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Abstract. Single-walled carbon nanohorns (SWCNHs) are a kind of nanocarbon materials 

consist of horn-shaped sheath aggregate of graphene sheets. SWCNHs are generally 

synthesized with high yield by CO2 laser ablation technique of graphite target without a metal 

catalyst. The SWCNHs reveal interesting properties such as high conductivity,
 
high 

dispersibility, large specific surface area, etc. Nowadays, SWCNHs and their 

nanocomposites have been widely investigated for different applications such as energy 

management system (supercapacitor, photovoltaics, Li-Ion batteries, fuel cell), additive for 

improvement of electrical and mechanical properties of nanocomposites, electrochemical 

biosensing, gas adsorption and gas storage, catalyst support, medical (drug delivery 

system), gas sensing application and so on. The purpose of this paper is to review the recent 

research on single-walled carbon nanohorns and their nanocomposites including synthesis, 

properties, covalent and noncovalent functionalization and utilization. 

Keywords: Single-walled carbon nanohorns, laser ablation, functionalization, ethanol sensing, 

capacitor. 

1. Introduction 

Along with carbon nanotubes [1], fullerenes [2] and graphene [3, 4] a new 

nanocarbon material structure, the single walled nanohorns (SWCNHs), were 

discovered by Iijima in 1998 [5]. Harris, Tsang, Claridge and Green observed in 

1994 very similar carbon - based molecular architecture [6]. SWNHs are conical 

carbon nanostructures constructed from a sp
2
 carbon sheet of about 2-5 nm of 

diameter and 30 to 50 nm long (see Figure 1). Three different types of single-

walled carbon nanohorns structure were observed: „dahlia-like‟, „bud-like‟ and 

„seed-like‟ [7]. Synthesis of nanohorns by CO2 laser ablation of graphite require 

no metal catalyst.  
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Using this procedure, significant quantities of (SWCNHs) can be produced 

(approx. 1 kg/day). Thousands of these nanocones can associate to each other to 

form spherical clusters of 100 nm of diameter.  

This structural feature was considered as a significant limitation in 

functionalization of individual carbon nanohorns. Fortunately, this drawback has 

recently been overcome by using a new strategy to separate these “dahlia-like” 

aggregates into individual nanohorns [8]. SWCNHs outstanding properties such as 

high conductivity,
 

high dispersibility, large specific surface area. Carbon 

nanohorns are considered as a possible alternative to carbon nanotubes, and 

graphene, in different applications. 

 
Fig. 1. The structure of a carbon nanohorn. 

Currently, SWCNHs and their nanocomposites have been widely investigated for 

different applications such as design of supercapacitor, solar thermal collectors, 

photovoltaics, fuel and biofuel cells, biomedical engineering (anticancer drug 

delivery system), additive for improvement of electrical and mechanical 

properties of nanocomposites, electrochemical biosensing, gas adsorption, 

hydrogen and methane storage, catalyst support, photodynamic therapy, gas 

sensing application [9].  

The aim of this concise review is to describe the progress research on single-

walled carbon nanohorns and their nanocomposites including synthesis, 

properties, covalent and noncovalent functionalization and their utilization. 

2. Synthesis of pristine carbon nanohorns 

Different approaches to synthesize carbon nanohorns such as arc discharge and 

CO2 laser ablation have already been reported. The morphology, size and purity of 

the SWCNHs are modified by varying the working parameters such as voltage, 

current, pressure, and temperature. 
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2.1 Arc discharge 

One of the most versatile synthetic method of SWCNHs consist of a pulsed arc 

discharge between pure carbon rods in the atmospheric pressure of air and He and 

Ar with arcing period of 30 s. Using this synthesis, the purity of formed SWNHs 

is higher than 90%. 

2.2 CO2 laser ablation of graphite target  

Recently, high-yield synthesis of SWCNHs by CO2 laser ablation of graphite 

target without a catalyst was performed. A production rate of 1 kg/day single wall 

carbon nanohorns with high purity (about 95%) was achieved [10, 11]. Absence 

of catalyst during synthesis is an important advantage in mass- production of 

SWCNHs and allows formation of pure samples, without any other graphitic 

structures. CO2 laser ablation system consists of three chambers, an exchange 

chamber (where is stores graphite rod), synthesis chamber, and collection 

chamber. The mean size of SWCNH particles is bigger than those prepared by the 

arc discharge method [12]. It has clearly been demonstrated that nature and 

pressure of the buffer gas used has a major impact in the level of purity and 

morphology of the synthesized SWCNHs. For instance, the SWCNH aggregates 

exhibit ''bud-like‟' morphology when He or N2 were used, while „dahlia-like‟ 

morphology in the case of Ar utilization [13, 14]. 

