Développement de nouveaux agents thérapeutiques multicibles contre la maladie d'Alzheimer visant AChE et l'inflammation

Iacob Andreea-Teodora

Département des Sciences Pharmaceutiques I Faculté de Pharmacie Université de Médecine et de Pharmacie «Grigore T. Popa» Iași, Roumanie andreea.panzariu@umfiasi.ro

Bianca Ștefania Profire

Département de Médecine Interne, Faculté de Médecine Générale Université de Médecine et de Pharmacie «Grigore T. Popa» Iași, Roumanie bianca-stefania.profire@umfiasi.ro

Sava Alexandru

Département des Sciences Pharmaceutiques I Faculté de Pharmacie Université de Médecine et de Pharmacie «Grigore T. Popa» Iași, Roumanie alexandru.i.sava@umfiasi.ro

Florentina Geanina Lupașcu

Département des Sciences Pharmaceutiques I Faculté de Pharmacie Université de Médecine et de Pharmacie «Grigore T. Popa» Iași, Roumanie florentina-geanina.lupascu@umfiasi.ro

Căluian Iulian

Département des Sciences Pharmaceutiques I Faculté de Pharmacie Université de Médecine et de Pharmacie «Grigore T. Popa» Iași, Roumanie caluian.iulian@d.umfiasi.ro

Lenuța Profire

Département des Sciences Pharmaceutiques I Faculté de Pharmacie Université de Médecine et de Pharmacie «Grigore T. Popa» Iași, Roumanie lenuta.profire@umfiasi.ro

Résumé — Les effets favorables de la tacrine (1,2,3,4tétrahydroacridine-9-amine) sur la forte liaison avec l'enzyme acétylcholinestérase (AChE) ont encouragé de nombreuses recherches à diminuer ses effets indésirables et optimiser l'efficacité de cette structure pour le traitement des maladies neurodégénératives de type Alzheimer. L'étude se concentre sur l'obtention d'une série de nouveaux inhibiteurs de l'acétylcholinestérase dérivés de la tacrine (AChEI), non mentionnés dans la littérature, qui, en plus de l'inhibition de l'acétylcholinestérase, présentent des actions anti- inflammatoires et/ou antioxydants. La sélection de la structure et des dérivés a été réalisée suite à l'analyse des études in silico portant sur les aspects pharmacocinétiques (SwissADME) et le docking avec des modèles de l'AChE. En plus de l'objectif principal qui est de concevoir des composés hautement actifs, notre projet prend également en compte les propriétés ADME- Tox nécessaires pour favoriser leur développement et améliorer leur capacité à franchir la barrière hémato- encéphalique.

Mots-clés —Alzheimer, dérivés de tacrine, inhibiteurs de l'acétylcholinestérase

I. INTRODUCTION

Les maladies neurodégénératives représentent un enjeu majeur pour la santé publique, lié au vieillissement de la population et aux modes de vie, ainsi qu'à son impact significatif sur les patients, les aidants, et les dépenses économiques. Ces pathologies affectent actuellement plus de 50 millions de personnes dans le monde, un nombre qui pourrait presque tripler pour atteindre 152 millions d'ici 2050 si aucune mesure préventive ou thérapeutique efficace n'est mise en place. La maladie d'Alzheimer est reconnue comme la forme la plus répandue, représentant entre 60 et 80 % des cas [1], et devient rapidement l'une des maladies les plus coûteuses, mortelles et lourdes du XXIe siècle [2].

La plupart des dérivés basés sur la tacrine ont montré des effets bénéfiques aussi bien *in vitro qu'in vivo*, et leur forte efficacité en tant que ligand a confirmé que la tacrine constitue une option idéale pour traiter les maladies du système nerveux central. Elle reste ainsi une base de référence pour élaborer de nouvelles stratégies intégrant multiactivité et puissance d'action sur l'enzyme cible.

II. LES ELEMENTS D'ORIGINALITE ET D'INNOVATION

L'étude se concentre sur la création d'une nouvelle série d'inhibiteurs de l'acétylcholinestérase dérivés de la tacrine (AChEI), non encore mentionnés dans la littérature, qui, en plus de l'inhibition de l'acétylcholinestérase, possèdent des propriétés anti-inflammatoires et/ou antioxydantes (Fig.1).

