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CONJUGATE GRADIENT WITH SUBSPACE
MINIMIZATION BASED ON CUBIC REGULARIZATION
MODEL OF THE MINIMIZING FUNCTION

Neculai ANDREI!

Abstract. A new. algorithm for unconstrained optimization based on the cubic
regularization in two dimensional subspace is developed. Different strategies for search
direction are also discussed. The stepsize is computed by means of the weak Wolfe line
search. Under classical assumptions it is proved that the algorithm is convergent.
Intensive numerical experiments with 800 unconstrained optimization test functions with
the number of variables in the range [1000 - 10,000] show that the suggested algorithm is
more efficient and more robust than the well established conjugate gradient algorithms
CG-DESCENT, CONMIN and L-BFEGS (m=35). Comparisons of the suggested algorithm
versus CG-DESCENT for solving five applications from MINPACK-2 collection, each of
them with 40,000 variables, show that CUBIC is 3.35 times faster than CG-DESCENT.
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1. Introduction
For solving the unconstrained optimization problem

min f(x), (D

where f:[1" —[ is continuously differentiable and bounded from below, besides the
well known line-search and trust-region methods, the p -regularization model is
constructed by adding a p -th regularization term to the quadratic estimation of f. The
idea is to construct and minimize a local quadratic approximation of the minimizing

function with a weighted regularization term (o, / p)||x|p , p>2. The most common

choice to regularize the quadratic ‘approximation is the p -regularization with p =3,

which is known as the cubic regularization. The idea of using the cubic regularization
into the context of the Newton method first appeared in Griewank (1981) and was later
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developed by many authors, proving its convergence and complexity (for example see:
(Nesterov, & Polyak, 2006), (Cartis, Gould, & Toint, 2011a, 2011b), (Gould, Porcelli, &
Toint, 2012), (Bianconcini, Liuzzi, Morini, & Sciandrone, 2013), (Bianconcini, &
Sciandrone, 2016), (Hsia, Sheu, & Yuan, 2017)). Griewank proved that any accumulation
point of the sequence generated by minimizing the p -regularized subproblem is a

second-order critical point of £, i.c., a point X e[ " satisfying V/(x)=0 and V>f(x)
semipositive definite. Later, Nesterov and Polyak (2006) proved that the cubic
regularization method has a better global iteration complexity bound than the one for the

steepest descent method. Based on these results, Cartis, Gould and Toint (2011a, 2011b)
proposed an adaptive cubic regularization method for minimizing the function f, where

the sequence of the regularization parameter {o,} is dynamically determined and the p -

regularized subproblems are inexactly solved. In the adaptive cubic regularization
method, the minimizing function f  is approximated by the model

3
B

] 1
m(d)= f(x,)+gid +EdTBkd 3% |l )

where o, is a positive parameter (regularization parameter) dynamically updated in a
specific way and B, is an approximation to the Hessian of the objective function. The

adaptive cubic regularization method for the unconstrained optimization was further
developed by Bianconcini, Liuzzi, Morini and Sciandrone, (2013). The idea was to
compute the trial step as a suitable approximate minimizer of the above cubic model of
the minimizing function by using the nonmonotone globalization techniques of Grippo
and Sciandrone (2002). Another approach was presented by Gould, Porcelli and Toint
(2012), who presented new updating strategies for the regularization parameter o, based

on interpolation techniques, which improved the overall numerical performance of the
algorithm. New subspace minimization conjugate gradient methods based on p-

regularization models, with p =3 and p =4, were developed by Zhao, Liu and Liu
(2019). A complete theory of the p-regularized subproblems for p>2, including the
solution of these problems was presented by Hsia, Sheu and Yuan (2017).

This paper develops a variant of the conjugate gradient algorithm with subspace
minimization ((Stoer, & Yuan, 1995), (Andrei, 2014), (Li, Liu, & Liu, 2019)) based on
the regularization model (Zhao, Liu, & Liu, 2019). Starting with an initial guess x, and

the initial search direction d, =—g,, in our algorithm the next iteration is computed as
X, = X, +oyd,, where the search direction is computed as a linear combination of the
current gradient and the previous search direction, while the stepsize «, is determined by
the standard Wolfe line search:

S +ad) = f(x) < pakngdk’ 3)
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where it is supposed that d, is a descent direction and the scalar parameters p and o
are so that 0< p <o <1. The algorithm combines the minimization of a p -regularized

model (2) of the minimizing function with the subspace minimization. The main objective
is to elaborate numerical algorithms based on the p -regularized model (2) with inexact

line searches in which the search direction is a linear combination of the steepest descent
direction and the previous search direction. If the minimizing function is close to a
quadratic, then a quadratic approximation model in a two-dimensional subspace is
minimized to generate the search direction, otherwise a p -regularization model is
minimized.

