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Abstract. Accurate detection of spoken commands is essential for modern interactive 

voice systems, yet robust keyword spotting remains computationally demanding, 

especially under speaker and noise variability. State-of-the-art solutions require 

substantial resources and large training datasets, while still struggling with acoustically 

similar keywords. This work presents a novel keyword spotting architecture based on 

hierarchical modeling, enabling more efficient resource allocation and reduced 

computational waste. The proposed approach provides not only improved keyword 

recognition, but also an explicit modeling of relationships among keywords. Experimental 

evaluation against a standard baseline demonstrates superior accuracy. Analysis using a 

confusion matrix shows significantly reduced misclassification among similar-sounding 

keywords. These results indicate a meaningful advancement in both efficiency and 

reliability for keyword spotting systems. 
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1. Introduction 

In an age of increasingly ubiquitous voice-enabled computing, Keyword 

Spotting (KWS) represents a foundational technology that enables hands-free 

control of our devices. Although these systems have become relatively 

sophisticated, there remains the basic problem of discriminating phonologically 

similar keywords (known as ”minimal pairs”), like ”go” and ”no”. Discriminating 

these phonologically similar keywords is problematic because the most salient 

characteristics that differentiate them may be very subtle, time-sensitive 

variations, brief phenomena which the usual architectures may down-sample or 

smooth of temporal information. This is particularly challenging when we 

introduce background noise, variability inherent in everyday environments, and a 
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restriction in available resources (the KWS model itself) when implemented on 

constrained devices, where efficiency is of utmost importance. 

___________________________________________________ 
 

To tackle this problem, we proposed the Hierarchical Acoustic Modeling 

Network (HAM-Net) as a new architecture that used the recognized speech 

commands. To achieve this, we used the combination of using a dilated 

convolutional front-end layer to extract multi-scale features (dilations that were 

covered during the front-end processing of the acoustic spectra), as well as the 

multi-scale Hierarchical LSTM (HLSTM) modeling the temporal representation. 

Therefore, we hope to break the current trending of DownSampling smoothed 

temporal increases when presenting acoustic information at different scales 

towards the KWS for commands that are emphatically challenging i.e.: obscure 

keywords. 

A. Dilated Convolutional Front-End: Context capturing without detail loss  

The first crucial component, the Dilated Convolutional Front-End, is used 

to extract a dense feature representation of the input Mel-spectrograms. Following 

the recent successes of approaches using stacks of 1D convolutions with 

expanding dilation rates, our system uses a stack of 1D convolutions with 

expanding dilation rates (e.g., 1, 2, 4, 8...) to allow the network to achieve larger 

receptive fields to consider wider temporal context. This contrasts with previous 

methods that pooled down the outputs (e.g., max pooling), as the pool itself 

doesn’t suffer from losing the fine temporal resolution very important to maintain 

the transient acoustic cues necessary to distinguish minimal pairs. Each 

convolution layer is followed by Batch Normalization to aid stable training as 

well as Dropout to aid the reduction of overfitting. The dilated convolution stack 

provides the next layer, a robust feature sequence which is encoded into time 

series sequence by the recurr  

B. Hierarchical LSTM (H-LSTM) Module: Speech modeled at scaleent layers. 

 The second component is the Hierarchical LSTM (HLSTM) module. This 

module addresses the need to model the inherent hierarchical structure of speech 

using a structured, two-level, multi-scale approach modified from past successful 

approaches in the modeling of sequential data: 

 1) Lower-Level BiLSTM (sub-event modeling): The feature sequence is 

segmented from the convolutional front-end into the short overlapping frames. 

Then we employ a Bidirectional LSTM to process those segments and model the 

fine-grained temporal structures associated, and ultimately learn the acoustic 

patterns of sub-word events. Acquiring this level of detail is valuable for 
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differentiating keywords when the phonetic composition of the individual 

keywords is similar. 

 2) Upper-Level BiLSTM (keyword sequence modeling): Once we have a 

sequence of the sub-event representations from the lower-level, we then pass this 

sequence to the upperlevel bidirectional LSTM layer. This layer models the 

complete keyword sequence by assimilating the data gathered by the sub-event 

and operating on a coarser time scale. The goal is to acquire an understanding of 

the global temporal dependencies of the phonetic events, and the contextual 

arrangement of the events that comprise a phonetic keyword, to provide a full 

keyword representation for classification. By being able to process features at 

both fine (sub-event) and course (fullkeyword) scales, the H-LSTM module can 

interpret the detailed acoustic events and their overall sequence and ultimately 

lead to improved keyword recognition. 

