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VARIATIONAL PDE-BASED MODELS FOR IMAGE 

FILTERING AND INPAINTING 

Tudor BARBU1,2 

Abstract. This work represents a survey of the main image denoising and inpainting techniques 

based on variational (enery-based) schemes that lead to nonlinear partial differential equation 

(PDE) –based filtering models. The variational denoising and restoration approaches are described 

first. Then, the energy-based structural image reconstruction models are surveyed here. Some of our 

own variational techniques proposed in these closely related image processing and analysis 

domains, will be also briefly described in this article. 

Keywords: image denoising and restoration, nonlinear PDE-based model, variational technique, 

structural inpainting, numerical approximation algorithm. 

 

1. Introduction  

Image noise removal and inpainting represent important and still-challenging 

image processing fields that are also closely related. An overview on these 

domains is provided in this research work. 

The image denoising and restoration represents the process of eliminating the 

electronic noise, which is a random variation of color information or brightness, 

from the 2D image signal [1]. There exist many types of image noise, the most 

popular of them being the 2D additive white Gaussian noise (AWGN), which 

represents a statistical noise having a PDF equal to that of the normal distribution 

and its major source arises during the acquisition and transmission processes. 

Finding an effective noise reduction method still constitues a challenge in the 

image processing area. Such a filtering scheme has to optimize the trade-off 

between noise removal, detail preservation and avoiding undesired effects, like 

blurring or staircasing.  

The classic denoising models, such as 2D Gaussian or Averaging filters, generate 

the blurring that corrupts the edges, corners and other features [1]. Therefore, the 

partial differential equation (PDE) - based filtering algorithms were introduced to 

solve properly this issue. The nonlinear PDE-based techniques have proved to be 

a great solution for this filtering task, providing effective detail-preserving 

restorations [2, 3]. They perform a directional diffusion that is degenerate along 

the gradient direction and has a smoothing effect along but not across the image 

boundaries. Some of these nonlinear diffusion-based models follow variational 
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principles and can be represented in energy-based form. They are disscused in the 

next section, where some of our contributions in this area are also described.  

The image interpolation (inpainting) aims to reconstruct the missing or highly 

damaged image regions as plausibly as possible, using the information extracted 

from the surrounding zones. This domain has the origin in the ancient art 

restoration [4] and has many applications, like digital artwork reconstruction, 

photo/movie renovation, object removal, image super-resolution/zooming and 

image compression.  

The inpainting methods can be grouped into 3 categories: texture-based, structure-

based and combined schemes. The textural interpolation approaches are related to 

texture synthesis [5, 6], or represent exemplar-based algorithms [7]. The structural 

inpainting techniques employ information around the missing component in order 

to estimate the isophotes from coarse to fine, and diffuse that information. They 

complete the missing image region using variational and PDE-based algorithms 

[4]. The state of the art variational structural interpolation methods are presented 

in the third section. We have performed much research in the variational 

denoising and structure-based inpainting area, developing a lot of novel 

techniques [8]. Our main contributions to this research field are also described in 

these sections. This work ends with a conclusions section and the references. 

 

2. Energy-based Noise ReductionTechniques 

The PDE-based denoising models following the variational principle are obtained 

from minimizations of various energy cost functionals. Such a energy functional 

sums a regularization to a fidelity component. The generic variational (energy-

based) filtering scheme is given by minimization  )()()(min uFuRuE
u

+= , 

where E(u) is the energy functional, the regularization term ( ) = 


duuR )( ,  

  is the regularizer function, and the fidelity term ( ) −= 


duuuF
2

0
2

)(
 , 

with 0,  . 

Many such variational denoising models have been constructed in the last 30 

years. They lead to some nonlinear PDE-based models by applying the Euler-

Lagrange equation and next the steepest gradient descent method. 