The structure of the paper is as follows. Based on the theoretical developments by (Hsia,
Sheu and Yuan (2017), Section 2 presents the p —regularized subproblem with a scaled

norm and its solution in closed form. Section 3 presents the p -regularized subproblem in

two-dimensional subspace, where the search direction is computed as a linear
combination of the current gradient and the previous search direction. Using the
developments from the previous sections, the strategies for search direction computation
are presented in Section 4. The corresponding algorithm and its convergence are shown in
Section 5 and Section 6, respectively. Section 7 shows the numerical performances of the
algorithm on solving a set of 80 unconstrained optimization problems with different
complexities. For each problem from this collection, 10 numerical experiments with an
increasing number of variables as # =1000,2000,...,10000 have been performed. Hence,
800 problems have been solved in this set of numerical experiments.

2. The p-regularized subproblem with a scaled norm
The general form of the p -regularized subproblem is

o
=

¥, &)

. 1
min/(x)=c’ x+—x"Bx + |x|
xell” 2

where p>2, 0>0, cell” and Bell"™ is a symmetric matrix. Because of the
regularization term 0'||x||p / p /it follows that A(x) is a coercive function, that is,
h(x)=+c0, i.e. the p-regularized subproblem can always attain the global

lim,
>0

minimum, even for non-positive definite B. The solution of this subproblem is given by
the following theorem, (Hsia, Sheu and Yuan (2017)).
Theorem 2.1 For p >2 the point X" is a global minimizer of (11.76) if and only if

(o] 1)y =, Broly| T 1z0 (6)
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Moreover, the 1, norms of all global minimizers are equal. .

Another form of the p -regularized subproblem with a scaled norm can be

mini(x) =c’ x + ;xTBer
xel”

(7

. ; oa ; . T
where 4 ell™" is a symmetric and positive definite matrix and ||x|| , =\x Ax, known

as /, norm. Considering y = A"x, (7) can be rewritten as
minh(y) = (4"¢)" Ve SV(ABA ")y +Z ||y||p (®)

From Theorem 2.1 the point y~ is a global minimizer of (8) if and only if

(A‘”zBA‘”z voly|” 1) v =A%, (9a)

p—2

1>0. (9b)

*

A—I/ZBA—I/Z +o"y

The following theorem presents the global solution of the p -regularized subproblem (7)
(Andrei (2020)).

Theorem 2.2 The point xis a global minimizer of the p -regularized subproblem with a
scaled norm (7) for p>?2 if and only if

(B+o(z)?4)x" =—c,  B+o(zy” 420, (10)

where z' is the unique non-negative root of the equation

z —Z ~=0. (11

(1 + GZ" )

Moreover, the |, norms of all global minimizers are equal.
¢

In the following, let us consider the case in which B is symmetric and positive definite
and A= B. In this case, since o >0 and z >0, it follows that B+ c(z"*)B is always a
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positive definite matrix. Therefore, the global minimizer of the p -regularized

subproblem with a scaled norm (7) is unique. In conclusion, from (10) the following
theorem is true.

Theorem 2.4 Let B >0 and A= B, then the point

x :%B_lc (12)
l+o(z)”

is the only global minimizer of (9) for p>2 where z' is the unique non-negative solution

ozl 4 z=c"B e =0. (13)

¢

of the equation

Concerning the equation (13), observe that for ¢=0 the equation is z(az‘”’2 +1) =0.

Since o >0 it follows that z =0 is the unique non-negative solution of (13). On the
other hand, for ¢ #0 defining the function ¢(z)=ocz""+z—+/c' B¢, it is easy to see
that ¢'(z) = o(p—1)z"> +1> 0, which proves that ¢(z) is monotonically increasing.
Since @(0)<0 and @(v/c"B'c) >0, it follows that z" is the unique positive solution of
(13).

