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HAM-NET: HIERARCHICAL ACOUSTIC MODELING WITH
DILATED CONVOLUTIONS AND MULTI-SCALE LSTMS
FOR ENHANCED SPEECH COMMAND RECOGNITION
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Abstract. Accurate detection of spoken commands is essential for modern interactive
voice systems, yet robust keyword spotting remains computationally demanding,
especially under speaker and noise variability. State-of-the-art solutions require
substantial resources and large training datasets, while still struggling with acoustically
similar keywords. This work presents a novel keyword spotting architecture based on
hierarchical modeling, enabling more efficient resource allocation and reduced
computational waste. The proposed approach provides not only improved keyword
recognition, but also an explicit modeling of relationships among keywords. Experimental
evaluation against a standard baseline demonstrates superior accuracy. Analysis using a
confusion matrix shows significantly reduced misclassification among similar-sounding
keywords. These results indicate a meaningful advancement in both efficiency and
reliability for keyword spotting systems.
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1. Introduction

In an age of increasingly ubiquitous voice-enabled computing, Keyword
Spotting (KWS) represents a foundational technology that enables hands-free
control of our devices. Although these systems have become relatively
sophisticated, there remains the basic problem of discriminating phonologically
similar keywords (known as “minimal pairs”), like ”go” and ”no”. Discriminating
these phonologically similar keywords is problematic because the most salient
characteristics that differentiate them may be very subtle, time-sensitive
variations, brief phenomena which the usual architectures may down-sample or
smooth of temporal information. This is particularly challenging when we
introduce background noise, variability inherent in everyday environments, and a
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restriction in available resources (the KWS model itself) when implemented on
constrained devices, where efficiency is of utmost importance.

To tackle this problem, we proposed the Hierarchical Acoustic Modeling
Network (HAM-Net) as a new architecture that used the recognized speech
commands. To achieve this, we used the combination of using a dilated
convolutional front-end layer to extract multi-scale features (dilations that were
covered during the front-end processing of the acoustic spectra), as well as the
multi-scale Hierarchical LSTM (HLSTM) modeling the temporal representation.
Therefore, we hope to break the current trending of DownSampling smoothed
temporal increases when presenting acoustic information at different scales
towards the KWS for commands that are emphatically challenging i.e.: obscure
keywords.

A. Dilated Convolutional Front-End: Context capturing without detail loss

The first crucial component, the Dilated Convolutional Front-End, is used
to extract a dense feature representation of the input Mel-spectrograms. Following
the recent successes of approaches using stacks of 1D convolutions with
expanding dilation rates, our system uses a stack of 1D convolutions with
expanding dilation rates (e.g., 1, 2, 4, 8...) to allow the network to achieve larger
receptive fields to consider wider temporal context. This contrasts with previous
methods that pooled down the outputs (e.g., max pooling), as the pool itself
doesn’t suffer from losing the fine temporal resolution very important to maintain
the transient acoustic cues necessary to distinguish minimal pairs. Each
convolution layer is followed by Batch Normalization to aid stable training as
well as Dropout to aid the reduction of overfitting. The dilated convolution stack
provides the next layer, a robust feature sequence which is encoded into time
series sequence by the recurr

B. Hierarchical LSTM (H-LSTM) Module: Speech modeled at scaleent layers.

The second component is the Hierarchical LSTM (HLSTM) module. This
module addresses the need to model the inherent hierarchical structure of speech
using a structured, two-level, multi-scale approach modified from past successful
approaches in the modeling of sequential data:

1) Lower-Level BiLSTM (sub-event modeling): The feature sequence is
segmented from the convolutional front-end into the short overlapping frames.
Then we employ a Bidirectional LSTM to process those segments and model the
fine-grained temporal structures associated, and ultimately learn the acoustic
patterns of sub-word events. Acquiring this level of detail is valuable for
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differentiating keywords when the phonetic composition of the individual
keywords is similar.