2. Literature review 

 Keyword Spotting (KWS) is the task of recognizing keyword targets - pre-

defined keywords from a continuous stream of audio - which is important in 

voice-enabled interactions. The state of KWS has come a long way from its 

statistical roots, Hidden Markov Models (HMMs) [1], and Point Process Models 

[2], to present deep learning dominant state-of-theart methods. The motivation for 

continuing to improve KWS implied the use of small-footprint, low-latency 

models suitable for execution on-device. Groundwork has shown Deep Neural 

Networks (DNNs) [3], and subsequently Convolutional Neural Networks (CNNs) 

[5], advancing the field of KWS while satisfying real time, computational best 

practices that formed a new baseline for the KWS task. 

Because of their strong feature extraction capability, CNNs have been 

used in several models that also incorporate Recurrent Neural Networks (RNNs) 

to model temporal sequences. But there has been a clear embrace of architectures 

that combine a convolutional front-end with Long Short-Term Memory (LSTM) 

units as a strong mainstay, and therefore adequately modeling both local Spectro-

temporal relationships in the audio signal and long-range dependencies in speech 

[9]. This hybrid CNN-LSTM framework was also successfully modelled as low-

latency, real-time Keyword Spotting (KWS) algorithms on low-resourced edge 

devices [17], and this hybrid model forms the architectural foundation from which 

we propose our model, HAM-Net. 

A key limitation of these standard models is their use of pooling layers in 

the convolutional front-end, which can discard high-resolution temporal detail that 

can differentiate two acoustically confusable keywords (e.g., ”go” from ”no”) 

especially in challenging acoustic scenarios. These limitations drew the attention 

of the speech processing community to dilated convolutions approaches, where 
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the model can potentially double the receptive field for each dilation added 

allowing for an exponentially enlarging receptive field in temporal context 

without down-sampling, which avoids residual loss of significance in the features 

of time sensitive phonetics [6]. Dilated convolutions have been shown effective in 

and not limited to work on noise-robustness for speech recognition [7], and 

relevant tasks (e.g., Voice Activity Detection (VAD) [8], monaural speech 

enhancement [10], etc...). Ultimately the front-end of the HAM-Net architecture 

we introduced has multi-scale dilated convolutions meant exactly for the type of 

detail that DaSilva and co-authors mentioned in their work would be critical for 

robust discriminability of confused commands. 

While greater accuracy could be achieved through both structural 

improvements and computation efficiency, longrange dependencies remain an 

important research problem. Currently, in some reference domains, the use of an 

attention mechanism for long sequence modeling in the present era of deep 

learning is a hot topic, with the transformer architecture recognized as the state-of-

the-art. The Keyword Transformer (KWT) illustrated that a fully self-attentional 

model can accomplish state-of-the-art performance on KWS tasks [13]. However, 

the quadratic scaling of self-attention adds a severe bottleneck for real-time 

applications [18], so standard transformers are not a practical solution for on-

device deployment. While it has led to consideration of lightweight efficient 

transformer models. 

With our proposed HAM-Net, we take this tension between performance 

and efficiency head-on. Instead of using compute intensive attention mechanisms, 

HAM-Net uses a Hierarchical LSTM (H-LSTM) module. While LSTMs have 

been shown to be effective for temporal modeling [4], they only process 

information at a single, uniform scale. This is not a good source match for the 

hierarchical nature of speech, where short phonetic events - time-based phonetic 

events - are combined to produce syllables and eventually keywords. The H-

LSTM module directly addresses this problem because it processes acoustic 

features at different scales: the lower-level Bi-LSTM learns representations of 

fine-grained, sub-word little events, while the upper-level Bi-LSTM learns 

representations that encompass the entire keyword sequence, and integrates those 

representations. HAM-Net integrates the wealthy, multi-scale feature extraction of 

dilated convolutions with the computationally efficient and structurally suitable 

H-LSTM to effectively represent both local phonetic structure and global time 

dependencies. This makes it a computationally efficient, and viable solution for 

KWS applications with limited resources, which directly addresses the limitations 

of existing models. 
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3. Research problem 

Despite continual research efforts pertaining to Keyword Spotting (KWS), 

and the application of deep learning, current models and individual architectures, 

for example regular Convolutional-LSTM (CLSTM) architectures, have some 

obstacles that we address in our proposed model HAM-Net: 

a. Fine-Grained Temporal Inference Ruined: Regular CNN front ends 

utilize simple pooling such as MaxPooling to take dimensionality down, which 

can harm the temporal resolution. This can be a problem when keywords are 

acoustically similar (e.g., ”go” vs. ”no”), which require subtle phonetic cues.  

