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FIRST ORDER STEP RESPONSE IDENTIFICATION FROM 

NOISY DATA 

Dan STEFANOIU1, Nicolai CHRISTOV2, Vasilica VOINEA1 

Abstract. In the real world, systems and signals are affected by stochastic perturbations 

briefly referred to as „noises”. Such noises can be generated by unknown sources located 

either inside or outside of a system and usually corrupt in unknown way the acquired 

data the system can provide. Depending on the noises power in the acquired data, some 

characteristics of the system under study can or cannot be determined. This article 

introduces a method to identify optimal smooth step response, of first order, from noisy 

data, by means of Newton-Raphson method employed to minimize a quadratic criterion. 

Simulations with real world data prove the method effectiveness. 
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1. Introduction and problem statement 

Automatic Control is a scientific and engineering field that strongly relies on 

Systems Theory [7], [3], [6], System Identification [8], [4] and Optimization 

Theory [1], [9], as main pillars. Since its inception, despite the very complex 

theoretical approach that the above-mentioned theories have reached, a 

humongous number of automatic control applications were developed. Usual 

practitioners are mostly interested in applying rather simple theoretical results to 

real world systems. Nevertheless, lately, in some applications, there is an 

increasing interest of filling the gap between advanced (often complex) theoretical 

results and numerical procedures that can be implemented on their basis. For 

example, in Industrial Automation field [5], very seldom controllers outside the 

PID class are accepted, whilst, in Aerospace Industry [2], optimal state space 

controllers are already implemented, although their complexity is sensibly higher. 

This article tries to answer a question of interest for many Automatic Control 

practitioners, namely: how to extract some characteristics of a dynamic system 

from real world, by using acquired data the system can provide? At a first sight, 

the problem related to this question should not be so difficult to solve. 

Nevertheless, complications arise because the signals of real world are corrupted 

by stochastic perturbations, also referred to as noises. Unfortunately, in most 

cases, one cannot know what the noise sources are, whether they are located 
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inside or outside the system under study and how the noises are mixed with the 

signals to acquire. Or, especially in Systems Theory, many theoretical results are 

concerned with dynamical entities that evolve in a clean environment, either noise 

free or with very small influence of noises. Albert Einstein expressed long time 

ago a sad thought: “It always distresses me to see how a beautiful theory is 

destroyed by an ugly reality…”. Hopefully, although not perfect, there are 

scientific tools allowing the user to draw some line between the useful 

information the acquired data encode and the parasite information induced by 

noises in the data. 

In this article, only a small part of the general problem stated above is 

approached. Expressis verbis, one seeks to build a smooth first order step response 

from a dataset corrupted by noises. Such a response is displayed in Figure 1 and 

exhibits the variation of air flow temperature acquired at the output of a 

climatizer. As one can easily notice, this response suggests that, maybe, the 

climatizer can be modelled as a first order system that responded to some step 

input signal. However, the theoretical (smooth) first order step response is not 

easy to draw empirically. 

Figure 1. Noisy temperature data acquired from a climatizer output 

The smooth step response could help the user to extract some practical features 

of the dynamical system that yielded acquiring the dataset. More specifically, 

from such a response, one can estimate the intrinsic delay  , the time constant T , 

the DC gain K and the initial offset y , as shown in Figure 2. Subsequently, the 

4 parameters can help the user to tune an appropriate or optimal controller for the 

climatizer (e.g. of PID type, by using Broida method [10]). 

To determine the best step response for a given dataset, an optimization 

criterion is needed. In this case, the usual quadratic criterion can be employed. Its 

minimization can be performed by means of various exact optimization 

techniques [1]. 
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Figure 2. Theoretical first order step response and its main parameters 

Such a technique is the Newton-Raphson’s (N-R) one, due to the possibility to 

compute not only the gradient (or the first derivative) of quadratic criterion, but 

also its Hessian matrix (or the second derivative). 

The article is structured as follows. The next section is devoted to 

mathematical formulation of optimization problems to solve. In section 3, one 

shows how the optimal solution can theoretically be obtained, by means of N-R 

numerical procedure. Some simulation results on real world data are presented 

and analyzed in Section 4. The article completes with concluding remarks and a 

references list. 