3. The p-regularized subproblem in two-dimensional subspace
Consider the quadratic approximation of f in x,,; as

Y 1
W (d) = g1{+1d + EdTB/mda

where B,,, is a symmetric and positive definite approximation to the Hessian of f in
x.,, Wwhich satisfies the secant equation B, s, =y,, with s, =x,,—x, and
Vi = & — & Consider that g, and s, are two linearly independent vectors and
define Q, ={d,,:d,, = 4.8,  +1:5,}, where u, and 7, are real scalars. The
corresponding p -regularized subproblem is defined as

1 o

. _ T T k

o hei(di) = 8rndi + Edk+lBk+ldk+l + _||dk+l|
k+1 k

p
5., (14)

where o, >0 is the regularized parameter. Having in view that d,,, €Q, the p-
regularized subproblem in the two-dimensional subspace can be expressed as
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leenlP) () 1 (Y ( w
mome\ gl s, )\ ) 2\, M) PN,
where
T
Pk k1 Vk
Mk:|: T ; } Pi =GB (16)
Vie8irr Sk Vi

Observe that M, is a symmetric and positive definite matrix since B, ., is symmetric and
positive definite and the vectors g,,, and s, are linear independent.
By Theorem 2.4, it follows that the unique solution of (15) is

* 2
[” ’:] = ‘—EMM;I [”gy’f“” J (17)
m) 1+ouz) 815k
where z" is the unique non-negative solution of the equation
T
O_kZp—l e {”g/m”j Ml—l ["gkﬂnzj -0 (18)
ng+ISk ng+lSk
Observe that
N [ e L
U= [ gl;” J Mk_l{ gf” } :\/A_(”gk" (Slfyk)"_pk(glilsk))a-
815k Ei+15k k

where A, = p0,(s{ ¥,)—(gi,,7;)’ is the determinant of M,. Therefore, the unique non-
negative solution of the equation (18) is:

* 2u

S 19
1+ /l+40,u (%)

1

- 1+Gk(Z*)p_2 ’

z

Denote

(20)

k

Therefore, from (17) the solution of the p -regularized subproblem in the two-
dimensional subspace (15) is
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i =2 elavelas) = yollgal | Cla)

_k
A,

77; = A_k[(ngHJ’k)"ng”z ~ Pk (ng+1Sk )J (21b)
k

For the p, computation some procedures are known. One of them, given by Stoer and
Yuan (1995), is

T 2
p =2 8ei)” (22)
Sk Vi

Using the Barzilai-Borwein method, another procedure for the p, computation was given
by Dai and Kou (2016)

P 3”%" el 23
2 k k

Another simple way is to let B,,, be a self-scaling memoryless BFGS with parameter 7,
given as

T T

5.8 Vi Vi

Pk :ng+1 -7, . kz + 1} . 8r+ls (24)
(S

1 _ oS 2 T .
with B, =1Ir,,, where 7, can be chosen as 7, —| !/ yiS;» given by Oren and

Vi
Spedicato (1976), or T,?L =3 ykT Sy /||sk ||2 given by Oren and Luenberger (1974).

For the o, computation there are a number of procedures. For example Cartis, Gould and

Toint (2011a) suggested a procedure based on the trust-region ratio. Another procedure
using an interpolation condition was given by Zhao, Liu and Liu (2019). In our algorithm
let us define

EALIEmY 5
S ) =Py (s3)

k

which measures the actual decrease in the objective function f(x,)— f(x,,,) versus the
predicted model decrease f(x,)—#h(s,). The regularized parameter o, is updated as
follows:
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max {min{o,,||g,.|l}>&y }» if r, > 4,,
2 .
O = o gl if 4 <n <Ay, (26)

3\ — i t+ SkTgk+1 - O'SykTSk ‘ / (ykTSk )P, otherwise,

where o, =1, ¢, is the relative machine precision, 4 =10 and A, =0.5. Of course,

this is a suggestion which proved to be successful in our numerical experiments, but some
other proposals may be considered as well.

4. Strategies for search direction computation

In our algorithm, if the objective function is close to a quadratic, then a quadratic
approximation model in a two-dimensional subspace is used to generate the search
direction, otherwise a p -regularization model in a two-dimensional subspace is to be

considered. Indeed, to see how the function f(x) is close to a quadratic function on the
line segment connecting x,_, and x,, Yuan (1991) introduced the parameter

¢ _|2(ﬁc—1 _‘f}c +ggsk—1)_1
v = .

T
SeaVia

@27

On the other hand, the ratio

fk—l — fk (28)

kK~ T T
0.58; 1 V41 — &k Sk

shows the difference between the actual reduction of the function values and the predicted
reduction given by the quadratic model.