2) Upper-Level BiLSTM (keyword sequence modeling): Once we have a
sequence of the sub-event representations from the lower-level, we then pass this
sequence to the upperlevel bidirectional LSTM layer. This layer models the
complete keyword sequence by assimilating the data gathered by the sub-event
and operating on a coarser time scale. The goal is to acquire an understanding of
the global temporal dependencies of the phonetic events, and the contextual
arrangement of the events that comprise a phonetic keyword, to provide a full
keyword representation for classification. By being able to process features at
both fine (sub-event) and course (fullkeyword) scales, the H-LSTM module can
interpret the detailed acoustic events and their overall sequence and ultimately
lead to improved keyword recognition.

2. Literature review

Keyword Spotting (KWS) is the task of recognizing keyword targets - pre-
defined keywords from a continuous stream of audio - which is important in
voice-enabled interactions. The state of KWS has come a long way from its
statistical roots, Hidden Markov Models (HMMs) [1], and Point Process Models
[2], to present deep learning dominant state-of-theart methods. The motivation for
continuing to improve KWS implied the use of small-footprint, low-latency
models suitable for execution on-device. Groundwork has shown Deep Neural
Networks (DNNs) [3], and subsequently Convolutional Neural Networks (CNNs)
[5], advancing the field of KWS while satisfying real time, computational best
practices that formed a new baseline for the KWS task.

Because of their strong feature extraction capability, CNNs have been
used in several models that also incorporate Recurrent Neural Networks (RNN5s)
to model temporal sequences. But there has been a clear embrace of architectures
that combine a convolutional front-end with Long Short-Term Memory (LSTM)
units as a strong mainstay, and therefore adequately modeling both local Spectro-
temporal relationships in the audio signal and long-range dependencies in speech
[9]. This hybrid CNN-LSTM framework was also successfully modelled as low-
latency, real-time Keyword Spotting (KWS) algorithms on low-resourced edge
devices [17], and this hybrid model forms the architectural foundation from which
we propose our model, HAM-Net.

A key limitation of these standard models is their use of pooling layers in
the convolutional front-end, which can discard high-resolution temporal detail that
can differentiate two acoustically confusable keywords (e.g., ”go” from “no”
especially in challenging acoustic scenarios. These limitations drew the attention
of the speech processing community to dilated convolutions approaches, where
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the model can potentially double the receptive field for each dilation added
allowing for an exponentially enlarging receptive field in temporal context
without down-sampling, which avoids residual loss of significance in the features
of time sensitive phonetics [6]. Dilated convolutions have been shown effective in
and not limited to work on noise-robustness for speech recognition [7], and
relevant tasks (e.g., Voice Activity Detection (VAD) [8], monaural speech
enhancement [10], etc...). Ultimately the front-end of the HAM-Net architecture
we introduced has multi-scale dilated convolutions meant exactly for the type of
detail that DaSilva and co-authors mentioned in their work would be critical for
robust discriminability of confused commands.

While greater accuracy could be achieved through both structural
improvements and computation efficiency, longrange dependencies remain an
important research problem. Currently, in some reference domains, the use of an
attention mechanism for long sequence modeling in the present era of deep
learning is a hot topic, with the transformer architecture recognized as the state-of-
the-art. The Keyword Transformer (KWT) illustrated that a fully self-attentional
model can accomplish state-of-the-art performance on KWS tasks [13]. However,
the quadratic scaling of self-attention adds a severe bottleneck for real-time
applications [18], so standard transformers are not a practical solution for on-
device deployment. While it has led to consideration of lightweight efficient
transformer models.

With our proposed HAM-Net, we take this tension between performance
and efficiency head-on. Instead of using compute intensive attention mechanisms,
HAM-Net uses a Hierarchical LSTM (H-LSTM) module. While LSTMs have
been shown to be effective for temporal modeling [4], they only process
information at a single, uniform scale. This is not a good source match for the
hierarchical nature of speech, where short phonetic events - time-based phonetic
events - are combined to produce syllables and eventually keywords. The H-
LSTM module directly addresses this problem because it processes acoustic
features at different scales: the lower-level Bi-LSTM learns representations of
fine-grained, sub-word little events, while the upper-level Bi-LSTM learns
representations that encompass the entire keyword sequence, and integrates those
representations. HAM-Net integrates the wealthy, multi-scale feature extraction of
dilated convolutions with the computationally efficient and structurally suitable
H-LSTM to effectively represent both local phonetic structure and global time
dependencies. This makes it a computationally efficient, and viable solution for
KWS applications with limited resources, which directly addresses the limitations
of existing models.
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3. Research problem