2. Optimization problems to solve 

One starts with the mathematical expression of smooth (noise free) first order 

step response, in continuous time: 
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where the shape is uniquely determined by 4 parameters: 0   (the intrinsic 
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Then, the following quadratic criterion can be employed to determine the best 

fitting step response to the dataset 
N

D : 
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It follows that the optimization problem can be formulated as follows: 

( )
0, 0, ,

ˆ ˆˆ, , , argmin ( , , , )
N

T K y

T K y T K y
    

  =  V . (4) 

In general, the solution of problem (4) can be found by solving the null 

gradient equation: 
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V  is obtained when both sums of quadratic errors are 
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Thus, the optimum initial offset is: 
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once the optimum intrinsic delay ̂ has been found. This corresponds well to the 

image in Figure 2. 

The other optimum parameters are solutions of the compatible system below, 

obtained from (5): 
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Since the system (8) is nonlinear, the optimal solution is not easy to compute. 

Therefore, it is suitable to simplify the approach and to search for a sub-optimal 

solution, with acceptable accuracy. 

This allows splitting the optimization problem in two sub-problems, by 

grouping the unknown parameters in two couples:  ,K y  on one side and 

 ,T  on the other side. Two new quadratic criteria can now be defined. The 
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equations of system (8) suggest that, to simplify the solving procedure of 

optimization problems, the following notations should be employed: 

e (0,1)
sT

T
−

 =   and e 1T



 =  . (9) 

Then, the new optimization criteria are: 
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In definition (10), one considers that the couple  ˆˆ,T  is already estimated, 

which allows computing ̂ and ̂ according to notations (9). Also, the discrete 

time delay is 
ˆ

ˆ /
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=    . Similarly, in definition (11), the DC gain K̂ is 

known. In both criteria, the offset y is computed by means of equation (7). In 

criterion (11), the delay  will be estimated recursively, so that y can always 

be computed from the delay value available at previous iteration. 

The criterion (10) can equivalently be expressed by performing the following 

index changing: 
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Moreover, equation (12) reveals that, instead of using the truncated data 
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which simplifies its definition. The new definition, (14), involves that two 

preliminary operations have to be applied on the genuine dataset: (a) remove the 

subset located into the delay zone delimited by 
ˆ

n

; (b) shift the remaining data by 

the offset y , as illustrated in Figure 3. 
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Figure 3. Preliminary operations to apply on dataset for the quadratic criterion (10) 

In case of criterion (11), the approach is similar. By performing the index 

changing n n n


 − , a new expression is obtained: 
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According to (15), the modified data set is: 
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where N N n
 = −  is the variable number of data to work with. Practically, the 

operations to apply on the genuine dataset are almost the same as pointed in 

Figure 3. One difference is that, here, the data are shifted by the sum ˆy K +  

(instead of y ), which enforces the steady-state part to vary around the time axis 

(provided the offset and the DC gain were correctly estimated). Another 

difference is given by the delay  , which, here, is unknown. 

From equation (15), one obtains: 
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The final expression in (17) allows making the difference between two cases: 

0n

=  and 0n
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 . If no intrinsic delay exists ( 0 = ), then the first term of final 
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not depend on  variable (as 
0

e 1T = = ). Otherwise ( 0  ), the full sum in 

(17) can be employed (as 0 1
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3. Solving the optimization problems 

Like in case of overall criterion (3), to solve the optimization problems (18) 

and (19), the gradients of criteria (14) and (17) need to be computed in the first 

place. Then, the solutions result by solving the equations obtained when enforcing 

the gradients to null values. 

After some simple algebraic manipulations, the equations to solve are: 
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Note that, in no delay case, since the criterion (17) only depends on  variable, 

the system (21)-(22) is replaced by the first equation of (22). 

Focus first on equation (20), which directly gives: 
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To yield efficient implementation of solution (23), the sums of geometric series in 

denominator can be computed in advance. Thus: 

( )
ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

1 1 12
22 2

ˆ
0 0 0

2

22

ˆ 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 2

ˆ ˆ1 1ˆ ˆ ˆ ˆ2
ˆ ˆ1 1

N N N

n n n nn n

n n n

N N

n n

N

N

  

  

 

 

− − −

+


= = =



−  = −   +    =

 −  −
= −  +   =

 −  −

  



58 Dan STEFANOIU, Nicolai CHRISTOV, Vasilica VOINEA 
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Approach now the system (21)-(22). 
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The sum in the right side of equation (25) can be computed by using 

geometric series. Hence: 
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By inserting (26) in (25), the equation to solve becomes: 
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b. If 0  , the product K̂ can be expressed from (21) and second equation 
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Equation (28) can be transformed by means of geometric series (see 

property (26) as well): 
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None of equations (27) or (29) can be solved in closed form, as the unknown 

variable  cannot be extracted from the sums with terms including data samples. 