H. Wang et al. [15] reported on the novel and economical preparation method of 

single-walled carbon nanohorns (SWCNHs) based on arc discharge between two 

graphite electrodes submerged in liquid nitrogen. The synthesized spherical 

aggregates have size in the range of 50100 nm and consist of mixture of 

„dahlia-like‟ and „bud-like‟. This synthetic procedure requires only liquid nitrogen 

and graphite electrodes as materials and direct current power supply and is a less 

expensive alternative for the preparation of single-walled carbon nanohorns. 

An identical preparation method can be used to synthesize nano-onions (deionized 

water is used in this case).  

In the last years, other synthetic procedures for SWCNHs have also been 

developed such as welding arc torch in open air, arc in liquid method, cavity arc 

jet methods under open-air conditions, leading to various morphologies, sizes and 

level of purity [16-20]. 

3. Properties of carbon nanohorns 

The distinctive conical structure of SWCNHs drastically influences the electronic 

properties of this nanocarbonic material. Theoretical calculations were used, and 

many models were developed to determine the electronic properties, stability and 

geometry of SWCNHs [21-23]. 
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The electronic properties are strongly interrelated to the magnetic properties in 

SWCNHs. The magnetic properties of single-wall carbon nanohorns were 

investigated by static magnetic susceptibility measurements and electron spin 

resonance (ESR). Bandow et al demonstrated that the individual SWNHs had at 

least one unpaired electron spin.  

Furthermore, the study indicates a value of the diamagnetic susceptibility as the 

same order of magnitude to those of different fullerenes such as C60 and C70, but 

reveals a value smaller by an order of magnitude than that of randomly oriented 

graphite [24].  

The electronic characteristics of "dahlia-SWCNHs" and oxidized SWCNHs were 

also investigated by adsorption of O2 (an electron acceptor) and CO2 (an electron 

donor). The increased electronic conductivity with adsorption of CO2 reveals that 

"dahlia-SWCNHs" have n-type semiconducting behavior. Oxidized SWCNHs 

exhibit a pronounced electrical conductivity drop on CO2 adsorption and almost 

no change on O2 adsorption [25]. 

The Raman spectrum of pristine SWCNHs emphasizes different features from 

diamond-like amorphous carbon, nano-soot, graphite, glassy carbon. Two bands 

with almost equal scattering strengths were observed at 1341 cm
−1

 („„D-band‟‟), 

and 1593 cm
−1

 (“G-band”) [26]. The increased intensity around the D-band of 

water soluble SWCNHs compared with pristine SWCNHs suggested the 

SWCNHs backbone which contains sp
3
-hybridized carbon atoms [27, 28]. 

XRD (X-Ray Diffraction) was proven as useful tool for the investigation of the 

structural characteristics of pristine SWCNHs. While the interlayer distance of 

graphite is 0.335 nm, the van der Waals distance of the aggregated SWNHs was 

calculated as being around 0.4 nm [29]. 

Individual SWNHs are closed, so the adsorption sites of SWCNHs are located only 

on the outer surface. When pristine SWNHs are oxidized, the sheaths of the 

nanohorns are opened and the inside spaces become accessible (holey-SWCNHs).  

A different type of molecules such as metal compounds, gases, drug, fullerene, etc. 

can be trapped in the inside space of SWCNHs and can be released again [30-33]. 

The SWCNHs can be dispersed in ethanol and other organic solvents more easily 

than carbon black and/or carbon nanotubes. Due to their hydrophobicity, the 

pristine SWCNHs did not disperse at all in water [34].  

The holey-SWCNHs can be dispersed in water and organic solvents such as 

ethanol and isopropyl alcohol. 