The strategy for using the quadratic approximation or the p -regularization model of the
minimizing function is as follows. If the conditions

t,<c¢ or |(9k - 1| <c, (29)

hold, where ¢, and ¢, are positives constants (¢, =10~ and ¢, =107°), then the function
f(x) might be very close to a quadratic on the line segment connecting x, , and x,. In
this case, for the search direction, the quadratic approximation model in a two-
dimensional subspace is selected, which corresponds to (15) with o, =0. Therefore, in
our algorithm the parameters g, and 7, which define the search direction d,,, are
computed as
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* 2
ui = @lareluso = yollgal | (302)

1

Ak
* 1

e = A_[(glirlyk)”gkﬂ”z _pk(ng+1Sk)} (30b)
k

where p, is computed as in (23). On the other hand, if #, > ¢, and |6, —1|>c,, then the
parameters 4, and 7, which define the search direction d,,, are computed as in (21),
where p, and o, are computed as in (23) and (26), respectively.

Of course, some other variants of the algorithm may have regard for it, where for the
computation of p, = g[HBMgk 4> (22) or (24) may be used. In our numerical

experiments, the variant proposed by Dai and Kou (2016) given by (23) proved to be the
most efficient. The other crucial ingredient of our algorithm is the computation of the
regularization parameter o,. Here, o, is computed as in (26), but some other strategies

may be implemented. For example, Cartis, Gould and Toint (2011a) proposed a
procedure for this parameter computation by analogy with the trust-region method. In
such a framework, o, could be regarded as the reciprocal of the trust-region radius.

Thus, o, is increased if insufficient decrease is obtained, but it is decreased or
unchanged otherwise. Other procedures for updating the regularization parameter o, for
minimizing the p -regularization model is discussed by Gould, Porcelli and Toint (2012).
However, finding a global minimizer of the 4, ,(.) defined by (12) may not be essential
in practice. Therefore, the global minimization problem (12) of the p -regularized
subproblem may be relaxed by letting d,,, be an approximation to such a minimizer.

5. Algorithm CUBIC

With these developments, taking into consideration the acceleration scheme (Andrei,
2006, 2009), according to the value of the parameter ,,acceleration” (true or false), the
following algorithms CUBIC and CUBICa may be presented. Clearly, CUBICa is the
accelerated version of CUBIC.

Algorithm CUBIC / CUBICa

1. | Select a starting point x, € dom f and compute: f, = f(x,) and g, = Vf(x,).
Select &, >0 sufficiently small and positive values 0< p <o <1 used in Wolfe

line search conditions. Select some positive values for: ¢;,c,,4,,4,. Set d, =—g,

and k=0

2. | Test a criterion for stopping the iterations. If the test is satisfied, then stop;
otherwise continue with step 3

3. | Using the Wolfe line search conditions (3) and (34 determine the stepsize «,.
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Update the variables x,,, = x, + o, d,. Compute f,,,, g, and s, =x,,, — X,
Vi = 81 ~ 8k

4. | If acceleration equal true, then
a) Compute: z=x, +a,d,, g . =Vf(z) and y, =g, — g.

b) Compute: a, =a,g,d, ,and b, =—a, y,d,
¢) If |p|>¢,, then compute & =—a, /b, and update the variables as
X, =x,+&ad,. Compute f,,, and g,,,. Compute s, =x,,, —x, and

Vi = 8ka — 8k

5. |If t, >¢, and |«9k —1| >¢,, then compute z, and J, by (19) and (20) respectively.
The search direction is computed as d,,, = 1, g;., + 7,5, where the parameters
and 77, are computed as in (21), with p, and o, are computed as in (23) and (26),
respectively

6. |If t,<¢ or |6k —1|Scz, then the search direction is computed as
dioy = Qe + 1,5, where the parameters x, and 7, are computed as in (30),

with p, computed as in (23)

7. | Restart criterion. If ‘g,fﬂgk‘ > 0.2||gk+1||2 thenset d,,, =—g,,,

8. | Consider k =k +1 and go to step 2 .

This is a variant of the subspace minimization conjugate gradient algorithm based on the
cubic regularization model of the unconstrained optimization problem. Some other
variants may be generated by selecting different procedures for p, and o, computation,

as well as for the restarting criterion.

6. Convergence analysis
Assume that:

(i) The level set S={xell": f(x)< f(x,)} is bounded, i.e. there exists a
constant B >0 so that ||x|| <B forall x in the level set.
(ii) In some neighborhood N of the level set, f is continuously differentiable

and its gradient is Lipschitz continuous, i.e. there exists a constant L>0 so
that

||g(x) —g(y)” < L||x—y , forall x,yeN.
Suppose that the search direction d,,, in the CUBIC algorithm is calculated under the
following conditions

<& €2))
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where & and & are positive constants (& =107, & =10°). For general nonlinear

functions, if (31) holds, then the condition number of the Hessian of the minimizing
function might not be very large. In this case, both the quadratic and the p -regularization

models may be used.