Despite continual research efforts pertaining to Keyword Spotting (KWS),
and the application of deep learning, current models and individual architectures,
for example regular Convolutional-LSTM (CLSTM) architectures, have some
obstacles that we address in our proposed model HAM-Net:

a. Fine-Grained Temporal Inference Ruined: Regular CNN front ends
utilize simple pooling such as MaxPooling to take dimensionality down, which
can harm the temporal resolution. This can be a problem when keywords are
acoustically similar (e.g., ’go” vs. ’no’’), which require subtle phonetic cues.
HAM-Net’s solution: The Convolutional Front-End utilizes a dilated convolution
(with dilation rates of [1, 2]) before the LSTM sub-network to capture multi-scale
temporal context without pooling and re-introducing the fine temporal details.

b. Poorly modeled hierarchical temporal structures: Speech commands
are short phonetic events that short events combine to produce a syllable and/or
keyword. LSTM layers do not accurately model these structures at temporal
levels, performing only at a single level of regularity.

HAM-Net’s solution: The Hierarchical LSTM (H-LSTM) module processes the
input at two levels. The lower level is a BILSTM that performs an analysis of
short and finegrained sub-word events. The upper level is a BILSTM that can
learn the relationship of the entire keyword, allowing for multi scale temporal
modeling context.

c. Balancing Model Complexity and Contextual Understanding: The
simplest solution to capture long-range dependencies is to increase the size of a
single LSTM. However, large LSTMs become very computationally heavy, and
unsuitable for real-time KWS, especially when deployed on devices with limited
resources to spare.

HAM-Net’s Solution: HAM-Net balanced concern for routing information through
a multi-scale model with relatively small BILSTM’s (64 units), and includes
dilated convolutions, thus ensuring, in practice, fewer parameters, and a
reasonable expectation for compute time in an on device deployment context.

d. Discriminability of Acoustically Similar Keywords: Invariably, the
most convincing syllables sound very similar, e.g., “yes” vs. “no,” and
distinguishing between those sounds is a considerable challenge to the present
models. Often the phonetic differences needed to discriminate between them do
not appear to be captured by the models available.

HAM-Net’s Solution: Through the combination of dilated convolutions and
Hierarchical LSTMs, HAM-Net has showcased that it can also maintain phonetic
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detail in the acoustics, thereby allowing it a better chance to discriminate between
keywords that are confusable.

4. Proposed model

We present our proposed model, which we call HAM-Net (Hierarchical
Acoustic Modeling Network). This model aims to improve speech command
recognition. The idea behind HAM-Net is to effectively separate acoustically
similar keywords by focusing on the characteristics of continuous speech. The
proposed architecture combines Dilated Convolutions and Hierarchical LSTMs
(H-LSTM) and breaks this task into components. The following subsections
explain the two main components and the design of HAM-Net, as well as the
processing pipeline.

A. Model Overview

HAM-Net has two main components:

1) Dilated Convolutional Front-End: This module extracts time structure
patterns over multiple scales from MFCCs (Melfrequency Cepstral Coefficients).
In this front-end, Dilated convolution expand the receptive field to capture
temporal information. This allows long-term dependencies on acoustic features to
rely less on short-term contexts.

2) Hierarchical Better specified LSTM Module: This module can be
divided into two levels: Lower-Level LSTM (Fine-Scale Sub-Event Modeling):
This LSTM recognizes fine-grained temporal structures over short speech
segments. Upper-Level LSTM (Coarse-Scale Keyword Sequence Modeling): This
LSTM combines sub-event representations to create a keyword sequence
representation, while capturing longer dependencies. These two components
complement each other to improve both temporal feature extraction and longterm
dependency modeling which improves the performance for KWS tasks, especially
by separating similar sounding keywords.

B. Input Features and Preprocessing

1) MFCC Computation: The model takes audio signals from the Google
Speech Commands dataset as input. Each audio sample is one second and then
will be processed into 13 MFCC coefficients per frame.

2) Feature Matrix: The results would include a (97, 13) feature matrix,
where 97 is the number of frames in the input audio, and 13 is the number of
MFCC coefficients per frame.
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Fig. 1. Architecture of the Proposed HAM-Net Model for Keyword Spotting.

