
Annals of the Academy of Romanian Scientists 

Series on Science and Technology and Information 
Online ISSN 2066 - 8562 Volume 18, Number 1/2025 36 

 

SYNTHETIC HISTOPATHOLOGY LYMPHOCYTE IMAGES 

AUGMENTATION USING CONDITIONAL GENERATIVE 

ADVERSARIAL NETWORKS 

Alexandra-Georgiana ANDREI1, Bogdan IONESCU2 

Rezumat. Analiza imaginilor histopatologice este utilizată pe scară largă și este o 

metodă esențială pentru diagnosticarea și clasificarea cancerului, inclusiv a cancerului 

colorectal. Cu toate acestea, din cauza lipsei datelor și a procedurilor laborioase de 

adnotare, obținerea unei colecții semnificative și variate de imagini histopatologice 

pentru antrenarea modelelor de învățare automată continuă să fie dificilă. Pentru a 

rezolva această problemă, sugerăm o metodă Latent-to-Image care creează imagini 

histopatologice sintetice pentru cancerul colorectal, utilizând rețele generative 

adversariale condiționale (cGAN-uri). În acest articol, investigăm utilizarea cGAN-urilor, 

specific pentru generarea de imagini pentru țesutul limfocitar, folosind șapte clase diferite 

de țesut pentru antrenare. Rezultatele experimentale arată că imaginile sintetice generate 

nu pot fi diferențiate de imaginile histopatologice reale, capturând caracteristicile 

texturale și structurale distinctive ale țesutului. Metoda propusă în acest articol dovedește 

abilitatea de a genera imagini de înaltă calitate, cu un Fréchet Inception Distance de 

21,2. Imaginile generate au fost evaluate, de asemenea, de patru patologi și nu s-a 

constatat nicio diferență semnificativă între imaginile reale și cele generate. 

Abstract. Histopathology image analysis is widely used and is essential for diagnosis and 

cancer grading, including colorectal cancer. However, due to a lack of availability and 

labor-intensive annotation procedures, getting a significant and varied collection of 

histopathology images for training machine learning models continues to be difficult. To 

solve this problem, we suggest a Latent-to-Image method that creates synthetic colorectal 

histopathology images using Conditional Generative Adversarial Networks (cGANs). In 

this article, we investigate the use of cGANs specifically for generating images for 

lymphocytes tissue, using seven different tissue classes for training. The results show that 

the generated synthetic images are indistinguishable from the real histopathological 

images, capturing the distinctive textural and structural characteristics of the tissue. We 

show that our method generates high quality images with a Fréchet Inception Distance of 

21.2. The generated images were also assessed by four pathologists and no significant 

difference between the real and generated images were found. 

Keywords: histopathology, data augmentation, synthetic data, Generative Adversarial 

Networks. 
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1. Introduction  

Histopathology is a branch of pathology dedicated to the study of diseases through 

the microscopic examination of tissue samples. This discipline plays a crucial role 

in medical diagnosis by enabling clinicians and researchers to analyze cellular 

structures and identify abnormalities that can indicate specific disease processes. 

In the context of colorectal cancer—a malignancy that originates in the colon, the 

final part of the digestive tract—accurate histopathological analysis is especially 

vital. Colorectal cancer is not only one of the most common cancers worldwide 

but also demonstrates significant heterogeneity in cellular composition and 

morphology, which directly impacts disease staging and subsequent treatment 

planning [1]. While it predominately impacts older individuals, it has the 

protentional to manifest at any stage of life. According to World Health 

Organization, it is the third most common cancer worldwide, accounting for 

approximately 10% of all cancer cases and it is the second leading cause of 

cancer-related deaths worldwide [2]. 

Deep learning techniques [3] have increasingly been integrated into 

histopathology image processing as they offer new capabilities for automating and 

refining the diagnostic process. However, successful implementation of these 

approaches relies heavily on large volumes of annotated images from various 

tissue subtypes to train robust models. Unfortunately, acquiring such datasets 

poses unique challenges due to the sensitivity of medical data, confidentiality 

constraints, legal concerns, and the inherent complexity and labor-intensive nature 

of precise annotation. Data augmentation [4] has therefore become an essential 

strategy to enhance the quantity and diversity of available training samples, 

ultimately supporting improved model generalization without the need for 

additional new data acquisition. 