SWCNHs and/or holey-SWCNHs exhibit high conductivity, high dispersibility 

and high specific surface. 
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4. Functionalization of carbon nanohorns 

Different strategies of SWCNHs functionalization were attempted to modulate 

their physical and chemical properties or to generate supramolecular aggregates 

with intriguing properties. There are two major approaches:  

- Covalent attachment of organic fragments either to the open conical ends or 

to the sidewalls of the nanohorns [35, 36]; 

- Non-covalent interactions based on electrostatic interactions or π–π stacking 

interactions between SWCNHs and aromatic organic molecules (such as pyrene 

and derivatives) [37, 38]. 

4.1 Noncovalent functionalization of SWCNHs 

Noncovalent functionalization of SWCNHs has the advantage to preserve π-

conjugated system of SWCNHs. Thus, ionic porphyrins such as tetracationic 

water-soluble porphyrin (H2P
4+

) [39] or anionic porphyrin (H2P
2−

) [40] were 

immobilized onto the backbone of SWCNHs (in the latter case noncovalent 

functionalization is mediated by positively charged pyrene units - Py
+
). 

Recently, a water soluble colloid nanohybrid was generated through the 

noncovalent functionalization of SWCNHs using a amphiphilic poly[sodium (2-

sulfamate-3-carboxylate) isoprene-b-styrene] block polyelectrolyte [41]. 

The hydrophobic polymeric unit is immobilized on the carbon nanohorn surface 

through hydrophobic interactions, while the polyelectrolyte block stabilizes the 

synthesized hybrid nanoaggregate through electrosteric interactions. 

4.2 Covalent functionalization of SWCNHs 

Covalent functionalization of carbon nanohorns both to sidewalls and to the open 

conical ends allows to tune the molecular architecture of SWCNHs to obtain 

nanocarbonic materials with desirable properties. Furthermore, solubility in water 

or in organic solvents can be significantly improved by covalent functionalization. 

For instance, holes in carbon nanohorns walls can be opened through light-

assisted oxidation in the presence of hydrogen peroxide with generation of a lot of 

carboxylic groups at the hole edges. Besides increased solubility, oxidized carbon 

nanohorns can react with protein such as BSA [42].  

By oxidizing with concentrated nitric acid, Agresti et al [43] synthesized carbon 

nanohorns with increased hydrophilicity and dispersibility in polar solvents. SEM 

microscopy, XPS, and thermogravimetric analysis were used for investigation of 

surface damage and oxidation level. 

A large number of pyrrolidine units fused to C–C bonds at the side-walls of 

SWCNHs were grafted through 1,3 -dipolar cycloaddition [35].  

javascript:popupOBO('CHEBI:26214','C0NR00387E','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=26214')
javascript:popupOBO('CHEBI:26214','C0NR00387E','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=26214')
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Amines can react with pristine SWCNHs sidewalls through nucleophilic addition 

[9]. Functionalization of SWCNHs can be performed through amidation of the 

oxidized carbon nanohorns [9]. All these types of functionalizations are depicted 

in Figure 2. 
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Fig. 2. Different types of covalent functionalization of SWCNHS. 

Recently, Rubio et al [44] developed covalent functionalization of SWCNHs 

through the addition of diazonium salts in water and 1,3-dipolar cycloaddition of 

azomethine ylides by microwave activation. Organic molecules such as amines, 

thiols, alcohols, different types of porphyrin and pyrene derivatives was attached 

through the opening of SWCNHs conical ends [45-47].  
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Voiry et al [48] investigated dismantling and individualization of SWCNHs by 

their reductive dissolution with potassium naphtalenide. The reduced carbon 

nanohorns are soluble in different solvents such as dimethylsulfoxide, 

benzonitrile, dimethylformamide, acetone, acetonitrile and N-methylpirrolidone. 

Furthermore, reduced CNHs can be reoxidized in the presence of dried air or can 

react with different alkyl or aryl iodide (as depicted in Figure 3). 
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Fig. 3. Reductive dismantling of carbon nanohorns, reoxidation  

and covalent functionalization of the reduced carbon nanohorns. 

