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Abstract. A new form of the set of two equation applied to the test beam structure 

fabricated during the micromachining technology suitable to easy extract the material 

parameters in order to optimize the diffusion process and obtain a linear response of the 

polysilicon microelements like membranes for the silicon capacitive pressure sensors is 

presented. On this basis there were deduced simulating analytical solutions to describe 

the beam deformation and the pull-in voltage as a function of the beam length and other 

geometrical parameters, allowing to optimize the pull-in voltage structure and to easily 

extract the values of the stress and the young's modulus by a fitting procedure on the 

experimental data. A graphical method to evaluate directly the induced stress and a 

combined graphical method with an iteration procedure to determine both the stress and 

young's modulus are also presented. 

Keywords: Analytical simulation; polysilicon capacitive pressure sensors for biomedical 

applications: pull-in voltage method; process-induced stress and Young's modulus. 

1. Introduction 

Surface micromachining is one of the most used technology to achieve 

microsensor structures due to the capability to develop a wide range of sensitive 

elements [1, 2]. Reliable and reproductive sensor characteristics are obtained if 

low stress polysilicon layers are prepared, especially to determine homogeneous 

material parameters and a linear characteristic of the capacitive pressure sensors, 

which is closely related to the stress induced in the polysilicon membrane by the 

technological processes: compressive stress could produce the buckling of the free 

standing micromechanical elements and the deformation of the polysilicon 

membranes, while a high tensile stress can affect the sensitivity of the capacitive 

pressure sensors [3].  

The membrane structures or suspended elements for microsystem applications can 

be obtained by bulk micromachining techniques [4, 5], where a strict control of a 

chemical etching process of the highly-doped boron layers should be applied 
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[6 - 8], or by surface micromachining technique [4, 5], where the properties of the 

micro mechanical elements should be controlled during the chemical annealing of 

the phosphorus-doped polysilicon layers, restructured during the thermo-chemical 

process.  

It is therefore of grate interest to develop suitable technical procedures for the 

material characterization, able to determine accurately, as more as possible, the 

values of the interest parameters like process induced stress σ and Young's 

modulus E into the polysilicon micromachined layers [9, 10]. The pull-in voltage 

technique [3, 9] it seems to be a very attractive one for this purpose because 

allows to determine the residual stress and the Young's modulus by using beam 

test structures submitted to the same fabrication process as the microsystem 

structures on the same silicon wafer. However, the extraction parameters appear to 

become a quite complicated procedure, necessitating multiple iterations steps to 

numerically fit the set of two equations on the experimental data. 

In this paper are presented the analytical results allowing simulating by a single 

explicit relation the dependence of the pull-in voltage on the geometrical 

parameters of the test beam, the residual stress and Young's modulus, which 

permits the extraction of the suitable material parameters by applying the standard 

fitting procedure. 

2. Problem statement and analytical solution 

Within this section will be presented the conditions of the problem, the set 

equations, and the solutions. An approximate solution will be also derived, 

suitable for some simplified, but still convenient conditions for a rapid process 

evaluation. 

2.1. A new form of set equations and analytical simulating solutions 

Let's consider the suspended rectangular beam test structure as proposed in ref. 

[3], with the geometrical dimensions defined by the length l, the thickness h of the 

rectangular beam and the height d of the cavity formed between the free standing 

position of the beam and the substrate, useful to apply the so called pull-in voltage 

method (Fig.1).  

This method consists in the application of a voltage across the structure of beam 

and the determination of the value of the voltage for which the deflection of the 

beam due to the electrostatic forces does not reach an equilibrium position, but 

will continue to increase until a physical contact is made with the bottom 

electrode substrate [3]. The critical value V is defined as the pull-in voltage.  

As component parts of the integrated structure, the beam follows the same 

technological conditions as the capacitive pressure sensor structures. 
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Two equations were obtained earlier from the condition of the pull-in voltage [3], 

i.e. both first and second derivatives of the energy function to be zero (eq. (7) and 

(8) of that reference).  

For an easier analysis of the testing results, it is proposed a new form of the set of 

two equations describing the beam pull-in voltage effect as follows: 

 σ =  γV
22

/ x(1-x)
3/2

  -  (βx
2
+α)E/2

 (1) 

 σ = 3γV
22
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where x = w/d (w representing the critical deflection of the beam), α=(π
2
 h

2
/3), 

β= (π
2
d

2
/4), γ=(εo/2π
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hd

3
), εo representing the value of the vacuum electrical 

permittivity. It is important to note that γ could be expressed as a function of 

α and β by the relation:  γ= εoπ
2
/16β(3αβ)

½
. 

 
Fig. 1. Schematic representation of the cross-section of a test structure used to apply the pull-in 

voltage method, where the geometrical parameters are defined by:  - beam length, h - beam 

thickness, d - depth of the gap cavity formed between the polysilicon layer and the surface of silicon. 

