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VISION-BASED QUALITY CONTROL OF PRODUCTS IN 

DIGITAL MANUFACTURING 

Theodor BORANGIU1, Silviu RĂILEANU2, Ionuţ LENŢOIU3 

Rezumat. Instrumentele de viziune sunt o categorie puternică de operatori de detectare și 

măsurare a caracteristicilor pentru controlul geometriei pieselor în sistemele Industry 

4.0. Lucrarea prezintă două tipuri de instrumente de viziune pentru sarcinile de control al 

calității asistate de calculator în producția inteligentă: rigle liniare/circulare pentru 

măsurători de geometrie (lungimi și unghiuri de muchie) și detectoare de caracteristici de 

piesă (linii, arcuri și puncte) care găsesc segmente de contur, colțuri etc.; aceste 

instrumente de viziune sunt integrate în mediul de programare V+. Instrumentele de 

viziune proiectate funcționează atât pentru imagini în tonuri de gri, cât și pentru obiecte 

binare, sunt robuste pentru translația și rotirea obiectelor, deoarece pot fi legate de 

centrul de masă al obiectului și de axa minimă de inerție, sunt configurabile în raport cu 

AOI și pot fi imbricate. 

Abstract. Vision tools represent a powerful category of feature detection and measuring 

operators for part geometry control in Industry 4.0 systems. The paper presents two types 

of vision tools for Computer Aided Quality Control tasks in intelligent manufacturing: 

linear/circular rulers for geometry measurements (edge lengths and angles), and 

detectors of part features (lines, arcs and points) that find contour segments, corners, 

a.o.; these vision tools are integrated in the V+ robot-vision programming environment. 

The designed vision tools work both for greyscale and binary object images, are robust to 

object translation and rotation because they can be referred to the object’s centre of mass 

and minimum inertia axis, are configurable relative to the AOI and can be nested. 

Keywords: Geometry control, visual measurement, image processing tool, digital 

manufacturing 
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1. Introduction 

The digital transformation of industrial processes and manufacturing reorients the 

automatic control of resources and inspection of products from the classic logic 

run on traditional programmable logic controllers and HMIs to AI-driven planning 

and process control strategies operating within smart semi-heterarchical super-

vision systems: product-driven automation, intelligence embedded on products 

and in line quality inspection for zero-defect product making.  
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Event-driven or continuous data measurements with IoT sensors from process 

parameters and operations performed by resources on products, as well as in-line 

quality control of products assessed with computer vision serve production tasks 

in the cloud to extract knowledge on how shop floor processes execute, how 

quality is certified and defects are reduced, and how efficiency can be improved in 

a safe operating context. Using distributed, product-centred control methodologies 

these new approaches influence activities and operations in real-time. Process 

control is increasingly data-driven in digital manufacturing, and the capacity to 

exploit (big) data collected in the shop floor in real time adds value: efficiency, 

reality awareness and agility. New hardware and software technologies and tools 

like extended digital modelling, digital twins, HMI and visualisation, resource and 

product virtualization and predictive IA use historical data, contextualize it in the 

current production environment, thus ensuring global efficiency at batch level and 

improved situational awareness [1]. 

In manufacturing and logistics, different types of quality control ensure products 

meet required standards. These types are: 

1. Pre-production inspection: Checks raw materials and initial setups before ma-

nufacturing begins. 

2. In-process (in line) inspection: Monitors production to catch defects early. 

3. First Article Inspection (FAI): Examines the first product to verify that produc-

tion processes are correct. 

4. Final inspection: Conducted on finished products before delivery. 

5. Pre-shipment inspection: Ensures products meet specifications before ship-

ping. 

Each type plays a crucial role in maintaining product quality throughout the 

production process. 

Computer vision reduces inspection time and boosts accuracy compared to ma-

nual and less advanced systems, ensuring manufacturers meet high-quality stan-

dards; existing vision-based product inspection tools seamlessly integrate with 

several industrial cameras and include built-in PLC communications via TCP/IP 

and Modbus protocols [2].  

Measurements represent user-defined descriptors which either extend the set of 

scalar/space domain features for object recognition or operate locally, within spe-

cified areas of interest of objects, to evaluate particular geometric features of their 

boundary, body, or holes [3, 4]. 

