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COULD BE ACTIVE IN NATURE SCIENCES - THE
COMPLEXITY THEORY

Dan-Alexandru IORDACHE?, Pier Paolo DELSANTO?

Rezumat. Pornind de la caracteristicile de baza ale sistemelor complexe, lucrarea

probleme inca nerezolvate privind: a) procesele de crestere/acomodare din:
(i) biofizica, (ii) cosmologie etc., b) teoria simuldrilor numerice ale unor procese
fizice diferite. Au fost definite si evaluate razele de stabilitate si — respectiv. —
convergenta ale unor diferite scheme numerice, ceea Ce a permis estimarea
addncimii logice accesibile a unor simulari numerice de diferite tipuri, considerate
ele ingisi drept sisteme complexe.

Abstract. Starting from the basic features of the complex systems, this work studies
the possibilities to use these basic notions in order to elucidate some still unsolved
problems referring to the: a) growth/accommodation processes from: (i) biophysics,
(ii) cosmology, etc., b) theory of numerical simulations of different physical
processes. There were defined and evaluated the stability and convergence radii of
different numerical schemes, which allowed to estimate the accessible logical depth
of various numerical simulations, considered themselves as complex systems.

Keywords: Complexity theory, Growth/accommodation processes, Inflation stage, Stability and
Convergence Radii, Accessible Logical Depth

1. Introduction

Despite of the fact that the theory of Complexity was elaborated and supported by
many illustrious scientists, as Ettore Majorana [1], the mathematicians Warren
Weaver [2] and Claude Shannon [3], the Physics Nobel prize laureates Murray
Gell-Mann [4], Philip Warren Anderson [5], Kenneth Geddes Wilson [6], Pierre-
Gilles de Gennes [7], as well as by the Chemistry Nobel prize laureate llya
Prigogine (1977) [8], some specialists still consider that “the very young science
of complexity has promised much but delivered little so far” [9]. The
accomplished study [10] pointed out that the basic features of the complex
systems are: a) the preferential use of physical numbers (due to the Universality of
the complex systems laws) and: b) the similitude theory, as well as of the: c)
power laws in the Complexity theory, d) logical depth of each Physics problem,
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e) self-organizing processes, etc. Taking into account also the appreciation of the
Physics laureates Russell Hulse (1993): “Physics continues to face a big challenge
in terms of what it defines itself to be, and this will determine its fate as a field. If
physics grows by integrating a broader interdisciplinary definition of itself, it will
remain a pivotal science.

If it defines itself narrowly only in terms of what it has been in the past, its role
and impact will diminish” and Nicholas Bloembergen (1981): “There are many
unsolved problems, especially in biophysics and astrophysics”, this work tries to
find the possibility to use the basic Complexity notions in order to elucidate some
still unsolved problems referring to the: a) growth processes from: (i) biophysics,
(if) cosmology, and of the: b) theory of the numerical simulations of different
physical processes.

2. Complexity theory applications in description of the growth/accommoda-
tion processes

The use of the complexity theory to describe the growth/evolution processes of
the: a) human body, b) Universe, was studied in detail by the work [11]. We have
to underline: (i) the use of the physical numbers, e.g. of the variable z=Iny,

where vy is the usual (dimensional) physical quantity (e.g. the human body weight
or height, the Universe size, etc), (ii) the use of the similitude models and criteria
in order to test the compatibility of a certain theoretical model relative to the
experimental data, (iii) the use of the “phases space” (2, z) in order to describe

the growth processes, (iv) the compatibility of the power law: z=C-z" [where:
ne (O, 1) and: C > 0] both with the inflation stages corresponding to the human
body growth and with that of the Universe evolution, (v) the capacity of the
Universality classes Ug, U; and U, to describe also [12] the other types of growth
stages by means of the equations:

a) z=s/(constant), and: z = Iny = m + s.t (auto-catalytic growth, class Uy), (1)

b) z=ay+a1(z-2y), With: ag = 2o, g =Iny, (Gompertz growth, class Uy), (2)