Therefore, the N-R procedure can be employed to approximate both solutions. 

Recall that the N-R procedure operates with gradients and Hessian matrices of 

a cost function. In case of equations (27) or (29), the corresponding cost function 

only depends on scalar  . The first two derivatives of cost function are sufficient 

to run the procedure, without actually knowing the cost function itself. 

Fortunately, each equation leads to the definition of cost function first derivative. 

More specifically: 
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for any 0  . 

From (30) and (31), the second derivatives can be computed straightforwardly: 

a. if 0 = , then: 

( ) ( )

( )

1 1
2

2 1 2 2

0
1 2

2 2 2

( ) 2 1 1 ( 1)

ˆ 1 (2 1) (2 1) 1 ;

N N
n n

n n
n n

N N

f n y n n y

K N N N N

− −

− −

= =

−

  =   −  +  − −  +

+ − +  − −  +  

 
(32) 

b. otherwise: 

( )

( )( )

1

2 2 2 1

, ,
1

1

22 2

, ,
2

ˆ( ) 3 3

ˆ1 1 ( 1)

N

N N n

K n
n

N

N n

K n
n

f N N n y

n n y



 





−

− −

   
=

−

−


=

  =  +  −  −  +  

+  −  − −  −





( )( ) ( )
1

2 2 2

, ,0

ˆ1 2 1 2 1 .
N

N n

K n
n

N N N N y




−

−

    
=

− − +  − −     (33) 
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Using the N-R procedure is quite easy in case of null intrinsic delay. However, 

if 0  , the main problem is the dependency of both derivatives on that delay. 

Therefore, to allow implementation of N-R procedure, the following strategy 

could be adopted. 

A. If the initial time delay is null, then only equations (30), (32) and (23)-(24) 

can be employed. In this case, n


always is null and only parameters 

{ , }K T can be estimated. 

B. If the initial time delay is non null: 

1. Use the (initial) value of ˆ 0  to find the (first) value ̂ , by means of 

N-R procedure (equations (31) and (33)). 

2. With ̂ , the parameter  can be estimated by using equation (21): 

( )

( )

1 1

2

, , , ,
0 0

1
2

2

0

ˆ ˆ ˆˆ ˆ11ˆ
ˆˆ ˆ ˆˆˆ 1

N N

n n

K n K n
n n

Nn n N
n

n

y y

K K

 


  

− −

 
= =

−

=

 −  
 = − =

   −

 


. (34) 

3. From ̂ and ̂ , the delay can be estimated with equations (9): 

ˆ
ˆlog

s
T

T = −


 ˆˆˆ logT =  . (35) 

4. Estimate the initial offset y by means of equation (7). 

5. Use equation (23) to estimate the DC gain, K̂ . 

6. Repeat steps 1-5 with until the accuracy condition is met. 

The model performance can be assessed by means of criterion (3) or, even 

better, by means of signal-to-noise ratio (SNR), computed with the help of 

criterion (3): 

( )
( )

( )

1
2

0

dB

1

ˆ ˆˆSNR , , ,
1 ˆ ˆˆ, , ,

N

n
n

N

y y
NT K y

T K y
N

−

=

−
  =

 



V

. (36) 

In definition (36), y is the noisy data average. Also, the SNR is expressed in 

decibels (dB). (Recall that 
dB

20log( )a a= .) Thus, the SNR is the ratio between 

the standard deviation of data and standard deviation of modeling error. The 

higher the SNR, the better the model. 

The algorithm to solve the optimization problems is listed next. 
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Algorithm to find optimal step response, based on Newton-Raphson procedure 

➢ Inputs: 

• A noisy dataset:  
0, 1N n n N

y
 −

=D , with N  . 

• Sampling period: 0
s

T  (unit, if unknown). 

• Initial values of parameters: 
0

K , 
0

T , 
0
 . 

• Accuracy threshold:  (equal to 
310−
, by default). 

❖ Initialization 

▪ Compute the discrete-time delay 
0 0

/
s

n T=    . 

▪ Compute ( )0 0
exp /

s
T T = − . 

▪ Set the initial variable step in N-R procedure: 
0

1 = . 