Automated Visual Inspection (AVI) has concentrated in the first period at great 

extent on mass production items, as the expensive design and implementing of 

quality control made it unprofitable to use artificial vision techniques to other 
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categories of product batch sizes; however, in the last ten years, the cost of image 

processing hardware and software decreased continuously, which made it 

applicable to small batches and even one-of-a-kind, customized products [5]. 

There are hence new application areas for industrial vision inspection systems that 

have been not considered at the beginning of the last decade and which are now 

progressively implementing for:  

• Objects made in very small quantities. 

• Objects with highly complex 3-dimensional shapes: car engine blocks, 

castings, mouldings. 

• Assemblies of components: electric motors, printed circuit boards (PCB), 

computer keyboards, a.o. 

• Goods produced in series which are intentionally made with high individual 

variation, to look like being hand made. 

• Objects which have a high degree of variability, such as products in food lo-

gistics (quality control, sorting, packing, storing). 

• Articulated objects that are flexible or are assembled from jointed parts. 

• Natural products (vegetables, fruits, meat, fishes) which that vary in size 

and quality and must be classified according to some criteria [6]. 

Automated Visual Inspection will have an increased impact on manufacturing 

and, processing the images of products using AI techniques will determine cost-

effectiveness. AI techniques are able to detect objects perform image analysis, 

identify features and effect geometry measurements [7].  

Computer vision held in 2022 a 3% market share in value of 0.12 billion $US in 

the global market value of AI in robotics, with a forecasted increase to 2 billion 

$US in 2032. For industrial robots with AI, machine vision includes digital image 

acquisition, processing, real time analysis and feature extraction to produce nume-

ric or symbolic information such as decisions or adequate actions [8].    

2. Geometry measurements with vision tools 

There can be defined three major, closely inter-linked AVI topics under the gene-

ral heading of AI-driven measurements: 

a) Pattern-based inspection, to be used in case a model, graphic representation, 

CAD database or other document describing an item exist. 

b) Rule-based check, that applies the expertise of a human specialist in a set of 

detailed rules and procedures to design and interpret the results of executing 

visual measurements. 
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c) Nonimperative programming, for which the operator defines the foreground 

elements in a part image to be detected by the vision system. 

Implementing the AI techniques for measurements is based on vision tools, 

applied in specified areas- (or window regions-) of-interest – AOI (WROI). Since 

several different vision tools may be placed in the same area, it must be possible 

to predefine areas-of-interest, so that they can then be used by multiple tools.  

Inspection sequences account for the same location of AOIs and for invariant 

sequences of measurements; this is the case when the type of objects to be inspec-

ted and their location in the image plane are a priori known.  

However, the more general case is that of inspection sequences that cannot be 

established beforehand because either the scene's content is random or there is not 

a priori complete knowledge about where and how features should be detected 

and evaluated by objects’ measurements. Obvious requirements are then for: 

• mechanisms for searching named features (e.g., searching a frame, a corner, 

a crack or any other feature of interest in the object’s image); 

• techniques for placing vision tools relative to features detected at run time 

and/or reference frames generated dynamically by other vision tools, 

which allows to easily reposition groups of tools based on new image data [9]. 

Scan and search patterns. Several feature-search methods are used to search 

features in the foreground of an image that visualized objects: 

• Farthest-feature location: a type of search used in pattern-based inspection. 

Tasks of this type aim at finding the leftmost, rightmost, upmost, downmost 

edge point or line of an object silhouette, the location of the brightest/dark-

est area in an image or the position of the largest/smallest hole in a blob, the 

closest or farthest blob to a specified object edge. 

• Raster scan: provides the basis of systematic searching when the position 

and orientation of an object’s image feature is only vaguely The most used 

raster scan models are shown in Fig. 1. 
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Figure 1. Raster scan models. a) Left-right, up-down with quick "return". b) backwards and 

forwards, with constant advance in the normal direction. (c) similar to (b), realizing incremental 

displacement along the "slow" axis. (d) concentric circular motions. (e) spiral. (f) wheel-spoke 

• Random scan: good results at localizing big objects. 

• Space-filling scan: this Peano scan is a pace-filling curve that preserves well 

clustering. 

• Coarse/fine scan search: used when small blobs are possibly clustered in 

the image (e.g., defects in materials), examining objects in varying detail is 

the reason to adopt the coarse/fine scan search. 