Generative Adversarial Networks (GANs) [5] have emerged as a particularly 

effective means of data augmentation within this domain. In this paper, we present 

a method employed to generate colorectal cancer histopathology images, patches 

of lymphocytes (LYM) tissue using a Conditional Generative Adversarial 

Network (cGAN) that was trained on multiple tissue classes. The accurate 

depiction of lymphocytes is critical in histopathological evaluation since these 

immune cells serve as important indicators of disease progression and patient 

prognosis, particularly in the tumour microenvironment [6]. Our approach 

leverages the strengths of the latent-to-image paradigm to generate high-fidelity 

images that capture the subtle morphological characteristics of lymphocytes. By 

augmenting existing datasets with synthetic but realistic lymphocyte images, our 

method aims to address the data scarcity challenge, thereby enhancing subsequent 

tasks such as cell segmentation and disease classification.  
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The rest of this paper is structured as follows: Section 2 reviews the current state-

of-the-art GANs application in the histopathology field; Section 3 presents the 

methods used for generating and evaluating the generated images and the dataset 

used in this study. The results achieved in this paper are presented in Section 4 

and the paper concludes with Section 5. 

2. Related work 

One key use of GANs in digital histopathology is stain color normalization [7][8]. 

Tissue slide images often look very different because of how labs stain samples, 

how thick the sections are, the scanner used, and how the image is saved. GANs 

learn to shift the colors of each slide so they all match a chosen reference slide, 

without changing the actual tissue details. Doing this before analysis makes the 

images more uniform, which helps machine-learning models see true biological 

patterns rather than just color differences. As a result, predictions become more 

reliable and diagnostic accuracy can improve. 

Another important use of GANs in medical imaging is image enhancement [9]. 

Scans and microscope images can suffer from noise, low resolution or uneven 

contrast, which makes it harder to see fine details. GANs learn to translate 

poor-quality inputs into clearer, higher-resolution outputs—reducing blur and 

speckle without inventing false structures. As a result, subtle features become 

easier to detect, aiding both human review and automated analysis. 

GANs also enable virtual staining, where raw or label-free images are digitally 

colored to mimic traditional chemical stains [10]. Instead of physically applying 

dyes—an often costly, time-consuming and sometimes destructive step—GANs 

map label-free scans (like autofluorescence or brightfield) onto the appearance of 

standard stains (e.g. H&E (hematoxylin and eosin) or immunofluorescence). This 

preserves the same tissue morphology while giving pathologists familiar visual 

cues, speeding workflows and avoiding reagent use. 

Another task that can be performed by GANs is ink and mark removal on 

histology slides [11]. Pathologists often annotate glass slides or digital scans with 

pens, markers or stamps, which can obscure tissue details and confuse analysis 

pipelines. A GAN trained on paired “marked” and “clean” images learns to erase 

these annotations cleanly, restoring the underlying tissue patterns. The corrected 

images then feed into diagnostic models or archival systems without losing any 

true histologic information. 

To address the limited availability of annotated data, data augmentation 

techniques have been developed to expand the datasets. In particular, GANs have 

shown to be a suitable solution for generating realistic synthetic images across 

various domains. GANs, developed in 2014 by Goodfellow et al. [12], are a class 
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of deep learning models comprising two neural networks: the generator and the 

discriminator. The generator takes the input (noise, image) and generates fake 

samples that resemble the real data that was used for training. The discriminator is 

a binary classifier that has the role to distinguish between real and synthetic data 

generated by the generator. The two models are trained together, and they are 

competing against each other playing an adversarial game where the generator 

tries to fool the discriminator. Based on the input type applied to the generator, 

two main approaches have been developed: the latent to image approach and the 

image-to-image approach.  

Latent to image approach implies that the generator's input consists of a latent 

vector or random noise.  Image to image approach implies that the GAN produces 

output images conditioned on a specific input image. The generator's input 

consists of images from one domain and aims to generate images in a different 

domain (domain transfer) [13]. 

Image synthesis methods using GANs have been studied and developed to 

mitigate this problem in many fields, including healthcare. Different types of 

medical images were obtained using GANs. Chen et al. [14] used texture-

embedded GANs to synthesize 3D pulmonary nodules computer tomography 

(CT) images, Prezja et al. [15] proposed a CycleGAN to generate knee 

osteoarthritis radiographs, Groceri et al. [16] proposed a Deep GAN-based 

augmentation method for dermoscopy images and Fakuda et al. [17] explore the 

use of StyleGAN to generate synthetic panoramic radiographs. Ho et al. [18] show 

that diffusion probabilistic models can generate high-fidelity images comparable 

to those generated by GANs. Puria Azadi et al. [19] use diffusion probabilistic 

models to synthesize high quality histopathology images of brain cancer. 