▪ If 
0

0 = (
0

0n = ): 

̶ set ˆ 0 = and 0y = , as they cannot be estimated, in this case; 

̶ compute ( )0 0
f    with (30) and ( )0 0

f    with (32), for 
0

K̂ K= ; 

̶ estimate the first correction: 
( )
( )

0 0

0

0 0

f

f

 
 = −

 
. 

▪ Otherwise (
0

0 
0

0n  ): 

̶ compute 
0 0

N N n= −  and 
0 1

0
0

0

1 n

n
n

y y
n

−

=

 =  ; 

̶ extract the data beyond 
0

n : 
00, 0 0n n n

y y y K
+

= −  − , 
0

0, 1n N  − ; 

̶ compute ( )0
f

   with (31) and ( )0

f

   with (33) for 

0
N N


=  and 

, , 0,
ˆ

K n n
y y


= , 
0

0, 1n N  − . 

̶ estimate the first correction: 
( )
( )

0

0

0

f

f





 
 = −

 
. 

▪ Set the initial number of iterations: 0k =  

 If 
0

0 = , do: 

1. Approach the optimum: 
1k k k k+

 =  +  . 

2. Update the DC gain 
1k

K
+

 with (23)-(24), for 
1

ˆ
k+

 =  . (Note that, in this 

case, 1 =  and 
ˆ

N N

= .) 
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3. Compute ( )0 1k
f

+
  with (30) and ( )0 1k

f
+

  with (32). (Note that, in this 

case, 
1

ˆ
k

K K
+

= .) 

4. Update the correction: 
( )
( )

0 1

1

0 1

k

k

k

f

f

+

+

+

 
 = −

 
. 

5. Update the variable step: 1

1

k

k k

k

+

+


 =  +


. 

6. Increment the number of iterations: 1k k + . 

 until 
k

   . 

 If 
0

0  , do: 

1. Approach the optimum: 
1k k k k+

 =  +  . 

2. Compute 
1k+

 with (34), for 
1

ˆ
k+

 =  . (Note that, in this case, ˆ
k

K K= , 

k
n n

= and 

, , ,
ˆ

K n k n
y y


= , 
0

0, 1n N  − .) 

3. Update 
1 1

/ log
k s k

T T
+ +
= −   and 

1 1 1
log

k k k
T

+ + +
 =  . 

4. Update: 
1 1

/
k k s

n T
+ +
=     and 

1 1k k
N N n

+ +
= − . 

5. Update the initial offset: 
1 1

1
0

1

1 kn

k n
n

k

y y
n

+ −

+
=

+

 =  . 

6. Extract the data beyond 
1k

n
+

: 

11, 1kk n n n k k
y y y K

++ + +
= −  − , 

1
0, 1

k
n N

+
  − . 

7. Update the DC gain 
1k

K
+

with (23)-(24), for 
1

ˆ
k+

 =  , 
1k+

 =   and 

ˆ 1k
N N

 +
= . 

8. Compute ( )1k
f
 +
   with (31) and ( )1k

f
 +
   with (33). (Note that, in this 

case, 
1k

N N
 +
=  and 

, , 1,
ˆ

K n k n
y y
 +

= , 
0

0, 1n N  − .) 

9. Update the correction: 
( )
( )

1

1

1

k

k

k

f

f

 +

+

 +

 
 = −

 
. 

10. Update the variable step: 1

1

k

k k

k

+

+


 =  +


. 

11. Increment the number of iterations: 1k k + . 

 until 
k

   . 
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❖ Final computations 

▪ Set: ˆ
k

K K= , ˆ
k

T T= . 

▪ If 
0

0  , set: ˆ
k

 =  , 
k

y y =  . 

▪ Compute the optimal step response ŷ with (1) and (2), by using the 

sampling period 
s

T beyond ˆ /
s

T   . 

▪ Estimate the step response performance by computing ( )ˆ ˆˆSNR , , ,T K y   

with (36). 

 Outputs: 

• Optimal values of parameters: K̂ , T̂ , ̂ , y . 

•Optimal step response, sampled with
s

T :  
0, 1

ˆˆ
N n n N

y
 −

=D , with same

length as the initial dataset ( N ). 

• Step response performance: ( )ˆ ˆˆSNR , , ,T K y   (in dB). 

• Number of iterations to meet the accuracy condition: k . 