• Edge/Contour following: detects "scratch"-type features in a two-stage pro-

cess of following edges, contours or streaks: i) following segments of arcs 

that are not interrupted (have not breaks); ii) skipping breaks, between the 

existing  portions of an interrupted arc. 

• Navigating by landmarks: the most common type of search pattern used in 

model-based inspection. 

Line and gauge predicates. Measurements are based on the definition and se-

lection of points, lines and arcs, to which functions are associated. Points may be 

selected from two categories: predefined points and user points. Predefined points 

are the centres of weight of objects and of holes, if any. User points can be global 

or local: global points, once defined, apply for every object whereas local points 

are defined for a particular class of objects and depend on a valid pattern database 

and identification process. Points can lay on the object's contour in which case 

they might be referred relative to the centroid of the object by polar coordinates 

(e.g., the nearest/farthest point on the contour relative to the centroid), or they can 

be related to any internal feature of the object’s body in which case their offset co-

ordinates are user-defined.  

a. b. c. 

d. e. f. 
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Lines and circular arcs are either primitive contour segments of the object and its 

holes - detected by line and arc finder tools, or specified by the user relative to 

important features identified at run time during object search (e.g., the major axis 

of the object, the edges of the minimum rectangle box, etc). 

Once points, lines or arcs selected, simple patterns such as triangle, rectangle, 

parallelogram, and circle can be related to them to recognize additional features. 

The functions defining measurements are based on library predicates which fall 

in-to two basic categories:  

a) Low-level feature recognition predicates: they exploit the data base of points, 

lines and arcs that are implicitly provided by the vision system after segment-

ing the image and detecting objects, or explicitly defined by the user relative to 

important features identified at run time during object search. These predicates 

perform special measurements which may be added to the standard intrinsic 

ones (area, perimeter, holes number, eccentricity, compactness) to verify geo-

metry details. Below are examples of such low-level predicates: 

• angle(L1,L2): Compute the angle formed by lines L1 and L2;   

• collinear(P,Q,R): Do the points P, Q, R lay on the same line? 

• parallel([P,Q],[R,S]): Are the lines PQ and RS parallel? 

• perpendicular([P,Q],[R,S]): Are PQ and RS perpendicular? 

• in_circle(A,[C(x,y),r]): Is A inside the circle C, r?  

b) Gauge predicates: they are used in model-based inspection as feature-search 

patterns. Gauge predicates are designed specifically to perform the same kind 

of operations as mechanical gauges: caliper, ruler, compass, etc. For the exam-

ples below it is assumed that, after image binarization and segmentation, the 

background is white and the foreground is black. 

• compass([X1,Y1],R,α,[X,Y]): the predicate uses a circle of radius 

R, centred at [X1, Y1]. The search starting point is on the circle, at angle α 

from the horizontal (parallel to the abscissa of the vision frame). The input 

data when calling the predicate is [X1,Y1], R, α. The output data [X, Y] is 

the address of the first black pixel encountered as the compass moves anti-

clockwise from the point [X1 + R cosα, Y1 + R sinα], Fig. 2 left. 

• caliper ([X1,Y1],L,α,o): the predicate operates similarly to a robot 

gripper picking an isolated object. The centre of the gripper is [X1,Y1] and 

has two parallel fingers of length L. The gripper opens moving the jaws 

along a line inclined at angle α to the abscissa of the image plane. The open-

ing of the jaws when grasping the object is o (the output data), Fig. 2 right. 
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Figure 2. Gauge predicates: left - compass; right - caliper 

Vision Tools. Vision tools are powerful operators which are used to detect 

features and measure distances along lines and arcs. They can be defined to 

process grayscale or binary images, after segmentation. Vision tools are employed 

to detect important features in an object’s image: points (on inner (holes) and 

outer (contours) part edges) and edges (segments of lines and arcs), or to measure 

and locate them (line ends, point location, line inclination and arc extremities) 

with respect to other characteristics that have been found at run time in the image 

of the located object or from other previously applied vision tools. 

3. Measuring distances, detecting points and edges on manufactured parts 

Two types of part quality control (QC) using vision tools are analysed: geometry 

measurements: edge lengths and angles, hole radii relative to a) object-locating 

features: centre of mass (C), minimum inertia axis (MIA) or minimum rectangle 

box (MRB) edges or b) other part features (hole, corner, contour segment) already 

detected with some vision tools, and detection of part features (linear and circular 

contour segments, hole patterns): presence and/or correct location with respect to 

C, MIA, MRB or to other predefined and visually found anchor points [10].  

