is its flexibility: it offers an universally 

acceptable skeleton for potential Internet models, on which one can build features 

that could lead to further improvements. The model introduced here offers a 

realistic starting point for a general class of network topologies that combine the 

scale-free structure with a precise spatial layout.  

Although the traffic processes in high-speed Internet links exhibit asymptotic self-

similarity, their correlation structure at short time-scales makes their modeling as 

exact self-similar processes (like the fractional Brownian motion) inaccurate. 

Based on simulations made on the SFN based Internet model we conclude that 

Internet traffic retains its self-similar properties even under high aggregation. 

The experiments have let to the following results: 1) self-similarity is an 

adaptability of traffic in the network and is not based only on the heavy-tailed file-

size distribution; 2) the scaling region on traffic self-similarity is divided into two 

timescale regimes: short range dependencies (SRD), determined by bandwidth, 

TCP window size and packet size, and long range dependencies (LRD), 

determined by the statistical heavy-tails; 3) in LRD, increasing the bandwidth 

does not improve throughput (or network performance; 4) there is a significant 

advantage in using fractal analysis methods to solve the problem of anomaly 

detection. 
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An accurate estimation of the Hurst parameter for the MIB variables offers a 

valuable abnormality indicator obtained for the bursty variables. Thus, by 

improving the capability of predicting impending network failures, it is possible to 

reduce network downtime and increase network reliability. 
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