5. Applications of carbon nanohorns 

Recently, SWCNHs have attracted a great deal of attention for various 

applications due to their outstanding features: 

 versatile synthetic methods; 

 available in high purity, no metal catalyst is involved in their synthesis; 

 the chemical, physical, and electronic properties of SWCNHs can be 

modulated by covalent and noncovalent functionalization in order to 

obtain novel materials with desirable properties for appropriate 

applications; 
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 large surface area (from 400 m
2
/g from carbon nanohorns - as grown to 

1400 m
2
/g for oxidized carbon nanohorns) [49, 50]. 

 the facile processability of single wall carbon nanohorns in water and 

various organic solvents affords generation of films with different 

morphology, porosity, and texture [51-52] 

5.1 Carbon nanohorns as gas storage media 

Due to their cylindrical structure and interstitial sites, SWCNHs and holey-

SWCNHs are promising materials for storage of gases such as hydrogen, methane 

and fluorine [31, 53 - 55]. 

Murata et al found that the dispersion of lanthanide nitrate in the compressed 

SWCNHs (0.1 mmol/g SWCNHs) improve the methane adsorbtion through charge 

transfer effects [56]. Sano et al demonstrated that the amount of H2 absorbed by 

single-walled carbon nanohorns containing Pd–Ni alloy nanoparticles (Pd–

Ni/SWCNHs) was larger than the combined absorption contributed by Pd–Ni 

alloy and SWCNHs [57]. 

5.2 Applications of carbon nanohorns in pharmacy and medicine 

Due to its low cytotoxicity and cylindrical structure, holey-SWCNHs were proven 

as an effective carrier material for drug delivery system [58].  

Ajima et al [59] demonstrated that oxidized single-wall carbon nanohorns 

incorporate cisplatin, a well- known anticancer agent. The drug is released in 

aqueous environments from the carbonaceous tubules of oxidized single-wall 

carbon nanohorns, being effective in human lung cancer cells. 

Murakami et al [60] investigated the ability of as-grown SWCNHs and ox - 

SWCNHs to act as carriers for dexamethasone, one of the most used antiinflammatory 

glucocorticoid.  

After trapping, dexamethasone- oxidized single-wall carbon nanohorns complex 

slowly release the drug in cell cultural medium. 

Oxidized single-walled carbon nanohorns were used as carriers for prednisolone, 

an anti-inflammatory glucocorticoid drug.  

Nakamura et al [61] showed that the quantity of the adsorbed is strongly 

correlated to the numbers and sized of holes on the ox-SWNHs. 

In order to increase their solubility in water, polyethylene glycol is sometimes 

grafted on the hydrophobic surface of SWCNHs [62]. 

Other biomedical applications of carbon nanohorns and their derivatives include 

magnetic resonance analysis and photodynamic therapy [63, 64]. 
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5.3 Carbon nanohorns in energy applications  

Due to its high electron, heat and phonon transport, high surface area, high 

nanoporosity, carbon nanohorns has found various applications in the field of 

energy conversion.  

Thus, SWCNHS and their derivatives can be used in: 

 Catalyst support or catalyst in design of fuel cells. A large number of 

studies regarding deposition of Pt or metal alloys catalyst on SWCNHs 

used in fuel cells have been reported [65, 66]. Moreover, N-doped 

SWCNHs (synthesized from SWCNHs and urea at 800°C) was found to be 

more efficient than Pt in proton exchange membrane fuel cells [67]. 

 Design and construction of solar thermal collector [68]. 

 Design and construction of dye-sensitized solar cells. Different light 

absorbers such as porphyrin functionalized SWCNHs (SWCNHs-H2P), 

SWCNHs-Zn porphyrin supramolecular assembly (SWCNHs - ZnP) were 

used in design of dye-sensitized solar cells (DSCs) with satisfactory results 

[69]. Furthermore, SWCNHS were used as counter electrode [70]. 

 Construction of recheargeable batteries. SWCNHs composite have been 

used as anode materials in Li-Ion and Li-S rechargeable batteries [71,72]. 

 Construction of supercapacitors. Oxidized SWCNHs, SWCNH-polymer 

composite, SWCNH-SWCNT, SWCNH-graphene (as electrodes, thin 

film, etc.) were used in design and construction of supercapacitors [73, 

74]. 

5.4 Carbon nanohorns in gas sensing  

Sano et al fabricated chemiresistive gas sensor for ammonia and ozone detection 

at room temperature using a single-walled carbon nanohorns (SWCNHs) as 

sensing layer. 