These two types of part QCs are denoted respectively as gm and fd in Fig. 3, in 

which the methodology of selecting, configuring and using vision tools (VTs) for 

part control is presented. In the offline stage an image processing environment or 

virtual camera for QC is created, by customizing image representation, processing 

and interpreting: defining the image format (e.g., binary or grey scale, subpixel 

representation of VTs) and operating parameters (multiple binarization thresholds, 

grey level edge detectors), configuring the contrast levels, noise filters and object 

recognition parameters according to expected part presentation conditions (fixed / 

moving scenes, objects touching / overlapping, uniform / changing background, 

structured / unstructured foreground).         



 

 

26 Theodor BORANGIU, Silviu RĂILEANU, Ionuţ LENŢOIU  

 

 

Figure 3. Selecting, configuring and using vision tools for part inspection: gm and fd 

The spatial configuring of the image processing environment for QC consists of 

establishing the position (cx, cy), orientation (ang) and size (wd, ht) of the 

rectangular part inspection window or area of interest (AOI) for the specified 

virtual camera (vc); all measurements will be performed in the specified AOI:  
AOI(vc) cx,cy,wd,ht,ang 

To measure linear and circular arc distances along object and hole contours or 

between particular points on the object’s boundary, body  or holes, software rulers 

have been designed. Linear/circular rulers are vision tools that find edge (binary) 

information or grey levels along a line/circular arc in the current image and return 

such data from the start of the ruler; they can operate on binary or greyscale image 

data. The linear (LRULER) /circular (CRULER) ruler syntax developed for the V+ 

robot-vision programming environment is: 

LRULER (vc,type,mxc,pol) data[i] = x0,y0,len,ang 
CRULER (vc,type,mxc,pol) data[i] = CW,cx,cy,rad,ang0,angf 
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where: vc is the #ID of the virtual camera used; type specifies the type of ruler: 

(i) edge-finding rulers: dynamic binary, raw binary or run-length binary, (ii) grey 

level-finding rulers: grey level, fine-edge or fine-pitch; mxc is the max. number of 

values to return – the ruler stops processing upon finding this number of edges or 

grey levels; pol specifies the polarity of the edges to be considered by the ruler: 

only light-to-dark / all / only dark-to-light edges; data[]: a real array into which 

the edge/grey level transitions detected by the ruler are returned; the data array has 

the format n,colour,value_1,…,value_n with n - the number of transitions 

detected by the ruler, colour - starting colour of a binary ruler, and value_i, 

i=1,…,n are the data returned by the ruler; their interpretation depends on the 

ruler's type and shape: 

• for a linear ruler the values are distances [mm] along the ruler from the start 

to each transition,  

• for an arc ruler the values are angular distances [deg] from the start to each 

transition);  

x0,y0 indicate the coordinates [mm] of the linear ruler’s starting point, len is the 

linear ruler’s length [mm], ang is the linear ruler’s angle [deg] measured counter 

clockwise from the vision plane abscissa x_vis using the start point of the ruler as 

origin; CW indicates how the circular ruler is moved through: clockwise / counter 

clockwise, cx,cy,rad,ang0,angf specify respectively the coordinates of the 

starting point [mm], the radius [mm] and the angular range [deg] of the circular 

ruler.  

These rulers determine locations, along a directed line or circular arc, of black-to-

white and/or white-to-black transitions. The starting colour returned is the colour 

(black or white) of the pixel nearest to the start of the ruler. Each colour change 

along the ruler is returned as a transition point, measured in millimetres or degrees 

from the ruler’s start; the returned transition points are accurate within about one 

pixel. Rulers that operate on the greyscale object images attempt to find edges 

based on the setting of the edge-sensitivity threshold, previously defined in the 

current virtual camera, on and near the path of the ruler. These rulers look for 

edges based on changes in intensity rather than binary thresholded values. 

The absolute speed and accuracy of rulers depend on the particular application. 

With the present design, ruler length and the number of transitions affect speed. 

Raw binary rulers are the fastest, while fine edge rulers are the most accurate. 

Linear rulers are faster and more accurate than arc rulers, especially when they are 

nearly vertical or horizontal to the vision coordinate system.  