3) Data Augmentation: To help with the generalization of our model based
on the input data and help reduce overfitting, we will implement various data
augmentation methods such as time-stretching, pitch-shifting, or adding
background noise to an audio input to help simulate variations of how speech
would sound during real-world applications.

C. Dilated Convolutional Front-End

The Dilated Convolutional Front-End uses a series of stacks of 1D dilated
convolutional layers to normalize and extract temporal features from the MFCCs.

1) First Dilated Convolutional Layer: 32 filters, kernel size 3, dilation rate
1, padding same, ReLU activation and then followed by Batch Normalization.

2) Second Dilated Convolutional Layer: 64 filters, kernel size 3, dilation
rate 2, padding same, ReLU activation and then followed by Batch Normalization.

3) Dropout Layer: To reduce overfitting and assist the generalization of
the model, a Dropout layer (with a rate of 0.3) was used. The layers are built to
extract both short-term and long-term features without loss in temporal resolution.
This will help the model greatly when trying to discriminate between keywords
that have similar acoustics.

D. Multi-Scale LSTMs’ Hierarchical LSTM (H-LSTM) Module

Two BiLSTM layers, one for feature sequences at the lower time scale and
one for feature sequences at the higher time scale, make up the Hierarchical
LSTM (H-LSTM) Module:

1) BiLSTM (Fine-Scale Sub-Event Modeling) at a Lower Level: The
convolutional output is divided into overlapping segments using a custom
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segment and Apply LSTM layer; each segment is 16 frames long and has an 8-
frame stride. The output of this layer is then passed on to a BILSTM layer with 64
units in both directions, which processes the segments to model fine-scale
temporal events in the speech. A dropout (rate 0.3) is also applied to hopefully
reduce the likelihood of overfitting occurring.

2) Upper-Level BiLSTM (Coarse-Scale Keyword Sequence Modelling):
The sequence of sub-event representations is then passed on to the Upper-level
BiLSTM (with 64 units in each direction). Here, the long temporal dependencies
of the speech in time are captured, and the entire keyword sequence is modeled as
one whole. The argument return sequences=False indicates that only the last
output of the BiILSTM will be passed to the next layer. Overall, the model design
allows for fine short-term phonetic events to be captured and also allows for long
temporal dependencies across the full keyword sequence to also be modeled.

E. Model Classification Head

After being processed in the upper-level BILSTM, the output is passed
through: A Dropout layer at a rate of 0.3 to help reduce overfitting. The final
classification probabilities for each keyword class are calculated by running the
BiLSTM output through a Dense layer. In this section, we describe the training
objective of the proposed HAM-Net model.

5. Experimental setup

In order to compare the performance of the suggested HAMNet model
with that of a baseline CLSTM architecture, this section describes the dataset,
preprocessing, model architecture, training protocols, and evaluation metrics.

A. Dataset: Speech Commands in Google

The tensorflow datasets library was used to access the Google Speech
Commands Dataset (Version 0.02), which was the focus of the experiments. The
dataset consists of over 105,000 audio clips of humans uttering 35 different words
which were one second in duration and produced by a variety of speakers and
acoustic contexts. In the present work, the official “train” and test” splits were
used unaltered, with the training set containing approximately 84,843 utterances
and the test set containing approximately 10,502 utterances. All audio files were
one-channel WAV recordings that were sampled at 16 kHz. The objective of the
task was to classify a given utterance into one of 35 command categories; no
dedicated validation dataset was created for the present model evaluation, and the
performance of the various models was evaluated based on the respective test set.
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B. Feature Extraction

Rather than intentionally using Mel-Frequency Cepstral Coefficients
(MFCC), Mel-spectrograms serve as the primary input feature for both models.
The feature extraction was performed with Librosa, harnessing functions which
were compatible with TensorFlow. Each raw audio waveform was converted into
a Mel-spectrogram with 80 Mel bins and aimed for a temporal resolution of 98
frames per sample. Melspectrogram parameters were a sampling rate of 16,000
Hz, FFT window size of 2048, and a hop length of 160 samples. The resulting
spectrograms were transformed to a decibel scale and normalized to a zero mean
and unit variance. The final shape of the input features was (98, 80) per utterance.
The preprocessing pipeline did not augment the audio files, thus no data
augmentation methods were implemented, such as decomposition noise or time
stretching etc., which served to compliment the natural characteristics of the
conventionally spoken data and depend on the diversity of the dataset, as well as
the characteristics of the architecture.
C. Model Configurations