It was demonstrated that the electrical resistance of the SWCNHs film decreases 

with adsorption of O3, while the adsorption of NH3 increases the resistance of 

carbonaceous sensing layer [75].  

A novel chemiresistive ethanol sensor based on CuO/oxidized carbon nanohorns 

as sensing layer was recently proposed [76].  

The ethanol sensor includes a dielectric substrate such as quartz, electrodes (made 

up of gold or platinum) and the sensing layer.  

Electrodes can be linear, planar (as in Figure 4) or can have interdigitated 

configuration (show in Figure 5). 
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Fig. 4. The structure of the sensors with linear electrodes. 

 

Fig. 5. The structure of the sensor with interdigitated electrodes. 

The sensing layer was synthesized through sol gel method using, alternatively, 

poly(2 ethyl- 2- oxazoline), depicted in Figure 6, and polyethylene glycol, shown 

in Figure 7, as stabilizing agents.  

The detailed processes are depicted in Figures 8 and 9. 
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Fig. 8. Synthesis of CuO/ oxidized carbon nanohorns - based sensing layer using 

poly(2 ethyl- 2- oxazoline) as stabilizing agent. 

A novel chemiresistive ethanol sensor, using TiO2/La2O3 /oxidized carbon 

nanohorns as sensing layer, was introduced by Serban et al. [77].  

The proposed sensor consists of a dielectric substrate such as glass, electrodes 

(aluminum, copper, chromium, etc.) and the ethanol-sensing layer obtained by 

drop casting and/or spin coating method.  
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Fig. 9. Synthesis of CuO/ oxidized carbon nanohorns - based sensing layer 

using poly(2 ethyl- 2- oxazoline) as stabilizing agent. 

Synthesis of oxidized nanohorns is achieved by two different methods, using 

oxygen plasma treatment and oxidation of H2O2 to 100
o
C, respectively, of pristine 

carbon nanotubes.  

The synchronous use of La2O3 and oxidized carbon nanotubes, along with TiO2, 

deposited on a dielectric substrate, gives the sensor some significant advantages: 

improved mechanical properties and sensitivity of the touch layer, increased 

surface area of the sensitive layer, detection over a wide temperature range – up to 

400
o
C), rapid response to variation in ethanol concentration, selectivity, thermal 

stability up to 400
o
C, low weight.  

The synthesis of sensing layers is depicted in Figures 10 and 11. 
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Fig. 10. Synthesis of TiO2 / La2O3 /oxidized carbon nanohorns sensing layer. 

  

Fig. 11. Synthesis of TiO2 / La2O3 /oxidized carbon nanohorns sensing layer. 
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Sm2O3/ oxidized carbon nanohorns Gd2O3/ oxidized carbon nanohorns, In2O3/ 

oxidized carbon nanohorns are other options to detect ethanol at room temperature 

using a chemiresistive sensors [78]. 

6. Conclusions 

Single-walled carbon nanohorns (SWCNHs) are a type of of carbonaceous material 

consist of horn-shaped sheath aggregate of graphene sheets. SWCNHs differ 

significantly from carbon nanotubes in that they have long cone-shaped tips with 

cone angles of about 20°. SWCNHs are generally synthesized in high yield by CO2 

laser ablation technique of graphite target without a metal catalyst. The chemical, 

physical, and electronic properties of SWCNHs can be tuned by covalent and 

noncovalent functionalization in order to synthesize novel derivatives with 

desirable properties for appropiate applications.  

The SWCNHs reveal interesting properties such as high conductivity,
 

high 

dispersibility, large specific surface area, high nanoporosity, etc. Nowadays, 

SWCNHs and their nanocomposites have been widely investigated for different 

applications such as energy management system (supercapacitors, dye- sensitized 

solar cells, Li-S recheargeable batteries, fuel cells), additive for improvement of 

electrical and mechanical properties of nanocomposites, electrochemical 

biosensing, gas adsorption and gas storage, medical (drug delivery system, 

magnetic resonance analysis and photodynamic therapy), gas sensing application 

and so on.  

SWCNHs and novel SWCNH-based hybrid materials offer significant opportunities to 

basic science and nanotechnology. 
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