Lengths and angles measurements (gm) based on ruler tools need defining the 

ruler path, i.e., specifying the starting point, orientation, and length or angular 

range. The strategy for computing these data is set offline. If parts to be inspected 
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are in known locations of the scene, the definition of ruler parameters is direct, 

from CAD data. However, if the type and location of objects in the scene are not a 

priori known, ruler parameters can be expressed relative to a) the current position 

and orientation (centre of mass C and minimum inertia axis MIA) of the recogni-

zed and located object or to the edges of its minimum rectangle box MRB or b) to 

features (edges, corners, holes) visually detected in extreme positions (leftmost, 

upmost, …) by help of the current part locating data C, MIA, MRB, within the 

area of interest for the geometry measurement(s) of interest [11]. 

Part features (corners, linear and circular edges) are detected by help of finder 

tools that allow locating points, lines and arcs from C, MIA and MRB edge data 

according to the iterative search strategies and patterns (like c) in Fig. 1; they have 

been designed to operate on binary or raw greyscale image data. The line detector 

syntax developed for the V+ robot-vision programming environment is: 

LFINDER (vc,type,pos) data[i] = xc,yc,len,wid,ang 

where vc is virtual camera #ID and type selects the type of line finder: binary or 

grey level edge; pos specifies the starting point in the search window: dark side, 

middle guideline or light side. At the centre of the LFINDER search window is the 

guideline, i.e., the user's estimate of the edge location. The guideline is defined by 

a point (centre) and an angle; the search area is further specified by the guideline’s 

length (breadth of scan), the search window’s width (range about the guideline 

within which search will be performed), and an initial search location (see Fig. 4). 

  

Figure 4. Left: example of line finder search area of the LFINDER tool. Right: Initial start point 

(start location) - middle guideline (pos = 0) 

The result of the line fit by applying the LFINDER tool is put in the real array data 

position data[i+0], while the X,Y coordinates on the fit line nearest to the 

initial search point [mm] and the angle of the fit line [deg] are respectively placed 

in data[i+2], data[i+3]and data[i+4]. The line finder tool locates dark-to-

light transitions as viewed from its dark side (see Fig. 4 right). 

The point- and arc finder tools PFINDER and AFINDER are similarly defined to 

detect part and assembly features such as marks, corners, vertices respectively 

Edge 

found 
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circular holes, rings, contour segments. These types of features are related to part-

attached frames and checked for correct location, size or presence (e.g., checking 

for missing or misaligned assembly components).  

A ruler-based gm is further described. The dimension of a part along its min-

imum inertia axis – MIA) will be measured by help of a linear ruler vision tool. A 

window region-of-interest (AOI) is first placed to include the part, as indicated by 

the red graphics contour superposed on the object’s binary image (see Fig. 5 and 

V+ pseudocode below). 

 

Figure 5. Using a linear LRULER to measure the part’s length along its MIA 

;Take a picture, locate the object and its minimum rectangle box (MRB). 

These are implicit locating functions of any image processing library. 

Access is thus granted to the part centroid coordinates C(xc,yc), angle 

orient = ang(MIA,xvis), and to the MRB edge positions: le,ri,do,up. 

;Compute the dimensions and centre of the minimum rectangle box: 

wid = ri – le 

ht = up – do 

cx = le + wid/2 

cy = do + ht/2 

;Install the AOI processing window, with width and height 4 mm greater 

;than those of the currently located object’s MRB: 

AOI (vc) cx,cy,wid+4,ht+4,0 

;The orientation of the MIA is computed as: 

incl = SIN(orient)/COS(orient) 

;Compute the coordinates xs,ys of the linear ruler's starting point (the 

;green dot in Fig. 5) by intersecting the line equations: "x = le" and  

;"y – yc = incl * (x – xc)" 

;The LRULER starting point coordinates result: 

xs = le 

ys = yc + incl * (le – xc) 

;Launch the run-length binary linear ruler execution (type = 0) on a 

;distance of 200 mm, greater than the estimated dimension to be measured 

;and pol = 0 (all edges to be considered: both light-to-dark and dark-to-

;light transitions): 

LRULER (vc,0,2,2) data[] = xs,ys,200,orient 
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count = data[0] 

IF  count == 2  THEN 

length = dat[3] – dat[2] 

TYPE "Part dimension = ", length 

ELSE 

TYPE "Measurement failed"  

END  

;A value mxc = 2 is imposed to the binary ruler. If less than two 

;transitions are found along the 200 mm MIA line and confirmed by the 

system in data[0], then the measurement failed.  