HAM-Net’s solution: The Convolutional Front-End utilizes a dilated convolution 

(with dilation rates of [1, 2]) before the LSTM sub-network to capture multi-scale 

temporal context without pooling and re-introducing the fine temporal details. 

b. Poorly modeled hierarchical temporal structures: Speech commands 

are short phonetic events that short events combine to produce a syllable and/or 

keyword. LSTM layers do not accurately model these structures at temporal 

levels, performing only at a single level of regularity.  

HAM-Net’s solution: The Hierarchical LSTM (H-LSTM) module processes the 

input at two levels. The lower level is a BiLSTM that performs an analysis of 

short and finegrained sub-word events. The upper level is a BiLSTM that can 

learn the relationship of the entire keyword, allowing for multi scale temporal 

modeling context. 

c. Balancing Model Complexity and Contextual Understanding: The 

simplest solution to capture long-range dependencies is to increase the size of a 

single LSTM. However, large LSTMs become very computationally heavy, and 

unsuitable for real-time KWS, especially when deployed on devices with limited 

resources to spare.  

HAM-Net’s Solution: HAM-Net balanced concern for routing information through 

a multi-scale model with relatively small BiLSTM’s (64 units), and includes 

dilated convolutions, thus ensuring, in practice, fewer parameters, and a 

reasonable expectation for compute time in an on device deployment context. 

d. Discriminability of Acoustically Similar Keywords: Invariably, the 

most convincing syllables sound very similar, e.g., “yes” vs. “no,” and 

distinguishing between those sounds is a considerable challenge to the present 

models. Often the phonetic differences needed to discriminate between them do 

not appear to be captured by the models available.  

HAM-Net’s Solution: Through the combination of dilated convolutions and 

Hierarchical LSTMs, HAM-Net has showcased that it can also maintain phonetic 
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detail in the acoustics, thereby allowing it a better chance to discriminate between 

keywords that are confusable. 

 

4. Proposed model 

 We present our proposed model, which we call HAM-Net (Hierarchical 

Acoustic Modeling Network). This model aims to improve speech command 

recognition. The idea behind HAM-Net is to effectively separate acoustically 

similar keywords by focusing on the characteristics of continuous speech. The 

proposed architecture combines Dilated Convolutions and Hierarchical LSTMs 

(H-LSTM) and breaks this task into components. The following subsections 

explain the two main components and the design of HAM-Net, as well as the 

processing pipeline. 

A. Model Overview 

 HAM-Net has two main components: 

1) Dilated Convolutional Front-End: This module extracts time structure 

patterns over multiple scales from MFCCs (Melfrequency Cepstral Coefficients). 

In this front-end, Dilated convolution expand the receptive field to capture 

temporal information. This allows long-term dependencies on acoustic features to 

rely less on short-term contexts.  

2) Hierarchical Better specified LSTM Module: This module can be 

divided into two levels: Lower-Level LSTM (Fine-Scale Sub-Event Modeling): 

This LSTM recognizes fine-grained temporal structures over short speech 

segments. Upper-Level LSTM (Coarse-Scale Keyword Sequence Modeling): This 

LSTM combines sub-event representations to create a keyword sequence 

representation, while capturing longer dependencies. These two components 

complement each other to improve both temporal feature extraction and longterm 

dependency modeling which improves the performance for KWS tasks, especially 

by separating similar sounding keywords. 

 

      B. Input Features and Preprocessing 

1) MFCC Computation: The model takes audio signals from the Google 

Speech Commands dataset as input. Each audio sample is one second and then 

will be processed into 13 MFCC coefficients per frame. 

2) Feature Matrix: The results would include a (97, 13) feature matrix, 

where 97 is the number of frames in the input audio, and 13 is the number of 

MFCC coefficients per frame. 