The value V is measured by the maximum voltage across the beam-substrate 

structure, before its dropping when the substrate is touched by the deflected beam. 

σ is the residual stress into the polysilicon beam, l is the free stand length of the 

beam, E is the Young's modulus. The critical position w is associated to the pull-

in voltage V, and is the deflected position when the value V is attained. 

Eliminating the parameter σ between the two equations, the following compact 

relation, suitable for the calculation of V if x is known, is deduced: 

 V2 = 4(βE/γ4)x3(1-x)5/2/(5x-2) (3) 
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Substituting the expression γV
22

/x(1-x)
3/2

 obtained from eq. (1) into eq. (2), it is 

obtained a new equation suitable to offer an explicit solutions for x as follows: 

 9x
3
 - 6x

2
 + 5Sx - 2S = 0 (4) 

where: 

 S = σ2
/βE + α/β (5) 

Relations (3) and (4) together with (5) form a set of equations allowing expressing 

the pull-in voltage V as a function of the interest material parameters, i.e. residual 

stress σ and Young's modulus E. As it can be seen, eq. (3) expresses the dependence 

of V on , as required by the experimental purpose, but also on x, a complex 

quantity depending also on  in an implicit way.  

To solve this point it is necessary to find the real solution of eq. (4), where S is 

explicitly expressed by rel. (5).  

The real solution xo of eq.(4) is expressed as xo + when S is positive (S > 0) by the 

explicit analytical relation: 

 xo + = 2/9 +(2/3(3)
⅓

 ){(S/2 + 1/9) + [ 1/3(5S/4-1/3)
3
 +(S/2+1/9)

2
 ]

½
 }

⅓
 + 

  (2/3(3)
⅓

){(S/2 + 1/9) - [1/3(5S/4-1/3)
3
 +(S/2+1/9)

2
 ]

½
 }
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 (6) 

and by xo - when S is negative, getting values into the interval [-1, 0], as follows: 

 xo - = 2/9 + (4/3(3)
½
)(5S/4+1/3)

½
cos{1/3arccos[(3)

½
(S/2+1/9)/(5S/4-1/3)

³/²
] (7) 

2.2 Simplified extraction procedure of material parameters 

The variation of S with x derived from rel. (4) is shown in Fig. 2 (marked by the 

curve (1)), defining the domain where S could get useful values able to satisfy the 

requirements of the problem.  

From this graph and also from rel. (3) it is evident that x should be different of the 

value 2/5, which is a discontinuity point, determining both V and S to show a 

asymptotic variation near this value.  

Also, although S could get negative values for x <2/5, as it can be seen from Fig. 2 

curve (1), this domain is prohibited by expression (3) of the pull-in voltage V as a 

function of x.  

In the same figure it is represented curve (2) as V = [x³(1-x)
5/2

]
1/2

, which is x-

dependent part of the pull-in voltage expression deduced from rel. (3), showing a 

rapid, nearly a linear decreasing close to the value x=2/5 and a relatively slow 

variation when x goes to null value. 
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Fig. 2. Variation of the parameter S and V as a  

function of the critical normalized depth x as defined in the inserted relations. 

This particular variation of V near the prohibited value x=2/5, which corresponds 

to S  1, allows deducing an analytical expression useful for the extraction of 

both required parameters E and σ as follows:  

 Y = (0.186/γ)(σX + αEX
2
) (8) 

where there were applied the substitutions Y=1/V
2
 and X=1/2

. Relation (8) allows 

extracting elegantly and accurately the parameters E and σ from a parabolic type 

expression. Relation (8) was deduced substituting x in eq. (4) with its value 2/5 

and deducing therefore (5x-2) = 0.384/S, which was furthermore introduced into 

expression of V given by rel. (3), where also x was substituted by its relatively 

constant value 2/5. In order to explicitly obtain the dependence of the final 

parameters in rel. (8), it was taken into account rel. (5) expressing S as a function 

of σo and E. 

According to the variation of S depicted in Fig. 2 and rel. (5), when the residual 

stress is positive, then S > 0 and decreases with the decrease of the positive value 

of σ.  

When σ starts to become negative (σ < 0), S continues to decrease. For S = 0 the 

quantity within the right brackets in rel. (6) is null and then x=2/3, corresponding 

to the situation σ2
/βE = α/β. The limitation to the value -1 of S in the negative 

variation interval (0, -1] for x > 2/3, comes from the physical limitation of x, 

which can get the maximum value 1, as it can be seen also from Fig. 2 and in 

rel. (3).  
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When S = -1, from rel. (5) can be deduced that -σ =α/β - βE/2
, showing that the 

geometrical dimensions of the beam determines the limit of the negative values of 

σ  which can be measured, i.e. small values of α/β and  and high values of β are 

favorable to measure higher negative values of stress.  