;"length" is the result of a successful measurement, which can be then 

;checked against the imposed length. 

The three types of vision tools (windows region-of interest (AOI), linear and 

circular rulers, and point-, line- and arc finders) can be called recursively, nested 

and combined in automated inspection or robot guidance vision tasks for access to 

products in shop floor storages or workplaces.  

4. Experimental results 

The accuracy of measurements with vision tools was analysed in experiments in 

most difficult conditions from the point of view of the part flow: unstructured 

scene foreground, parts moving on conveyor belts at different speeds, very close 

one to another or even touching. The tests were planned to employ all the types of 

ruler and finder tools designed and presented in section 3 of the paper. Tests have 

been performed with binary and grey level images of objects, for which accurate 

recognition models have been defined in preselected virtual cameras. 

An example of such complex geometric measurement of a manufactured part is 

further presented. It describes the measurement of 10 geometric parameters of con 

rod-type parts. These parameters, denoted by , 

represent linear and angular distances (see Fig. 6). 

Con rods may have any location in the inspection scene. In consequence, some 

important points and edges will be first searched with finder tools, and afterwards 

measured with ruler tools. Because the part's location is not a priori known, the 

first vision tools will be placed relative to part features estimated by the vision 

system after successfully locating the con rod. These locating features are: the 

coordinates of the minimum rectangle box edges, the coordinates of the part’s 

centroid, and the orientation of the minimum inertia axis relative to . 
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Figure 6. Con rod geometric parameters: . 

A recognition model named "SEG" for binary images of this class of con rod parts 

has been previously trained. The topology of the part's contour was created by the 

vision system in the first stage of training (first prototype sample) with a number 

of 17 primitive edges (13 lines and 5 arcs), as shown in the screen capture taken 

during the set up of the binary recognition model (Fig. 7).   

 

Figure 7. Editing the con rod recognition model (binary image prototype). Its contour is 

approximated with 13 lines (yellow) and 5 arcs (pink). 

 

beta 

h  
ew  

Centroid 

Minimum inertia axis  

(MIA) 

alpha 

cw  

r  

l  

R  

Rw  

rw  



 

 

32 Theodor BORANGIU, Silviu RĂILEANU, Ionuţ LENŢOIU  

 

Eight measurements M1, M2, …, M8 have been performed on the inspected 

object with different orientations. The gm results are given in Table 1. 

Table 1. Results of the 8 measurement sessions with different orientations of the con rod 

       Measurement 

       ) MIA,( visx [] 
 

Parameter [unit]                 

M1 

3.7 

M2 

36.2 

M3 

91.4 

M4 

161.8 

M5 

181.8 

M6 

222.0 

M7 

270.1 

M8 

328.7 

r  [mm] 11.36 11.32 11.25 11.29 11.28 11.30 11.30 11.34 

R  [mm] 35.98 35.74 35.88 36.07 35.97 35.90 35.88 35.95 

xerr _  [mm] 0.10 0.07 0.01 0.16 0.27 0.22 0.07 0.16 

yerr _  [mm] 0.06 0.12 0.04 0.10 0.10 0.03 0.09 0.08 

cw  [mm] 9.35 9.49 9.53 9.74 9.82 9.68 9.44 9.26 

rw  [mm] 9.55 9.44 9.02 9.54 9.46 9.39 9.12 9.63 

l  [mm] 74.05 74.22 73.84 72.83 73.07 72.89 73.47 74.00 

Rw  [mm] 17.73 18.25 17.70 17.74 17.65 17.72 17.65 17.70 

beta  [degree] 174.6 176.5 175.6 174.9 176.0 174.8 174.2 174.6 

alpha  [degree] 62.61 61.86 61.28 62.14 61.42 62.16 61.63 61.77 

h  [mm] 4.13 4.77 5.15 4.73 4.59 4.10 4.06 4.18 

ew  [mm] 7.75 7.79 7.56 7.12 7.22 7.62 7.67 7.50 

From the ten geometric parameters that are measured, eight are linear distances 

and circle radii, and two are angles. 