 

 Ham-Net: Hierarchical Acoustic Modeling with Dilated Convolutions and Multi-Scale Lstms 

 for Enhanced Speech Command Recognition 23 

 

 

Fig. 1. Architecture of the Proposed HAM-Net Model for Keyword Spotting. 

3) Data Augmentation: To help with the generalization of our model based 

on the input data and help reduce overfitting, we will implement various data 

augmentation methods such as time-stretching, pitch-shifting, or adding 

background noise to an audio input to help simulate variations of how speech 

would sound during real-world applications. 

     C. Dilated Convolutional Front-End 

The Dilated Convolutional Front-End uses a series of stacks of 1D dilated 

convolutional layers to normalize and extract temporal features from the MFCCs.  

1) First Dilated Convolutional Layer: 32 filters, kernel size 3, dilation rate 

1, padding same, ReLU activation and then followed by Batch Normalization.  

2) Second Dilated Convolutional Layer: 64 filters, kernel size 3, dilation 

rate 2, padding same, ReLU activation and then followed by Batch Normalization. 

 3) Dropout Layer: To reduce overfitting and assist the generalization of 

the model, a Dropout layer (with a rate of 0.3) was used. The layers are built to 

extract both short-term and long-term features without loss in temporal resolution. 

This will help the model greatly when trying to discriminate between keywords 

that have similar acoustics. 

     D. Multi-Scale LSTMs’ Hierarchical LSTM (H-LSTM) Module 

Two BiLSTM layers, one for feature sequences at the lower time scale and 

one for feature sequences at the higher time scale, make up the Hierarchical 

LSTM (H-LSTM) Module:  

1) BiLSTM (Fine-Scale Sub-Event Modeling) at a Lower Level: The 

convolutional output is divided into overlapping segments using a custom 
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segment and Apply LSTM layer; each segment is 16 frames long and has an 8-

frame stride. The output of this layer is then passed on to a BiLSTM layer with 64 

units in both directions, which processes the segments to model fine-scale 

temporal events in the speech. A dropout (rate 0.3) is also applied to hopefully 

reduce the likelihood of overfitting occurring.  

2) Upper-Level BiLSTM (Coarse-Scale Keyword Sequence Modelling): 

The sequence of sub-event representations is then passed on to the Upper-level 

BiLSTM (with 64 units in each direction). Here, the long temporal dependencies 

of the speech in time are captured, and the entire keyword sequence is modeled as 

one whole. The argument return_sequences=False indicates that only the last 

output of the BiLSTM will be passed to the next layer. Overall, the model design 

allows for fine short-term phonetic events to be captured and also allows for long 

temporal dependencies across the full keyword sequence to also be modeled. 

     E. Model Classification Head 

 After being processed in the upper-level BiLSTM, the output is passed 

through: A Dropout layer at a rate of 0.3 to help reduce overfitting. The final 

classification probabilities for each keyword class are calculated by running the 

BiLSTM output through a Dense layer. In this section, we describe the training 

objective of the proposed HAM-Net model.  

5. Experimental setup 

 In order to compare the performance of the suggested HAMNet model 

with that of a baseline CLSTM architecture, this section describes the dataset, 

preprocessing, model architecture, training protocols, and evaluation metrics. 

A. Dataset: Speech Commands in Google 

 The tensorflow datasets library was used to access the Google Speech 

Commands Dataset (Version 0.02), which was the focus of the experiments. The 

dataset consists of over 105,000 audio clips of humans uttering 35 different words 

which were one second in duration and produced by a variety of speakers and 

acoustic contexts. In the present work, the official ”train” and ”test” splits were 

used unaltered, with the training set containing approximately 84,843 utterances 

and the test set containing approximately 10,502 utterances. All audio files were 

one-channel WAV recordings that were sampled at 16 kHz. The objective of the 

task was to classify a given utterance into one of 35 command categories; no 

dedicated validation dataset was created for the present model evaluation, and the 

performance of the various models was evaluated based on the respective test set. 
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B. Feature Extraction 

 Rather than intentionally using Mel-Frequency Cepstral Coefficients 

(MFCC), Mel-spectrograms serve as the primary input feature for both models. 