C) 1= [1+ ia]-eﬂ " , with: g >0, » <0 (West type growth, class U,), (3)
7 dg I4

(vi) the possibility of appearance of some inflation phases also in the
accommodation processes of different (e.g. complex magnetic) materials, as it is
shown by Figure 1 for the time dependence of the magnetization process for an
alnico rod [13], (vii) the use of the phase transitions of some industrial complex
materials in order to optimize their technological performances, e.g. in order to
ensure a certain stabilization of their basic parameters (for example of the
permeability) at the usual temperatures (see Figure 2).
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Fig. 1. The time dependence of the magnetization of an alnico rod [13]
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Fig. 2. Temperature dependencies of the initial magnetic permeability 4, and of the Rayleigh’s
coefficient R, for the industrial complex material Fe,oMngssZng 4204 [14], [10] (p. 249).

We have to underline also finally the existence of some connections between
different features of the complex systems. For example, consider 2 correlated
physical parameters p and g. Let Inp and Inqg be their numerical (i.e.

complexity) equivalents and let assume the most elementary (basic) correlation —
the linear one: In p=1Inp; +s-Inq, between them (where the interceptIn p; and

the slope s are constant). It results that: p = p;-q°, (4)

i.e. the power law, which is a basic feature of complex systems. If q corresponds
to the sample size, then relation (4) represents a typical fractal scaling law
describing the so-called size effects met for the complex systems.

Taking into account the definitions of Murray Gell-Mann of the effective
complexity as “the length of a highly compressed (without redundancies) of the
regularities of the entity under consideration” and of the apparent (but more
interesting for applications) complexity as “the logical depth associated with the
computation time” [4], this work will study the accessible logical depth
corresponding to some numerical simulations of certain physical processes.
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3. Evaluation of the Accessible Logical Depth of the Numerical Simulations of
different physical processes

It is well-known that while the effective complexity is measured by the length of a
highly compressed (without redundancies) description of the regularities of the
studied entity, the apparent complexity (though the most important one from the
point of view of applications) refers to the logical depth of the studied problem,
I.e. to the necessary (often very long) computation time [4].

Taking into account that the accessible (by means of some numerical simulations)
logical depth corresponds to the radii of stability and convergence of the used
theoretical algorithms and numerical schemes, this work will study these elements
for the computer simulations of different physical processes.

a) Statistical Tests of Compatibility

Because the computers are complex systems, the computer programs are expected
to exhibit the main Complexity features indicated by Philip Anderson [5]:
spontaneous symmetry breaking, power laws, auto-catalytic growth, some kind of
self-organizing processes, etc. For this reason, this work aims to identify also
these Complexity features in frame of a study intended to define, determine and
interpret the results concerning the stability and convergence radii corresponding
to different numerical simulations. Due to their advantages to be: a) considerably
cheaper than the experimental determinations, b) possible even in inaccessible
experimental conditions, the numerical simulations are frequently used in
different scientific and technical studies. Unfortunately, the existing numerical
phenomena (as those corresponding to instabilities, pseudo-convergence,
distortions, etc) strongly limit the use possibilities of the numerical simulations
[15]-[18].

Our study of the compatibility of some computer simulations, relative to some
existing experimental data, begun from the classical test procedure of any
statistical hypothesis [19]: for a given space of uniqueness parameters, it is
defined the vector t of the test parameters and 2 zones: of acceptance Z 4, and its

complementary Z.. The probability q = P(f € ZC|H :true) to reject the statisti-

cal hypothesis H, when it is however true gives the criterion of acceptance/re-
jection of the studied statistical hypothesis: as the error risk g < 0.001 or g > 0.02,
the statistical hypothesis is rejected, or it is accepted. The classical statistical tests
¥* (Pearson), Kolmogorov, Massey, Sarkady etc. intended to the study of the
compatibility of some theoretical distributions with the experimental ones are
used sometimes also for the evaluation of the overall (general) compatibility of
some theoretical relations and of some computer simulations relative to the
existing experimental data [20], [21].
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b) Definitions of the stability radii
The main features of the classification of some numerical schemes corresponding
to different computer simulations, from the numerical phenomena point of view
[17], are examined in frame of Table 1.

Let pj sim and pjanalyt. be the simulated and the “exact” (analytical) value of

the test parameter p corresponding to the physical state i.