From rel. (5) it can be seen that the condition S  1 can be fulfilled generally if 

σ  0. However, for small values of the induced stress (even for σ = 0), S could 

be still sufficiently high so that an approximated expression like (8) would 

continue to work. This happens when the ratio α/β would be quite high, higher 

that a few units. In this case have to calculate the value xo from eq. (4) knowing 

that S = α/β from (5) (established by the construction) and therefore the parameter 

E and σ are to be easily extracted from the parabolic type relation, which must be 

represented as V
2
 = f(1/2

): 

 V
2
 = 4 xo (1- xo )

5/2
/3γ (2-3xo) [σ(1/2

 ) + αE (1/4
 )] (9) 

Such kind of procedure allows developing around a fixed convenient point 

xo < 2/3 an approximated solution to easily extract both interest parameters E and 

σ from a parabolic type relation described by (9). 

3. Simulation results and discussion 

From Fig. 2 it is possible to evaluate rapidly the order of magnitude of σ 

considering E known, for a test structure with a single beam (, h, d and then 

α, β, and γ are known). Indeed, from curve (2) of that figure it is obtained the 

corresponding x and by using this particular value a corresponding S and then σ 

could be obtained from the curve (1) and rel. (5). In the case when v and 

therefore S is high, it is difficult to obtain a certain value of S from this graph, but 

in this case rel. (8) could be successfully used to extract accurately the interest 

parameter σ. If the test structure consists of two beams, the same procedure will 

be performed as follows: the evaluation will be started supposing an E known in 

one equation V1=2v1[(βE)]
½
/(1

2
 (γ)

½
) derived from the definition of v and rel. (3), 

and then the set of values (E, σ) obtained from this equation and from that of 

S (rel. (5)) will be improved by iterations, checking how this set fulfils the second 

one in V and S.  

The same way could be also followed by calculations: introducing the 

experimental obtained value of V in rel. (3), the corresponding value of v is 

obtained and consequently a particular value of x, which is used to calculate a 

corresponding value of S and then of that of σ, according to the relations inserted 



Analytical Simulation of the Pull-in Voltage to Evaluate the Process Induced Stress  

and Young's Modulus into the Micromachining Polysilicon Layers 

 by the Pull-in Voltage Method 39 

 

in that figure, corroborated with rel. (5). If the test structure consists of two beams 

with different lengths, then a system of two equations obtained from rel. (3) will 

be used to adequately calculate both E and σ parameters, taking into account the 

explicit value of x from rels. (6) and (7). 

In Fig. 3 and Fig. 4 are represented the theoretical values of the pull-in voltage as 

a function of the beam lengths l for various values of σ (both positive and 

negative) as indicated in each figure, and the beam thickness as parameter 

(h = 2 μm and h = 1 μm respectively), maintaining the same the gap of the test 

structure (d = 1 μm) and the value of the Young's modulus E=1.710
11

 Pa. 

From these figures it can be seen that for a given beam length, the necessary value 

of the pull-in voltage to attain the critical conditions is lower as the stress 

decreases from positive large values (110
8
Pa) to negative stress.   

 

Fig. 3. Simulation of the pull-in voltage V as a function of the beam length  for thick beams 

(h = 2 μm), d =1 μm, E =1.7 10
11

 Pa and various positive (tensile) and negative (compressing) 

residual stress inside of the polysilicon layer, getting values on the range σ =-110
8
 Pa ÷ 110

8
 Pa. 

As it have to be expected, from these figures it can be seen also that it is necessary 

a smaller value of the pull-in voltage to attain the critical conditions as lower is 

the thickness of the beam, so that the test structures with a higher thickness will be 

useful to detect a higher value both of tensile or compressive stress, as it can be 

seen from Fig. 3 with respect to Fig. 4. From these figures appears that the highly 

negative values of stress (σ < -110
8
 Pa) are difficultly detectable (Fig. 4) or even 

undetectable for smaller values of h. For a given value of σ, the useful range 

of  is lower as the value of h decreases. 
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Fig. 4. Simulation of the pull-in voltage V as a function of beam length  for a medium thickness 

value of the beam h = 1 μm, maintaining the other parameters as follows: d = 1 μm, E =1.710
11

 Pa, 

and the residual stress varying on the range σ =-110
8
 Pa ÷110

8
 Pa. 

This behavior is more evident from Fig. 5, where it is represented the pull-in 

voltage as a function of  for σ = 110
7
 Pa, d = 1 μm and h = 2 μm, 1 μm and 

0.5 μm taken as parameter. To attain the same pull-in voltage value, longer beams 

are necessary as the thickness of the beam is higher. From a practical point of 

view, according to the results represented in Figs. 3-5, it is better to use a higher 

beam thickness in order to be able to detect both positive (tensile) and negative 

(compressive) high level stress, maintaining a reasonable range of pull-in voltage 

variation. In Fig. 6 is represented the variation of the pull-in voltage with the 

beam length for various values of the induced stress into the beams under the 

following conditions: E = 1.710
11

 Pa, d = 1 μm and h = 2 μm, showing that 

around the zero value of σ (no stress), the pull-in voltage is slightly related to the 

beam length variation. However, in the case of the situation described in this 

figure, it is possible to still detect with sufficient precision the values of the stress 

σ = ±110
6
 Pa, or even smaller.  