Proposition 6.1 Under the conditions (31) the search direction d, ., = g, +1,5,
where the parameters u, and 1, are computed as in (21), with p, and o, computed as
in (23) and (26) respectively,  satisfies 'the sufficient descent condition

_ 2 24 x5
il <—C || Zrall » Where ¢ is a positive constant.

Proof Since o, >0 and z >0, it follows that &, < 1. Therefore,

4 T r 2
AT S_kg;l” (S/cTJ’k)_z(g/ZJrlyk)ngr—lSkz*-Pk [—gk+lsgj .
k ||gk+1" ||gk+l||

Denote the term in the square brackets of the above inequality by y, and consider it as a
function of the variable g, s, / ||gk +1||2~ Now, taking minimization of y, it follows that

%= A,/ p,. Therefore, from (23) and since s; y, / || yk||2 > &, it follows that

2

B

2 _
g£+ldk+l < _p—k 3 ”yk”z ||gk+1||2 < _3_§2||gk+1"2 =-¢ "g/m

where ¢ =2/(3¢)). ¢

Proposition 6.2 Under the conditions (31) the search direction d,., = p, g1 + NSk

where the parameters u, and n, are computed as in (21), with p, and o, computed as

in (23) and (26) respectively, satisfies ||d k+1|| < 5“ Zrall, where ¢ is a positive constant.

Proof Firstly, from (31) and (23) the following lower bound of A, is obtained

_ (gZ+1yk)2 J
(SkTyk)

Ay =py (S/CT)’/()— (ng+1)’k )2 = (SkTJ’k)(Pk

T 2 2
1
>4 ”Sk "2 (pk - MJ 2 551 ||Sk||2 [J;k " ||gk+1||2 . (32)

(Slz-yk) k Yk




Conjugate Gradient with Subspace Minimization Based on Cubic
Regularization Model of the Minimizing Function 39

From the triangle inequality, the Cauchy-Schwarz inequality, (23), (32) and since 6, <1
it follows that

||dk+1 " = ||ﬂkgk+1 + Uksk”

1
< A_ ((ngHyk )(ngﬂsk) - (SkTyk ) ”ng ”2 )81 ((ngnyk ) ||gk+1 "2 o (ngnSk ))Si
k
1
< A_[ (ng+1J/k )(ng+1sk) - (SkTJ’k)||gk+1 ”2 ||gk+1 ” + ‘(ngHyk)”ng "2 — P (ng+1Sk )“|Sk "}
k
E [ s
<=3 llsell+ o
Ak k k k ||g'k+1 "2
2|8k (Sl{yk)|: ”Sk"2
<——= = 3+ o
S ”Sk”2 "J’k”2 e i ||gk+1||2
6(siv) . 3 }
< gl =il =,
| “”L:l||sknnyk|| :

Now, from the Cauchy-Schwarz inequality it follows that

b

N

~Jgl= 2l
S
where ¢ =9/¢&, is a positive constant. ¢

Theorem 6.1 Suppose that the assumption (i) and (ii) hold. If the sequence {x,} is
generated by the algorithm CUBIC, then
liminf g, | = 0.
k—o0

Proof Firstly, observe that under the assumption (i) and (ii) from (4) it follows that

T
—olg d
k ZI_GM.
Lo ]dy]
Now, from (3),
1- Td. )
S S —pﬂw

Lo faf

From Propositions 6.1 and 6.2, it follows that
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(1-o)c?

L&

fk+] < fk —-p ”gk ”2 :

Denote @ = p(1-0c)c* /(Lé*). Therefore,

fon < fi—olg ]’

By summing this expression over all indices less than or equal to %, it follows that

k
fea<fo-oY gl (33)
=0

Since f is bounded from below, it results that f;— f,., is less than some positive
constant for all k. Hence, by taking limits in (33) we get

= 2
Z”gk” <0,
k=0

which concludes the proof. .