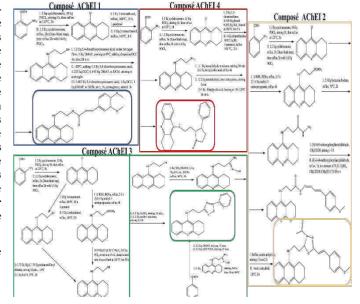


Fig.1. Schéma de synthèse pour inhibiteurs de l'acétylcholinestérase (AChEI), pour chaque étape et intermédiaire, y compris le produit final, avec 2 approches différentes, représentées dans le schéma par 1 et 2.

Le projet propose une approche innovante, visant à découvrir et à synthétiser des agents capables de réduire simultanément les dépôts de polymères bêta-amyloïde et de TAU, en inhibant l'acétylcholinestérase, tout en diminuant la neuro-inflammation et les dommages oxydatifs à travers des mécanismes complémentaires, selon la stratégie « une pilule, deux effets ». La conception de ces médicaments repose sur des tests préliminaires *in silico*.

III. RESULTATS PRELIMINAIRES IN SILICO

Le choix de la structure et des dérivés a été effectué après l'analyse des études *in silico*, comprenant des évaluations pharmacocinétiques (SwissADME) et des études de docking moléculaire. L'objectif principal est la synthèse de nouveaux inhibiteurs de l'acétylcholinestérase, visant une absorption gastro-intestinale optimale, une meilleure capacité à franchir la barrière hémato- encéphalique et une réduction de la toxicité. Il a été suggéré que l'ACh se lie d'abord au site anionique périphérique (PAS), situé à l'entrée du tunnel, puis se déplace lentement vers le site catalytique (CAS). Les études de docking ont montré que nos composés se lient aux acides aminés de chaque segment du site actif catalytique : PAS, gorge active et CAS (Fig. 2). Des études pharmacocinétiques *in silico* réalisées par SwissADME (Institut Suisse de Bioinformatique)

montrent que tous les nouveaux composés sont capables de franchir la barrière hémato-encéphalique. En outre, les études de docking moléculaire (AutoDockTools 1.5.6) ont révélé que l'hétérocycle se lie par des liaisons hydrogène conventionnelles et des liaisons aux histidines des acides aminés His440 de l'acétylcholinestérase, ainsi que par des liaisons hydrogène à Ser200, ce qui indique une inhibition de l'activité catalytique de l'enzyme (Fig. 2) [3]. Le cycle phényle, attaché en position 2 du cycle thiazolidine-4-one et en position 3 du 1,2,4-oxadiazole, a été choisi pour augmenter la lipophilie des composés, facilitant ainsi leur passage à travers la barrière hémato-encéphalique.

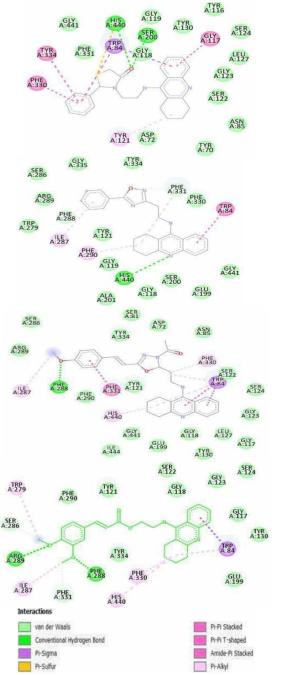


Fig. 2. Résultats préliminaires - Etudes d'amarrage moléculaire in silico AutoDockTools 1.5.6

IV. LA MOTIVATION SUR LA CONCEPTION DU DERIVES DE TACRINE CHOISIE SUR LA BASE DES RESULTATS PRELIMINAIRES

Le cycle tacrine a été sélectionné pour faire partie de la structure de nos composés en raison de sa reconnaissance dans la littérature comme inhibiteur de l'acétylcholinestérase [4, 5]. Afin de surmonter l'obstacle stérique rencontré lors de la liaison directe de l'acide férulique, des trois hétérocycles (thiazolidine-4-one, 1,3,4-oxadiazole et 1,2,4-oxadiazole) et de l'acide 4-hydroxycinnamique (acide p-coumarique) à la tacrine, une chaîne aminoéthanol a été utilisée, facilitant ainsi la liaison entre les deux segments, tout en minimisant l'augmentation de la masse moléculaire du composé final.