An influential energy-based restoration technique is that introduced in 1992 by 

Rudin, Osher and Fetami [9]. Their Total Variation (TV) - ROF Denoising model 

that minimizes the TV norm is very effective at simultaneously preserving the 

isophotes while filtering away the additive noise in the flat image regions. It has 

the following form: 

 



 

  

 Variational PDE-based Models for Image Filtering and Inpainting 7 

 

( )
( )

2

2*
0

1
argmin

2u L

u u u u d
  

 
=  + −  

 
                         (1) 

where 0  and *u  represents the restored image. A second-order nonlinear 

PDE model is then obtained, using the Euler-Lagrange equation and gradient 

descent [9], as follows: 
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This total variation regularization technique removes properly the additive 

Gaussian noise, but it can be also adapted to other additive noise models. So, the 

TV Denoising model for the Laplacian noise is the following [10]: 

( )*
0

( )
min

u BV
u u u u d

 


=  + −                               (3) 

where ( )BV  is the bounded variation image space. The total variation-based 

filtering model for Poisson noise is the next one [11]: 
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Many well-known second-order nonlinear anisotropic diffusion-based restoration 

models can be also described in variational form. Such an influential PDE-based 

restoration technique is the anisotropic diffusion scheme of Perona and Malik 

[12], expressed as: 
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where the diffusivity (edge-stopping) function    → ,0,0:g  is monotonic 

decreasing, convergent to zero and g (0) = 1. The authors provided 2 such 

functions: ( ) ( )
( )

2

22 2
2

1
;
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s
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s

k
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= =

+

, k > 0. They also proposed a 

numerical approximation for this PDE model, based on the finite difference 

method [12]. The P-M technique produces effective additive noise reduction 

results and preserves the boundaries very well. In the last decades a lot of 

anisotropic diffusion-based filtering models following the variational principle 

have been derived from this Perona-Malik approach [2,3]. 

Although the second-order nonlinear diffusion models, in both PDE and 

variational form, provide good detail-preserving denoising and deblurring results, 

they still have their own drawbacks. Such a major shortcoming is the unintended 

staircase effect that may create flat regions separated by artifact boundaries. So, 

many variational algorithms improving the total variation regularization model 

and overcoming this undesired effect have been proposed in the last 25 years. 
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Thus, the Total Variation Denoising with Split Bregman applies the iterative Split 

Bregman algorithm for solving the TV minimization problem [13]. An improved 

variant of the TV-ROF scheme is the TV – l1 restoration model that is contrast 

invariant and able to separate the features according to their scales [14]. The 

Adaptive TV Denoising represents another improved version of the total variation 

regularizing [15]. Its regularizer component works like a total variation norm at 

the boundaries while approximating the l2 - norm in flat and ramp regions in order 

to overcome the staircase effect. Higher Degree Total Variation (HDTV) model 

proposed by Hu and Jacob [16], constitutes another variational denoising solution. 

It minimizes properly the staircasing and ringing artifacts that are quite common 

to the TV-based schemes, applying new isotropic and anisotropic high-degree TV 

regularization penalties. The Generalized Total Variation (GTV) regularization 

model for image denoising, which is a generalized pth power total variation, 

represents another improved version of TV-ROF Denoising [17]. 

Unlike the second-order PDE models, the nonlinear fourth-order PDE-based 

schemes produce piecewise planar images that look more natural and also avoid 

the staircasing. A very influential nonlinear fourth-order PDE denoising model is 

the isotropic diffusion-based algorithm of Y. -L. You and M. Kaveh [18]. Their 

L2 - curvature gradient flow method is obtained from a variational scheme 

minimizing the next energy cost functional: 

  ( ) ( )


= dxdyufuE 2
                           (6) 

where 2R  and f represents an increasing function. The following fourth-

order isotropic diffusion model is achieved after applying Euler-Lagrange 

equation and the gradient descent approach: 
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there the diffusivity function is 
2

1
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k

s
sg [18]. The You-Kaveh restoration 

method provides effective Gaussian noise filtering and avoids successfully the 

image staircasing but, unfortunately, it may also generate the multiplicative 

speckle noise. A despeckling algorithm is provided in [18] to deal with this issue. 