The proposed HAM-Net and the baseline CLSTM model were created and
evaluated. The proposed architecture of HAM-Net consists of a dilated
convolutions front-end followed by a hierarchical LSTM module. The
convolutional front-end consists of four 1D Conv1D layers with 32, 32, 64, and
64 filters respectively. The kernel size was set to 3 with the dilation rates of 1, 2, 4
and 8, respectively. Each layer followed by ReLLU activation followed by a batch
normalization layer and dropout layer with a rate of 0.25. The convolutional
output was segmented into overlapping chunks of 16 frames with a stride of 8
using a Lambda layer. The overlapping chunks are then sent through a time-
distributed Bidirectional LSTM with 64 units in both directions followed by a
dropout layer. The resulting sequence of representations of the sub-events were
sent through an upper-level Bidirectional LSTM with 128 units on both directions.
The output following the upperlevel LSTM was then sent through a dropout layer
as well as a dense softmax layer with 35 output units to produce class
probabilities.

The baseline CLSTM model was implemented as two Conv1D layers with
32 and 64 filters, a kernel size of 5, and ReLU activations. Each Conv1D layer
was followed by batch normalization and max pooling (pool size 2). Prior to the
Bidirectional LSTM with 128 units in both directions a dropout layer was added,
further being followed by a final dropout and dense softmax layer with a total of
35 outputs for classification.
D. Training Process

Both models were developed using the Adam optimizer with a default
learning rate of 0.001. As the loss function for multi-class classification
categorical cross-entropy was used. The training was done in batch sizes of 32
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over 7 epochs. No model checkpointing or early stopping mechanism was utilized
in this training. The evaluation on the testing set took place using the terminal
model weights after training.
E. Evaluation Metrics

The model was evaluated using a number of standard metrics: overall
accuracy; precision for each class; recall; and Fl-score. A confusion matrix was
produced to visualize classification performance for all 35 classes. The number of
trainable parameters in each model was also recorded, allowing for direct
comparison of implementation complexity.
F. Confusable Keyword Pairs for In-Depth Analysis

Performance was also evaluated on acoustically similar keyword pairs,
specifically ”go”/’no,” up”/’stop,” "left”/’right,” and “on”/”off”. These pairs can
often be very difficult to classify using traditional models. The hierarchical
modelling approach, along the dilation networks of HAM-Net, were specifically
designed to retain temporal details and multi-scale context, therefore enhancing
performance in this situation.

6. Results and discussion

In this section, the results from the experiments which were performed to
evaluate the proposed HAM-Net architecture for Keyword Spotting (KWS) and a
baseline CLSTM model are presented. The included experiments were performed
using the Google Speech Commands v0.02 dataset and all models were evaluated
using the overall accuracy and parameters as well as the ability to discriminate
between acoustically similar keywords.

A. Overall Performance

Overall, the primary measure of evaluation is the overall test accuracy for
both models. The proposed HAM-Net model produced a test accuracy of 90.55%,
compared to 90.22% test accuracy for the baseline CLSTM. While both models
were comparable for overall accuracy, HAM-Net was superior for the true
conflicting keywords, as described in subsequent sections. HAM-Net can also be
considered more efficient in terms of model complexity. It had 163K trainable
parameters in comparison to 185k for the CLSTM model. This means that given
that HAM-Net outperforms CLSTM in terms of model performance, a less
complex model with fewer parameters can give equivalent model performance,
which needs to be considered for on-device and constrained deployment. The
performance metrics of both models are compiled in Table 1.
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TABLE I
PERFORMANCE METRICS OF MODELS
Model Test Accuracy (%) Trainable Parameters
Baseline CLSTM 00.22 ~ 185k
HAM-Net .55 ~163k