4. Simulation results and discussion 

As already mentioned in Introduction, the dataset to test was acquired at the 

output of a climatizer mounted in a large room, with many sources of noises (such 

as doors and windows that are opened and closed very frequently). The 

temperature of airflow was measured and recorded with the sampling period 

1 min
s

T = . The number of samples is 10041N =  (quite big). Figure 1 displays 

the variation of temperature. One can notice the noises are quite powerful, so that 

it is difficult to manually draw a fitted step response. 

The algorithm above has been implemented into MATLAB
TM programming 

environment. The procedure was initiated to run with the initialization below: 
o

0
1 CK = , 

0
430 minT = , 

0
1000 min = , 

310− = , (37) 

which has been empirically obtained, like in Figure 3, after visually inspecting the 

variation in Figure 1. The optimization results are illustrated in Figure 2, where 

the optimal parameters are: 

oˆ 1.043 CK  , ˆ 404.5 minT  , ˆ 1367.7 min  , 
o21.89 Cy  . (38) 

Moreover, the steady-state temperature can also be estimated: 

oˆ 22.93 CK y+    (39) 
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Apparently, the climatizer tries to keep the room temperature as close as possible 

to the value of 
o23 C . 

The performance of N-R procedure is revealed not only by the small number of 

iterations until the optimal values were found, 12k = , but also by the search 

duration, 0.32 sT   (as obtained on a personal computer from i7 family, of 

10-th generation, with 8 parallel processors). 

The performance of optimal step response is given by: 

( )ˆ ˆˆSNR , , , 12.987dBT K y   . (40) 

The main limitation of the algorithm above is its sensitivity to initialization. 

The simulations revealed that the procedure is the most sensitive to small 

variations of initial DC gain values. For example, if the initial DC gain decreases 

to 
o

0 0.9 CK =  (with 
o0.1 C  only), while keeping the other initial values, the 

sub-optimal result of Figure 4 is obtained. Comparing to the optimal result in 

Figure 2, this step response has smaller performance, which can be observed 

easily. 

Figure 4. Sub-optimal step response, obtained after decreasing the initial DC gain by 0.1oC. 

Moreover, the SNR decrease confirms the visual observation: 

( )ˆ ˆˆSNR , , , 7.11dBT K y   . (41) 

The performance deteriorated with more than 45%, although the initial value of 

DC gain decreased by 10% only. So, it is important to correctly set the initial 

values of parameters. To this respect, as a future development, one can use a 

metaheuristic approach [9] to solve the following optimization problem: what 

initialization leads to the highest SNR? 

When looking back at the variation of temperature, even more closely, one 

realizes that, beside the first jump of about 1oC, in the steady-state zone, the 
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internal regulator of climatizer seems to be a rudimentary one, working in steps. 

Thus, the temperature variation includes several small successive step responses, 

as reaction to that regulator. Then, the optimization algorithm can be employed to 

build the noise free response of climatizer, under the control of regulator. 

Evidently, this attempt involves building a set of local initializations, one for each 

zone where a small step response seems to exist. Although this activity could be 

tedious, if the initializations are realistic, the reward is guaranteed. 

After running the algorithm for each possible local step response, the result is 

displayed in Figure 5. 

Figure 5. Optimal step responses, obtained after running the N-R procedure on each local variation 

zone of temperature. 

The smooth variation shows that the climatizer has different parameters of step 

response, depending on the height of reference step (or the setpoint) to follow. 

This behavior was expected, as the static characteristic of such a climatizer is 

nonlinear and exhibits hysteresis phenomenon. Hence, changing from a nominal 

point to another, on the static characteristic, automatically involves changing the 

parameters of step response (especially of time constant). For the multiple step 

responses in Figure 5, denoted by y , the performance is: 

( )SNR 20.54dBy  . (42) 

There is no wonder the SNR has sensibly increased, comparing to single step 

response case, as the multiple step responses curve better fits the dataset. 

Concluding remarks 

This article approached the problem of optimal first order step responses 

estimation by using noisy datasets. The proposed method to solve the problem 

relies on quadratic criteria and Newton-Raphson procedure. The simulation results 

have proven both the method effectiveness and its main limitation, namely the 
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high sensitivity to initialization of some parameters (especially of DC gain). This 

drawback suggests using a metaheuristic to find the initialization that maximizes 

the SNR. Another possible future development is to design a method allowing the 

user to find the optimal second order step response from noisy data. It is well 

known that smooth first and second order step responses are extremely useful in 

Systems Theory and Industrial Automation. 
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