The feature extraction was performed with Librosa, harnessing functions which 

were compatible with TensorFlow. Each raw audio waveform was converted into 

a Mel-spectrogram with 80 Mel bins and aimed for a temporal resolution of 98 

frames per sample. Melspectrogram parameters were a sampling rate of 16,000 

Hz, FFT window size of 2048, and a hop length of 160 samples. The resulting 

spectrograms were transformed to a decibel scale and normalized to a zero mean 

and unit variance. The final shape of the input features was (98, 80) per utterance. 

The preprocessing pipeline did not augment the audio files, thus no data 

augmentation methods were implemented, such as decomposition noise or time 

stretching etc., which served to compliment the natural characteristics of the 

conventionally spoken data and depend on the diversity of the dataset, as well as 

the characteristics of the architecture. 

C. Model Configurations 

 The proposed HAM-Net and the baseline CLSTM model were created and 

evaluated. The proposed architecture of HAM-Net consists of a dilated 

convolutions front-end followed by a hierarchical LSTM module. The 

convolutional front-end consists of four 1D Conv1D layers with 32, 32, 64, and 

64 filters respectively. The kernel size was set to 3 with the dilation rates of 1, 2, 4 

and 8, respectively. Each layer followed by ReLU activation followed by a batch 

normalization layer and dropout layer with a rate of 0.25. The convolutional 

output was segmented into overlapping chunks of 16 frames with a stride of 8 

using a Lambda layer. The overlapping chunks are then sent through a time-

distributed Bidirectional LSTM with 64 units in both directions followed by a 

dropout layer. The resulting sequence of representations of the sub-events were 

sent through an upper-level Bidirectional LSTM with 128 units on both directions. 

The output following the upperlevel LSTM was then sent through a dropout layer 

as well as a dense softmax layer with 35 output units to produce class 

probabilities. 

 The baseline CLSTM model was implemented as two Conv1D layers with 

32 and 64 filters, a kernel size of 5, and ReLU activations. Each Conv1D layer 

was followed by batch normalization and max pooling (pool size 2). Prior to the 

Bidirectional LSTM with 128 units in both directions a dropout layer was added, 

further being followed by a final dropout and dense softmax layer with a total of 

35 outputs for classification. 

D. Training Process 

 Both models were developed using the Adam optimizer with a default 

learning rate of 0.001. As the loss function for multi-class classification 

categorical cross-entropy was used. The training was done in batch sizes of 32 
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over 7 epochs. No model checkpointing or early stopping mechanism was utilized 

in this training. The evaluation on the testing set took place using the terminal 

model weights after training. 

E. Evaluation Metrics 

 The model was evaluated using a number of standard metrics: overall 

accuracy; precision for each class; recall; and F1-score. A confusion matrix was 

produced to visualize classification performance for all 35 classes. The number of 

trainable parameters in each model was also recorded, allowing for direct 

comparison of implementation complexity. 

F. Confusable Keyword Pairs for In-Depth Analysis 

 Performance was also evaluated on acoustically similar keyword pairs, 

specifically ”go”/”no,” ”up”/”stop,” ”left”/”right,” and ”on”/”off”. These pairs can 

often be very difficult to classify using traditional models. The hierarchical 

modelling approach, along the dilation networks of HAM-Net, were specifically 

designed to retain temporal details and multi-scale context, therefore enhancing 

performance in this situation. 

6. Results and discussion 

 In this section, the results from the experiments which were performed to 

evaluate the proposed HAM-Net architecture for Keyword Spotting (KWS) and a 

baseline CLSTM model are presented. The included experiments were performed 

using the Google Speech Commands v0.02 dataset and all models were evaluated 

using the overall accuracy and parameters as well as the ability to discriminate 

between acoustically similar keywords. 