Une autre hypothèse liée à la physiopathologie de la maladie d'Alzheimer est celle du stress oxydatif. Les recherches ont révélé une élévation des biomarqueurs associés à l'oxydation des macromolécules biologiques telles que les lipides, les protéines, l'ADN et l'ARN, due au stress oxydatif dans le cerveau. Ce stress résulte d'un déséquilibre entre les prooxydants et les antioxydants, généralement causé par une surproduction de réactifs oxygénés (ROS) ou un dysfonctionnement du système antioxydant. Le cerveau, utilisant 20 % de plus d'oxygène que d'autres organes, produit davantage de ROS, ce qui perturbe la fonction synaptique et la neurotransmission, conduisant à un dysfonctionnement cognitif [5, 6].

Les acides férulique et p-coumarique, des polyphénols dérivés de l'acide cinnamique, sont réputés pour leurs propriétés antioxydantes [7, 8] et ont été sélectionnés pour leur capacité à réduire le stress oxydatif cérébral. La méthylation du groupe hydroxyle phénolique en position para des acides férulique et p-coumarique a été réalisée pour accroître leur lipophilie et faciliter leur passage à travers la barrière hémato-encéphalique. L'hétérocycle thiazolidine-4- one possède également des propriétés antioxydantes, confirmées par la littérature [9].

La neuroinflammation représente un autre facteur clé dans la pathogenèse de la maladie d'Alzheimer. Une fois qu'elle s'installe, l'inflammation persiste et provoque des lésions nerveuses qui libèrent des facteurs supplémentaires, servant de modèles moléculaires associés au danger, déclenchant ainsi une réponse immunitaire chronique et stable dans le cerveau [6]. Dans la littérature, les oxadiazoles sont reconnus pour leurs propriétés anti-inflammatoires. Le 2,3-dihydro-1,3,4-oxadiazole et le 1,2,4-oxadiazole substitués [10] ont été choisis pour leurs effets anti-inflammatoires.

REMERCIEMENTS

Bourse du Gouvernement Français France Excellence Roumanie de niveau Post-Doctorat, pour l'année 2024

REFERENCES

- [1] Passeri E, Elkhoury K, Morsink M et al. Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci 2022; 23(22):13954.
- [2] Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021; 397(10284):1577-1590.
- [3] Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46(1-3):3-26.
- [4] Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: A review. Eur J Med Chem. 2021; 216:113320.
- Khaleseh F, Haghi-Aminjan H, Samadi M. Tacrine. Reference Module in Biomedical Sciences. Flsevier. 2023.
- [6] Noori T, Dehpour AR, Sureda A et al. Role of natural products for the treatment of Alzheimer's disease. Eur J Pharmacol 2021; 898: 173974.
- [7] Alam MA, Subhan N, Hossain H, et al. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. *Nutr Metab* (Lond) 2016: 13: 27
- [8] Berton SBR, Cabral MRP, Jesus GAM et al. Ultra-high-performance liquid chromatography supports a new reaction mechanism between free radicals and ferulic acid with antimicrobial and antioxidant activities. *Ind Crop Prod* 2020: 154: 112701.
- [9] Pejović A, Minić A, Jovanović J et al. Synthesis, characterization, antioxidant and antimicrobial activity of novel 5-arylidene-2- ferrocenyl-1,3-thiazolidin-4-ones. J Organomet Chem 2018; 869: 1-10.
- [10] Potenza M, Sciarretta M, Chini MG, et al. Structure-based screening for the discovery of 1,2,4-oxadiazoles as promising hits for the development of new anti-inflammatory agents interfering with eicosanoid biosynthesis pathways. Eur J Med Chem 2021; 224: 113693.