The deviation of the numerical description of the parameter p relative to the
analytical description can be evaluated by means of the square mean relative
deviation, defined as:

N
2 : 1 &
S :\/Zwi (pi,sim. - pi,analyt.) , where: W; =N Pi,analyt. )
i=1

are the weights corresponding to the different analytical values pj ananyt. (i = 1,N).
For the strongly unstable and the medium instability numerical schemes (see
Table 1), the dependence of the square mean deviation s on the number | of
accomplished iterations has the shape from Fig. 3, presenting the form of:
a) a certain relaxation, or of: b)some oscillations, finished by an abrupt
exponential increase.

gA

Wl

0

Fig. 3. Different types of square mean deviation (s) vs iterations number (1) dependencies

Depending on the shape of the s = f(I) dependence, the stability radius of the
studied numerical simulation can be defined as below.

(i) The s = f(I) dependence of relaxation type, followed by an auto-
catalytic growth

Taking into account that the abrupt (exponential) part of the s = f(I) dependence
can be described by means of the power-law type relation:
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Ins = I -In|&|+const. , (6)
where In|§| >0 and & could be the ratio of the successive transfer coefficients [17]

[we mention that relation (6) and the parts corresponding to instability from
figures 3 and 4 point out the appearance of some auto-catalytic growths [22], [10]
during the transition from the ordered to the disordered phase of a numerical
simulation; in this manner, the computer simulations behave exactly as complex
systems: different phases, auto-catalytic growths, etc].

It results that the stability radius can be defined for this s = f(I) dependence as the
abscissa of the cross-point of the: (i) regression line corresponding to the
relaxation part of the Ins= f(l) dependence, and of the: (ii) corresponding

regression line (6) of the abrupt part of the same dependence (see Fig. 3).
(i) The oscillation type s = f(I) dependence

Starting from the definition of a pseudo-force constant (describing the
oscillations from fig. 4):

A 2
ke——>_ where: §=23 @)
SES a|2

one studies the dependence of this pseudo-force constant on the number | of
iterations (see fig. 5).

In s Tnstability § Psendoforce
] {exponestial constant
usnally) = .
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Fig. 4. Oscillation type s = f(l) dependence Fig. 5. Definition of the stability radius
by means of the pseudo-force constant

c) The definition of the convergence radius

In this case, it is possible to define the stability radius |g by the condition:

k(ls)=0, 8)
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being so the number of iterations corresponding to the character change of
pseudo-forces, from the: (i) “attractive” character, describing the square mean
relative oscillations, to the: (ii) “rejection” character, corresponding to the
instability initiation.

Let sexp, be the square mean relative error corresponding to the averaged

N
experimental errors: sy, :\/Zwi(pi,exp._pi,analyt)z : 9)
i=1

The convergence radius |y, can be defined as:
(1) s(lcom,_): Sexp.» Where the function s(1) is defined by relation (5) for:

pi,sim = pi(,ls)im’ (10)

(i) of belonging of the representative points of the numerically simulated

values of the studied parameter p to all corresponding confidence domains. In this
aim, the error risks qy corresponding to the rejection of the compatibility of the
simulated values with the experimental ones for the physical state k are calculated
for successive iterations I; as it is well known, the rejection of the compatibility a
statistical hypothesis relative to the existing experimental data is decided if the
error risk g accepted (assumed) to rejection is less than a certain threshold

Oreject, Usually chosen between 2-107 and 10~° (see also figs. 6 and 7).

pis) T f{experimental errors) Errur‘{isk, q
Yaccept.
Increasing 2 %

experimental errors

Lonvergence Number of

[ . .
O Esimulation iterations, I
Fig. 6. Evaluation of the error risk, Fig. 7. Definition of the convergence radius
starting from the errors distribution p = f(¢) by means of the error risk value

(iii) The definition of the convergence radius for the slowly divergent
numerical simulations

To avoid the excessive time-consuming numerical calculations corresponding to

the evaluation of the stability radius of slowly divergent numerical simulations

(see Table 1) by means of the usual definitions (see above), it is more convenient

to use an alternative definition of the stability radius in these cases, by means of

the expression: (I gony.) =2 Sexp. (11)
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d) Stability and Convergence Radii of different numerical schemes

The accomplished numerical studies [23], [24] have pointed out that, for given
values of the wave frequency (or wavelength) and of the tangent of mechanical
losses, beginning from a certain number of space (or time) steps Xjjmy., one finds
usually the appearance of large oscillations of the simulated displacements, which
lead quickly to instability.