Table 2 includes statistical data resulting from the analysis of measured values of 

lengths (distances and radii expressed in millimetres) and angles (in degrees). 

Table 2. Statistic collected from the multiple con rod measurements. 

       Statistics 

        

 

Parameter [unit]               

Min value 

( min ) 

Max value 

( max ) 

Mean value 

( avg ) 

Dispersion 

( disp ) 

Number of 

vision tools 

used 

RU LF AF 

r  [mm] 11.25 11.36 11.30 0.11 1 0 1 

R  [mm] 35.74 36.07 35.92 0.33 3 0 3 

cw  [mm] 9.26 9.82 9.54 0.52 3 0 3 

rw  [mm] 9.02 9.63 9.39 0.61 5 0 3 

l  [mm] 72.83 74.22 73.54 1.39 6 0 3 

Rw  [mm] 17.65 18.25 17.75 0.60 8 0 3 

beta  [degree] 174.2 176.5 175.1 2.3 8 2 3 

alpha  [degree] 61.28 62.61 61.73 1.33 9 2 3 

h  [mm] 4.06 5.15 4.46 1.09 10 2 3 

ew  [mm] 7.12 7.79 7.53 0.67 13 2 3 
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Table 2 shows the min., max., and mean values of the 10 measured parameters, 

and the dispersion of values for each parameter. The dispersion is calculated for 

each parameter  as: , and is 

expressed in the same units as the parameter (millimetres or degrees).  

Table 2 also specifies the number of vision tools (rulers – RU, line finders – LF, 

and arc finders – AF) that are used by the vision program to obtain the value of 

each geometric parameter. 

Fig. 8 offers an interpretation of the statistical results obtained in the measuring 

process of the 8 con rod’s linear distances. The graphic representation of feature 

dispersion is a function of the feature's length [millimetres] and number of vision 

tools (rulers, line and arc finders) that have been used. 

 
Figure 8. Graphic representation of feature dispersion function of the feature's length [millimetres] and 

number of vision tools (rulers, line and arc finders) used in the measuring program 

One can observe from this representation that the feature dispersion curve has a 

minimum in the range of medium feature lengths (  millimetres, parameters 

) and also for those feature parameters that require the least number of 

vision tools (RU, LF, and AF) to be executed. The same three con rod parameters 

mentioned above meet this second computational condition: 

, , . Looking at the values in the 

last three columns of Table 2, it results that the con rod parameters  are 

calculated first, while for the remaining five distance-features computing errors 

cumulate progressively as new vision tools are executed by nested measuring 

programs. 
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A final note concerns the dependence of measuring accuracy on the feature's 

length. The results worsen as the length of the search window increases. To 

exemplify, the relative dispersion , defined as a 

percentage of the feature's mean value, is computed for  and , i.e., for the 

parameters having respectively the smallest and biggest absolute dispersion of 

their measuring results: , and . While  

is 6.5 times longer than , their relative dispersions are in the ratio of only 1.9. 

5. Conclusions 

Vision systems in the Industry 4.0 (I4.0) perspective automate in line geometry 

inspection of products within the CAQC (computer-aided quality control) stage of 

intelligent manufacturing. CAQC applications span a broad range of applications 

from simple checking of missing and alignment of assembly components to real 

time feature detection and high precision geometry measurements [12].   

Artificial vision technologies are increasingly used in the I4.0 context for high-

speed production and internal logistics processes; the ultimate goal is to get zero-

defect production performance, plus relaxing the constraints of rigid structuring of 

part transport and storage flows [13, 14]. 

The paper proposes two types of vision tools for CAQC tasks: linear/circular 

rulers for geometry measurements (edge lengths and angles), and detectors of part 

features (lines, arcs and points) that find contour segments, corners, a.o.; these 

vision tools are integrated in the V+ robot-vision programming environment. The 

designed vision tools work both for greyscale and binary object images, are robust 

to object translation and rotation because they can be referred to the object’s 

centre of mass and minimum inertia axis, are configurable relative to the AOI and 

can be nested.  

These vision tools have been tested in an industrial environment for binary- and 

greyscale object recognition models; they offer a subpixel accuracy that has been 

attested in repeated sequences of multiple part geometry measurements.  

Future research will be oriented towards developing quality control algorithms for 

the complex geometry of domain features of particular object classes: skeleton 

and signatures (angular radii and linear offsets). 
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