Over the past years several studies have been conducted using GANs in the field 

of digital histopathology for image augmentation. Different GAN architectures 

were used, for example Quiros et al. [20] proposed a framework called 

PathologyGAN to generate H&E colorectal and breast cancer tissues from a 

structured latent space. The model combines BigGAN, StyleGAN and Relativistic 

Average Discriminator. Deshpande et al. [21] proposed a method to generate 

realistic and annotated colorectal cancer histology images from glandular layout 

inputs and Wei et al. [22] proposed a method to generate synthetic colorectal 

polyp images from normal colonic mucosa images using CycleGANs.  

Considering these advances, we therefore introduce a latent-to-image 

augmentation framework that synthesizes high-fidelity lymphocyte images to 

enrich scarce datasets. In our approach, a 1,500-dimensional noise vector is 

simply concatenated with a tissue label and projected into a small multi-channel  
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Fig. 1. Schematic representation of the difference between Deep Generative Adversarial Networks 

and Conditional Generative Adversarial Networks. 

feature map, which is then upsampled through a cascade of transposed-

convolutional layers to yield realistic 128×128 patches. Compared to the 

traditional use of pretrained style encoders, rigid feature-map injections or paired 

image requirements, the generator is free to discover the full spectrum of 

lymphocyte morphologies directly from data, while a symmetrically conditioned 

discriminator ensures that only class-consistent textures and structures are learned. 

This unstructured latent design not only delivers greater sample diversity but also 

scales effortlessly to additional tissue classes. 

3. Methods 

3.1. Proposed Generative Adversarial Network 

Generative Adversarial Networks [10] are used to generate new data by learning 

an implicit representation of the dataset distribution. As presented in the 

Introduction, GANs consist of a pair of networks: a generator and discriminator. 

Noise is used as input to the generator (G) and outputs an image that represents 

the input for the discriminator (D) which determines if it is fake or real. Both 

neural networks are trained in a competitive manner, until G learns the data 

distribution and D is not able to differentiate between fake and real data anymore. 

There are different GAN architectures, and the one proposed in this paper is a  
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Fig. 2. Overview of proposed GAN architecture: a) Generator, b) Discriminator. 

conditional GAN [23]. Conditional GANs, are an extension of a GAN, in which a 

conditional setting is applied so both the generator and discriminator are 

conditioned by auxiliary information such as class label or data, as exemplified in 

Fig. 1. One of the advantages of cGANs is that the output of the generator can be 

controlled by giving the label to the desired class. 

We proposed a Latent-to-Image approach for generating data. This implies that 

our network generates images based on unstructured latent space (noise). The 

model is depicted in Fig. 2. The conditional generator is designed to contain 5 

deconvolutional layers with a kernel size (4,4), 128 filters and stride 2. A 

concatenate layer is used for the latent vector of size 1,500 and the labels, and the 

result is reshaped and used as input for the first deconvolutional layer. Each 

deconvolutional layer is followed by a LeakyRelu [24] activation function with a 

slope of 0.2 and the last convolutional layer use hyperbolic tangent function. The 

discriminator contains 5 convolutional blocks. 

Each convolutional block contains a 4 x 4 convolutional layer with kernel size 

(4,4) and stride 2 and followed by a LeakyRelu activation layer. The last 

convolution layer of the discriminator is flattened and then fed into a sigmoid 

output. Our model is trained using a batch size of 125 by Adam optimizer with 

learning rate 2e-4 (beta1 = 0.5) and cross-entropy loss. 89.434 images from 8 

different classes [adipose (ADI), debris (DEB), lymphocytes (LYM), mucus  
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Fig. 3. Examples of real images for each tissue type contained in the“NCT-CRC-HE-100K” 

dataset [21]. 

(MUC), smooth muscle (MUS), normal colon mucosa (NORM), cancer-

associated stroma (STR), colorectal adenocarcinoma epithelium (TUM)] were 

used for training to generate 2,534 images for LYM tissue. 

3.2. Dataset 

The dataset used in this paper is the “NCT-CRC-HE-100K” dataset [25]. It 

consists of 100,000 non-overlapping image patches extracted from 86 H&E 

stained human cancer tissue slides and normal tissue from the NCT biobank 

(National Center for Tumor Diseases) and the UMM pathology archive 

(University Medical Center Mannheim). It was created by pathologists by 

manually delineating tissue regions in whole slide images into the following nine 

tissue classes: Adipose (ADI), background (BACK), debris (DEB), lymphocytes 

(LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM), 

cancer-associated stroma (STR), colorectal adenocarcinoma epithelium (TUM). 