7. Numerical results

This section presents the performances of CUBIC (accelerated) for solving 800
unconstrained optimization problems (Andrei, 2018), with the number of variables
n =1000,2000,...,10000, as well as for solving five applications from MINPACK?2

collection (Averik, Carter, Moré, & Xue, 1992) each of them with 40,000 variables. The
algorithms compared in these numerical experiments find local solutions. Therefore, the

comparisons of the algorithms are given in the following context. Let f,**“' and f/"*“*
be the optimal value found by ALG1 and ALG2 for problem i =1,...,800, respectively.
We say that, in the particular problem i, the performance of ALG1 was better than the
performance of ALG2 if

|fl_ALGI _fiALGz| <1073 (34)
and if the number of iterations (#iter), or the number of function-gradient evaluations

(#fg), or the CPU time of ALG1 was less than the number of iterations, or the number of
function-gradient evaluations, or the CPU time corresponding to ALG2, respectively.

The iterations are stopped if the inequality ||gk ||w <107 is satisfied, where ||||m is the
maximum absolute component of a vector. All algorithms implement the standard Wolfe
line search (3) and (4), where p=0.0001 and o =0.8. The maximum number of
iterations was limited to 2000.
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Figure 1 shows the Dolan and Moré¢ performance profiles of CUBIC versus CG-
DESCENT (Hager, & Zhang, 2005), DESCON (Andrei, 2023), CONMIN (Shanno,

1983) and LBFGS (m=5) (Liu, & Nocedal, 1989)

095}
09}
09t
DESCON
08
085}
5| / CUBIC CG-DESCENT = i o orl CUBIC DESCON =
3 #iter 582 64 123 i #ter 171 251 368
| #g 395 350 24 i #g 298 250 242
g 1) cpu 274 245 250 Tl cpu 50 435 305
]
07! B
1]
0.65 1 02
.| r = = 1
CPU time metric, 769 problems CPU time metric, 790 problems
2 : 6 8 10 12 14 16 04— 1 8 2 10 12 16
T E
P
" LBFGS (m=5)
I
i
I
I
]
i
S P CUBIC CONMIN = CUBIC LBFGS =
] #iter 306 194 139 #iter 605 64 48
o7} #fg 130 489 20 / #fg 176 516 25
o cpu 296 129 214 osl /[ cpu 424 127 166
6o ¢
! !
06 H
i 05}
B CPU time metric, 639 problems ’,' CPU time metric, 717 problems
8 10 12 i i 04— : 5 e 10 12 14 16
T

05 .
2 4

Fig. 1. Performance profiles of CUBIC versus CG-DESCENT, DESCON, CONMIN and LBFGS.

From Figure 1 CUBIC proves to be more efficient and more robust than CG-DESCENT,
CONMIN. Note that all these algorithms implement the standard Wolfe line search (3)

and (4) with the same values of the parameters p and o.

Table 1 contains the performances of CUBIC and of CG-DESCENT for solving the

applications from MINPACK-2, where each application has 40,000 variables, where #iter
is the number of iterations, #fg is the number of functions evaluations and cpu is the CPU

computing time to get the solution.
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Table 1 Performances of CUBIC and CG-DESCENT for solving
five applications from the MINPACK-2 collection

CUBIC CG-DESCENT

#iter #fg cpu #iter #fg cpu

Al 241 510 3.16 323 647 9.67
A2 555 1145 8.11 788 1577 31.35
A3 1021 2070 24.39 1043 2088 64.96
A4 299 632 17.92 435 871 81.40
A5 284 588 5.23 286 573 9.89
Total 2400 4945 58.81 2875 5756 197.27

From Table 1 we see that CUBIC is 3.35 times faster than CG-DESCENT.

8. Conclusion
The p—regularization method is to construct and minimize a local quadratic

approximation of the minimizing function with a weighted regularization  term

(03 / P[]
paper we develop a variant of the conjugate gradient algorithm with subspace
minimization based on the regularization model. In this algorithm the search direction is a
linear combination of the steepest descent direction and the previous search direction. If
the minimizing function is close to a quadratic, then a quadratic approximation model in a
two-dimensional subspace is minimized to generate the search direction, otherwise a p -

", p>2. The most used is p=3, known as cubic regularization. In this

regularization model is minimized. This strategy proved to be very advantageous for
enhancing the curvature properties of the minimizing functions. In mild conditions it is
shown that the search directions generated by the algorithm satisfy the sufficient descent
condition, and the search directions are bounded in norm. Numerical experiments with
800 large scale unconstrained optimization test functions with the number of variables in
the range [1000 - 10,000] and with five applications from MINPACK-2 collection, each
of them with 40,000 variables prove that CUBIC is more efficient and more robust versus
known algorithms like CG-DESCENT, CONMIN and L-BFGS.
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