B. Confusable Keyword Performance

Improving the ability to distinguish between similarsounding/acoustically
similar keywords was one of HAMNet’s main objectives. We evaluated the
performance of both models on several pairs of frequently confused keywords,
such as ”go”/”no,” “up”/’stop,” “on”/”off,” and left”/’right.” These pairs F1-
scores were compared between the Baseline CLSTM model and HAM-Net. For
most of these confusable pairs the HAM-Net uniformly performed better than the
baseline, as indicated in Table II. As an illustration, the F1-score for the keywords
”g0” and stop” improved by +0.02 and +0.01, respectively. The hierarchical
structure of the H-LSTM module, which records both specific sub-word events
and more general keyword sequences, and the dilated convolutions in HAM-Net,
which preserve detailed acoustic features, are probably responsible for these
improvements. Table II summarizes the Fl-scores for selected confusable
keyword pairs. The increase in Fl-scores is indicative that HAM-Net has an
advantage over CLSTM at the challenging task of separating between
perceptually/similarly sounding keywords, which is the primary objective of any
KWS job. The capability of HAM-Net to capture both short-range and long-range
temporal dependencies is fundamentally important to achieving this improvement.
C. The Training Behavior

All models were trained using the adam optimizer with a learning rate of
0.001. The learning curves associated with training and validation accuracy/loss
can be found in Fig. 3. These curves suggest that stable learning was achieved for
both models, with HAM-Net achieving higher validation accuracy in the later
epochs of training, demonstrating better generalization. The pattern in validation
accuracy through the epochs of training seem to suggest that HAM-Net has a
better capability of generalizing than the baseline CLSTM model, towards unseen
data, which had relatively slower convergence. Figure 2 represents confusion
matrix illustrating the classification performance of our proposed HAM-Net
model. The strong diagonal concentration indicates clearly high accuracy across
all 12 classes, while the minimal off-diagonal values demonstrate low
misclassification rates and robust inter-class discrimination capability of the
model.




28 Vinay RAVURI, Kolla Bhanu PRAKASH, Valentina Emilia BALAS

TABLE II
F1-SCORES FOR CONFUSABLE KEYWORD PAIRS

Keyword Pair  Keyword CLSTM F1  HAM-Net F1  Improvement (A)

g0/ no oo (.86 (.88 +0.02
no 0.87 0.87 0.00
up { stop up 091 0.92 +0.01
stop 0.96 0.97 +0.01
on / off on 0.92 0.93 +0.01
off 0.90 0.92 +0.02
left / right left 094 0.93 (.01
right 093 0.94 +0.01

Confusion Matrix - HAM-Net
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Fig. 2. Confusion matrix illustrating the classification performance of our proposed HAM-Net
model. The strong diagonal concentration indicates high accuracy across all 12 classes.

D. Computational Efficiency

Another aspect of KWS systems is the computational efficiency of the
model when deployed on-device; this requirement has a significant impact in the
viability of the system. Although the CLSTM model has fewer overall epochs
(~163k vs. ~185k for CLSTM), HAM-Net is a more parameter efficient model
with the least overall parametric burden being suitable for execution on lesser
devices. The reduction in complexity and computational efficiency has not
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negatively impacted performance. The HAM-Net outperforms the CLSTM
baseline model for both accuracy and keyword discrimination.

Confusion Matrix - CLSTM
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Fig. 3. Confusion matrix showing the performance of the baseline CLSTM model.

Conclusion

In this paper we have researched and presented a Hierarchical acoustic
modeling network (HAM-NET) for improved speech command recognition. The
experimental results from our work using the 35-class Google Speech Commands
dataset, suggest that HAM-Net is better than the CLSTM baseline model. By
showing recognition improvement between keywords that had similar
pronunciations such as ’go” vs. ”no”, and "up” vs. “stop”, we can clearly see that
HAM-Net is a more robust method for solving difficult KWS tasks. Our method
of multi-scale temporal modeling using dilated convolutions and hierarchical
LSTMs is an efficient way to model fine-grained phonetic events while capturing
long-term dependencies of the entire keyword sequence. The result from this work
demonstrates that dilated convolutions are able to assist hierarchical LSTMs in
developing stronger keyword spotting systems, and models like HAM-Net are
headed in the right direction for KWS systems that are running on-device. Future
work will be focused on improving the parameterization further, examining the
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impact of each component in an ablation type study, and seeking to understand
how HAM-Net is able to generalize under noisy and different acoustic conditions.
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