Examples of real images for each tissue type are depicted in Figure 3. Excluding 

BACK and ADI classes which do not contain relevant information for the 

diagnosis, all the other classes were used in this study. 
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3.3. Evaluation 

3.3.1. Fréchet Inception Distance 

We assessed the fidelity and variety of our synthetic lymphocyte images using the 

Fréchet Inception Distance (FID) [26], a widely adopted quantitative metric for 

generative modeling. FID computes the distance between the multivariate 

Gaussian distributions fitted to Inception-v3 feature embeddings of real versus 

generated image sets, thereby capturing differences in both visual quality and 

sample diversity. In practice, a lower FID score indicates that the synthetic images 

more closely match the real data distribution in terms of texture, structure, and 

overall variability. By reporting FID alongside our qualitative results, we provide 

an objective measure of how well our latent-to-image framework reproduces the 

complex morphological patterns found in authentic lymphocyte specimens. 

3.3.2. Perceptual Experiments 

We conducted a Turing test to validate whether the synthesized images are 

realistic and withstand clinical examination. The test included 4 specialists who 

performed the test with no time limit. The test included other tasks, but the one 

relevant to this paper is the following:  each expert was presented with a mixed set 

of real and generated lymphocyte patches and asked simply to identify which ones 

were artificial. 

4. Results 

Fig. 4 shows a selection of our generated lymphocyte images alongside their real 

counterparts: in each row the left‐most patch is drawn from the original dataset, 

while the three adjacent patches are synthesized by our latent‐to‐image model. 

Visually, the synthetic images capture not only the overall staining intensity and 

color distribution of the real samples, but also the fine‐grained textural patterns – 

such as chromatin granularity and cytoplasmic granularity – as well as the 

characteristic nuclear shapes, sizes, and clustering behaviour of lymphocytes. 

Importantly, these images show the same variety of morphological phenotypes 

found in real data, demonstrating that our approach can produce high‐fidelity 

augmentations that are virtually indistinguishable from authentic histopathological 

images. 



 

 

44 Alexandra-Georgiana ANDREI, Bogdan IONESCU  

 

 
Fig. 4. Examples of real and synthetic generated images of LYM: (a) real images, (b) synthetic 

generated images with the method presented in this paper. 

 

As a quantitative measure, we computed the FID score between all generated 

images and an equal number of real images from the dataset. Our method 

achieved an FID of 21.20, substantially outperforming PathologyGAN’s [20] 

score of 32.05 on mixed tissue classes (Table 1). This reduction in FID indicates 

that the synthetic images align more closely with the real data distribution in  

terms of both low‐ and high‐level image statistics, reflecting improvements in 

texture realism and inter‐sample variability. 

Table 1.  Evaluation using FID score. 

 

Method Tissue type FID score 

Our method Lymphocytes 21.20 

PathologyGAN [20] All classes 32.05 
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Fig. 5. Results for the Turing test – evaluation of real (left) and synthetic (right) images. Green – 

percentage of correctly classified images; red - percentage of incorrectly classified images. 

To assess perceptual indistinguishability, we conducted a Turing test validation 

with four pathologists who were asked to label a shuffled mix of real and 

synthetic lymphocyte images without time constraints. The results are depicted in 

Fig. 5. The specialists identified real images correctly 55% of the time and 

labelled synthetic patches as fake only 33 % of the time. Pathologists’ ability to 

identify real images as being real is marginally above 50% expected by random 

guessing. This suggests that even real images in isolation are not easy to be 

identified as “real” when mixed with high-quality generated images. On the other 

hand, specialists labelled just 33% of the generated patches as being synthetic, 

meaning that two out of three generated images were identified as real.  These 

findings confirm that our latent‐to‐image framework produces lymphocyte images 

that withstands clinical examination, effectively closing the gap between synthetic 

augmentation and authentic histopathological. 

Conclusions 

Synthetic images serve as valuable tools to improve the generalization capabilities 

of machine learning algorithms. In this paper we proposed a conditional 

generative model that uses a Z2I approach to generate images out of noise. We 

demonstrated the ability to generate histological images of human colorectal 

cancer for lymphocytes tissue type using a cGAN that was trained on 8 different 

tissue classes. The contributions of our work can be summarized as follows: we 

expand the size and variety of the available dataset by generating synthetic 

images, which enables more thorough and robust training of machine learning 

models.  

Furthermore, we can extend the study by incorporating image generation methods 

from other classes present in the dataset. This expansion allows us to investigate 

the capabilities of the trained model in generating images beyond lymphocyte 

tissues and assess its generalization abilities. 
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