Another important nonlinear fourth-order PDE-based denoising technique is the 

LLT model of M. Lasaker, A. Lundervold and X. C. Tai [19]. It is obtained from 

the variational scheme: 
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scheme outperforms the You-Kaveh scheme for an appropriate choice of the   

parameter. It produces a very good feature-preserving noise reduction and 

overcomes efficiently the staircasing effect [19]. 

We also proposed many effective variational image filtering approaches that 

remove the blurring, preserve the image features and avoid the staircasing. They 

are disseminated in some of our research papers [8, 20]. Let us present here the 

variational denoising model in [20] given by: 
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where 1  and 2  represent 2 properly chosen regularizers. The next well-posed 

fourth-order PDE-based model is obtained from it:   
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finite difference-based numerical approximation scheme is constructed for this 

anisotropic diffusion model. From the performed method comparison and found 

that our nonlinear diffusion method outperforms both the conventional and PDE-

based denoising schemes. See some denoising method comparison results in 

Table 1 and Figure 1. 

Table 1. The average PSNR values for several variational and classic denoising techniques 

Method This 

model 

Perona-

Malik 1 

Perona-

Malik 2 

TV You-

Kaveh 

Gaussian Median 

PSNR 28.34(dB) 26.23(dB) 24.91(dB) 21.88(dB) 27.19(dB) 21.37(dB) 24.53(dB) 

3. Variational Structure-based Inpainting Approaches 

The variational structure-based inpainting techniques reconstruct the images 

affected by missing or highly deteriorated regions by solving the next generic 

energy functional minimization: 

( ) ( ) ( )
2

0

1
min

2
D

u
E u R u u u d



 
= + −  

 
                (11) 

where the image domain 2R , D is the inpainting domain and the inpainting 

mask is provided by 0,1 \ =   DD . 

 



 

 

10 Tudor Barbu  

 

 

 
Figure 1. Barbara image filtered by variational and non-PDE models 

                  
While the minimization of the regularizer R (u) containing some apriori 

information from the evolving image, is responsible for image filling task, fidelity 

term ( )


− duuD

2

0
2

1
  forces the minimizer to remain close enough to 0u  

outside the inpainting domain [4, 21]. So, a generic variational image 

interpolation model is quite close to the generic variational denoising scheme 

described in the previous section. Any variational restoration model can be 

adapted for the reconstruction task by applying an inpainting mask.  

Various interpolation models can be obtained by considering various regularizer 

forms. The Harmonic Inpainting is based on the regularizer ( ) 


= dxdyuuR
2

 

[4]. It represents a quite simple energy-based inpainting model that does not 

satisfy the connectivity principle, since it cannot interpolate succesfully along the 

image gaps, and also provides too smooth results. Other early variational image 

completion methods were using the Mumford-Shah image segmentation. Such an 

interpolation scheme uses the  - convergence approximation of the Mumford-

Shah functional [22] and it is expressed by the next minimization: 
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where z  represents the edge set signature function. This reconstruction approach 
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has a low computation complexity and a fast numerical convergence. It preserves 

the sharpness of the image edges very well.  

A very influential variational image reconstruction algorithm is Total Variation 

(TV) Inpainting of T. Chan and J. Shen [23], which is given by the minimization: 
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where 0  and ( )DD 11−=  . TV Inpainting fills the missing zone by 

minimizing the first-order total variation while keeping close to the observed 

image in the known regions. If a low   value is applied, then the filtering is 

directed mainly to the inpainting area. It leads to the next second-order nonlinear 

diffusion model, by using Euler-Lagrange equation and the gradient descent: 
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The model (14) inpaints successfully and achieves a good connectivity, but not for 

large image gaps. Obviously, TV Inpainting is closely related to TV Denoising, 

being obtained from it by introducing the interpolation mask. Total variation 

based inpainting models of higher orders have been also proposed in the last 

years. So, the TV2 Inpainting model is achieved using the second-order total 

variation as regularizer component: ( ) 