Ex

Because the instability is determined by the value of the factor e=" and:

E=ktan§, while the wave intensity is proportional to the square of

displacement: 1 oc w?, one finds that the measure (in deci-Bells) of the intensity
level corresponding to the stability field is:

o X o
<L|’Stab>dB = 2<Lw,stab>dB = 2OE'X|im = 20k-x|im-tan5 :40n%tanz. (12)

Of course, the decrease of the wave intensity corresponding to the stability field
(limit) is:

lim./ 1o = &0(= 2E - Xjim) = e><p(—<|—|,stab.>/10) (13)

Table 2 synthesizes the obtained numerical results.

e) Analysis of the obtained results for different studied numerical schemes
and physical processes

The obtained results (Tables 1 and 2) concerning the stability and convergence
radii of different numerical schemes intended to the computer simulation of
certain physical processes (acoustic pulses propagation, diffusion with drift,
absorption, etc) indicate the “accessible” logical depths [4] of the specific studied
physical problems, for each of the used numerical schemes.

These results present also a considerable importance for the choice and
optimization of the numerical schemes [25].

Certain numerical schemes, e.g. that corresponding to the complex stiffness S
symmetric wave equation of the propagation in dissipative media:

: (14)
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allow multiple solutions, i.e.: W) ; = A-efidtr o HEHKE (15)
Even if the initial conditions launch only the “direct” wave:

—dir. —El- :

Wl,ltr =A-e "¢ expi(atr—kl-g), (16)

some random accumulations of the rounding errors intervening in the evaluation
of the partial derivatives produce a local (“spontanecous”) generation of the inverse
wave:

W =A™ epi(wtr+kl-£), 40

leading to the sudden apparition of instabilities.

One finds so that the numerical simulations of the waves propagation through
dissipative media lead to a typical problem of self-organizing systems, with a
spontaneous symmetry breaking. This symmetry breaking corresponds to the
“spontaneous” local generation of the inverse wave, launched by the random
accumulation of the “garbage” rounding errors and followed by the transition
between the attenuated wave and the apparently amplified wave, corresponding to
the “inverse” wave.

The accomplished study (see Tables 1 and 2) points out that the “speed” of this
self-organization process crucially depends on the number and intensity of the
numerical “interactions” between the components (the values w,; of the

displacement in different sites I, t of the FD grid) of the simulation process.

Because such numerical “interactions” are achieved mainly by the FD
approximate expressions of the partial derivatives, the “spontaneous” breaking of
symmetry appears quicker for (in the decreasing order of importance):

a) large numbers of displacement components involved in the expressions
of partial derivatives, e.g. when their expressions with 2 previous time steps
(instead of those using an only one previous time step) are used:

— f(27) +8f(z) -8f (-7) + f (-27)

f(0)= T (18)
fo)-— @) +161(0) -3(;; (;) +161(-2) ~ F(-20). (19)
T

when the instabilities appear after only few tens of iterations,

b) presence and repeated “mixture” of the values of both real and pure
imaginary parts of the complex wave function (displacement) w,
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¢) more parasitic solutions,

d) more partial derivatives involved in the expression of the differential
equation of the acoustic pulses propagation.

For these reasons, the highest “accessible” logical depth [4] is reached (for the
simulations of the acoustic pulses propagation through attenuative media) for the
numerical scheme using the real wave function equation (see table 2), with the
usual FD approximations of the first 2 order derivatives:

f ()~ 2F(0) + f (2)
> .

T

f(0)=%:(_f) . f)= (20)

Conclusions

The obtained results concerning the stability and convergence radii of some
different numerical schemes intended to the computer simulation of the acoustic
pulses propagation through different media present a considerable importance for
the choice and optimization of these numerical schemes [25].

It was found also that the numerical simulations of the acoustic pulses propagation
through attenuative media allow to study some features of the self-organizing
systems (the spontaneous symmetry breaking, the influence of the interactions
between the system components on the accessible logical depth, etc).
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