However, an improvement of the parameter extraction could be obtained by using 

rel. (9), which allows to deduce in a rapid manner both E and σ from a parabolic 

type dependence. An example of this situation is given in Fig. 7, where rel. (9) is 

used to extract E = 1.710
7
 Pa and σ = -3.210

4
 Pa from a set of experimental 

data used as a structure test for the fabrication of the capacitive sensors for 

biomedical applications [10].  
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Fig. 5. Comparison between V(l) simulated graphs for σ = 110

7
 Pa, E = 1.710

11
 Pa, d = 1 μm 

corresponding to various thickness values h = 2 μm, 1 μm and 0.5 μm. 

 
Fig. 6. Simulation of V(l) in a low range (V < 10 V), useful to detect the small values  

of the residual stress on a test polysilicon structure with h = 2 μm, d = 1 μm, E = 1.7 10
11

 Pa. 
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Fig. 7. Parabolic type representation of the pull-in voltage parameters as defined by rel. (8), 

allowing to accurately extract the interest parameters σ and E. 

 

Fig. 8. Simulation of the pull-in voltage V as a function of the Young's modulus on the range 

E > 510
10

 Pa, by using a test structure defined by h = 2 μm, d = 1 μm  

and supposing two extreme values of the stress: σ = 110
7
 Pa and σ = -110

7
 Pa for comparison. 
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In Fig. 8 is represented the variation of the pull-in voltage with E on the range 

510
10

÷510
11

 Pa for various beam length ( = 250 μm, 300 μm and 350 μm) and 

two distinct values of the induced stress (σ = 110
7
 Pa and σ = -110

7
 Pa), 

maintaining as constant all other geometrical parameters (h = 2 μm, d = 1 μm). 

From this figure it can be seen that the pull-in voltage increases with the increase 

of E and is higher for positive stress values. The variation of V on this range is 

relatively linear and the higher slope is associated with the increasing values of 

the stress and is higher as smaller are the values of the beam length. An important 

conclusion derived also from Fig. 8 is that the pull-in voltage could be 

significantly affected by relatively large variations of E. However, the 

characteristic variation of E obtained from experiment is relatively low, around 

1.710
11

 Pa [9], in agreement with the results reported also in refs. [10 - 12]. 

Conclusions 

In order to simplify the extraction procedure of the material parameters σ (induced 

stress) and E (Young's modulus) of the polysilicon layers used for the fabrication 

of the micromechanical elements by micromachining technology, it was reduced 

the set of two equations specific for the pull-in voltage method to a compact set, 

one of them depending only on a unique parameter S = S(α, E) and the second one 

as a product of a function v(x) and an expression depending on E. On this basis 

was deduced the permitted variation range of x and S, allowing to obtain real 

values of the defined quantities. 

Such a form allowed to represent x = x(S) and v = x(x) and on this to deduce 

graphically the value of σ if E is supposed known, and by the iteration method 

both E and σ parameters if the test structure consists at least of two beams of 

different lengths. It is also commented the possibility to obtain these values by 

direct calculations. 

The first equation depending on the parameter S was solved analytically and where 

obtained the suitable explicit solutions both for positive and negative values of S.  

By using these results, it was possible to obtain an analytical way to extract directly 

σ if E is known, in the case when only one beam is available, or even both 

parameters E and σ when the test structure consists at least of two beams.  

A significant simplification is deduced, allowing to extract directly both σ and E 

from a parabolic type expression in a range close to the prohibited value x = 2/5 or 

near null value of x, reducing on this way the extraction procedure at one of 

standard type. This parabolic expression also permits the extraction when the 

application of the graphical method indicates a range of x close to x = 2/5. Such an 

expression was also successfully used to fit same experimental data when the values 

of σ are very low (|σ| < 10
6
 Pa).  
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From the graphic representation of V as a function of  with σ as parameter, useful 

conclusions  for practical application were deduced, showing that in the range of the 

negative values of σ it is necessary to dispose of beam of sufficiently high value, 

our recommended  used data being h = 2 μm, h = 1 μm. The variation of V with E is 

also commented in terms of  and σ range. 
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