= dxdyuuR 2 [4]. It outperforms 

TV Inpainting and produces more natural reconstructed images. TV2 Inpainting 

provides also a better connectivity, being able to interpolate properly along large 

image gaps. The first and the second-order TV regularizations could be also 

combined in order to get improved interpolation results. Such a mixed TV + TV2 

Inpainting model inpaints the image using the minimization [24]:  
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where ( )x  and ( )x  represent 2 spatially varying functions that control the 

completion process. This combined approach outperforms both TV and TV2 

Inpainting. It fills properly large inpainting areas, overcoming the blocky effect, 

and is solved numerically via the Split Bregman algorithm [24]. Total Generalized 

Variation (TGV), which is a generalized version of the total variation model that 

involves higher-order derivatives of u, can be also applied for inpainting [25]. 

Other improved TV-based inpainting techniques are Blind Inpainting using l0 and 

TV Regularization [26] and TV Inpainting with Primal-Dual Active Set [27]. 

Another well-known higher-order variational image interpolation solution is the 

Euler’s Elastica Inpainting proposed by Chan and Shen [28]. Their reconstruction 

model uses the next regularizing function: 



 

 

12 Tudor Barbu  

 

( )  































+=

D

dxdyu
u

u
uwuR

2

)(           (16)  

where the coefficients 0,   control the behavior of this technique and w (u) 

is a weighting function depending on the image’s histogram. Euler’s Elastica 

Inpainting executes an efficient reconstruction, being able to inpaint large image 

zones and works for noisy images too [28]. It achieves a much better connectivity 

than TV Inpainting and other TV-based methods. 

Several inpainting examples illustrating the connectivity power of various 

variational schemes are displayed in Figure 2.  
                

 
 

Figure 2. Comparing the connectivity of several variational completion schemes 
 

We proposed many variational structural inpainting techniques in our past 

research papers [8, 29]. The variational approach in [29] recoveres the affected 

image applying the minimization )(minarg uFu
u

opt = , where 
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where the inpainting domain   and the regularizer function has the form 
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where ( )1,0,  , ( 1,0,,,   and  )5,1 . It leads to the 

following well-posed nonlinear anisotropic diffusion-based model: 
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. Its weak solution representing the 

interpolation output is determined numerically using a consistent fast-converging 

finite difference method based approximation scheme [30]. This method produces 

a very good image inpainting in both normal and noisy conditions, preserving the 

boundaries and other features, and avoiding the unintended effects. The method 

comparison results are described in Table 2 and Figure 3. 

 Table 2. The PSNR values obtained by some state of the art inpainting methods 

 

4. Conclusions 

An overview of the energy-based image denoising and structural inpainting, 

which represent two closely related research fields, have been presented in this 

paper. The two image processing domains are based on generic energy functional 

cost minimization procedures that are closely related, since the variational 

restoration models can be adapted for interpolation by introducing an inpainting 

mask. The described variational denoising and inpainting models lead to some 

second and fourth-order nonlinear diffusion model that can be solved numerically 

by applying some iterative numerical approximation algorithms. Many restoration 

Method Our model Navier-Stokes 

Inpainting [31] 

Kriging 

Interpolation [32] 

TV Inpainting TV Inpainting with 

PDAS 

PSNR 33.14 (dB) 26.42 (dB) 30.38 (dB) 32.85 (dB) 33.96 (dB) 
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and inpainting techniques surveyed here are using total variation regularizations 

of first and higher orders. These schemes provide effective feature-preserving 

noise removal and inpainting results and overcome the undesirable image effects.  

Some of our own contributions in these areas have been also described. Our 

variational techniques achieve satisfactory denoising and reconstruction results, 

overcome properly the unintended effects and outperform many well-known PDE 

and non-PDE restoration and interpolation schemes. They could be further applied 

in other image analysis fields approached by us, such as object detection and 

recognition [33-35]. Unfortunately, our variational models perform structure-

based interpolation only, not working properly for textures. So, the textural 

inpainting will represent the focus of our future research. 
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