A. Overall Performance 

 Overall, the primary measure of evaluation is the overall test accuracy for 

both models. The proposed HAM-Net model produced a test accuracy of 90.55%, 

compared to 90.22% test accuracy for the baseline CLSTM. While both models 

were comparable for overall accuracy, HAM-Net was superior for the true 

conflicting keywords, as described in subsequent sections. HAM-Net can also be 

considered more efficient in terms of model complexity. It had 163K trainable 

parameters in comparison to 185k for the CLSTM model. This means that given 

that HAM-Net outperforms CLSTM in terms of model performance, a less 

complex model with fewer parameters can give equivalent model performance, 

which needs to be considered for on-device and constrained deployment. The 

performance metrics of both models are compiled in Table I. 
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TABLE I  

PERFORMANCE METRICS OF MODELS 

 
B. Confusable Keyword Performance 

 Improving the ability to distinguish between similarsounding/acoustically 

similar keywords was one of HAMNet’s main objectives. We evaluated the 

performance of both models on several pairs of frequently confused keywords, 

such as ”go”/”no,” ”up”/”stop,” ”on”/”off,” and ”left”/”right.” These pairs F1-

scores were compared between the Baseline CLSTM model and HAM-Net. For 

most of these confusable pairs the HAM-Net uniformly performed better than the 

baseline, as indicated in Table II. As an illustration, the F1-score for the keywords 

”go” and ”stop” improved by +0.02 and +0.01, respectively. The hierarchical 

structure of the H-LSTM module, which records both specific sub-word events 

and more general keyword sequences, and the dilated convolutions in HAM-Net, 

which preserve detailed acoustic features, are probably responsible for these 

improvements. Table II summarizes the F1-scores for selected confusable 

keyword pairs. The increase in F1-scores is indicative that HAM-Net has an 

advantage over CLSTM at the challenging task of separating between 

perceptually/similarly sounding keywords, which is the primary objective of any 

KWS job. The capability of HAM-Net to capture both short-range and long-range 

temporal dependencies is fundamentally important to achieving this improvement. 

C. The Training Behavior 

 All models were trained using the adam optimizer with a learning rate of 

0.001. The learning curves associated with training and validation accuracy/loss 

can be found in Fig. 3. These curves suggest that stable learning was achieved for 

both models, with HAM-Net achieving higher validation accuracy in the later 

epochs of training, demonstrating better generalization. The pattern in validation 

accuracy through the epochs of training seem to suggest that HAM-Net has a 

better capability of generalizing than the baseline CLSTM model, towards unseen 

data, which had relatively slower convergence. Figure 2 represents confusion 

matrix illustrating the classification performance of our proposed HAM-Net 

model. The strong diagonal concentration indicates clearly high accuracy across 

all 12 classes, while the minimal off-diagonal values demonstrate low 

misclassification rates and robust inter-class discrimination capability of the 

model. 
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TABLE II 

 F1-SCORES FOR CONFUSABLE KEYWORD PAIRS 

 

 

Fig. 2. Confusion matrix illustrating the classification performance of our proposed HAM-Net 

model. The strong diagonal concentration indicates high accuracy across all 12 classes. 

 

D. Computational Efficiency 

 Another aspect of KWS systems is the computational efficiency of the 

model when deployed on-device; this requirement has a significant impact in the 

viability of the system. Although the CLSTM model has fewer overall epochs 

(∼163k vs. ∼185k for CLSTM), HAM-Net is a more parameter efficient model 

with the least overall parametric burden being suitable for execution on lesser 

devices. The reduction in complexity and computational efficiency has not 
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negatively impacted performance. The HAM-Net outperforms the CLSTM 

baseline model for both accuracy and keyword discrimination. 

 

Fig. 3. Confusion matrix showing the performance of the baseline CLSTM model. 

 

Conclusion 

 In this paper we have researched and presented a Hierarchical acoustic 

modeling network (HAM-NET) for improved speech command recognition. The 

experimental results from our work using the 35-class Google Speech Commands 

dataset, suggest that HAM-Net is better than the CLSTM baseline model. By 

showing recognition improvement between keywords that had similar 

pronunciations such as ”go” vs. ”no”, and ”up” vs. ”stop”, we can clearly see that 

HAM-Net is a more robust method for solving difficult KWS tasks. Our method 

of multi-scale temporal modeling using dilated convolutions and hierarchical 

LSTMs is an efficient way to model fine-grained phonetic events while capturing 

long-term dependencies of the entire keyword sequence. The result from this work 

demonstrates that dilated convolutions are able to assist hierarchical LSTMs in 

developing stronger keyword spotting systems, and models like HAM-Net are 

headed in the right direction for KWS systems that are running on-device. Future 

work will be focused on improving the parameterization further, examining the 
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impact of each component in an ablation type study, and seeking to understand 

how HAM-Net is able to generalize under noisy and different acoustic conditions. 
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