Technologies avancées en génie civil. Des progrès récents dans le domaine des nanomatériaux et perspectives d'avenir

Daniel Lepadatu

Département de Genie civil Faculte de Genie Civil et Installations de Iasi, Universite Technique Gheorghe Asachi de Iasi, Roumanie ORCID - 0000-0002-5411-0542

Ion Rusu

Département de l'Inginerie de l'Infrastructures de transports, Faculté de l'Architecture et Urbanism, Université Technique de Moldavie, Chişinău, Republique de Moldavie ORCID - 0000-0002-7507-638X

Pavel Ciubarca

Département de l'Inginerie de l'Infrastructures de transports, Faculté de l'Architecture et Urbanism, Université Technique de Moldavie, Chişinău, Republique de Moldavie ORCID - 0000-0001-8406-9993

Loredana Judele

Département de Béton, Matériaux, Technologie et Management, Faculte de Genie Civil et Installations de Iasi, Universite Technique Gheorghe Asachi de Iasi, Roumanie ORCID - 0000-0002-5443-001X

Dana Roxana Bucur

Département Contrôle, expertise et services, Faculté de Génie des Ressources Animales et Alimentaires, l'Université de Sciences de la Vie de Iasi, Roumanie, ORCID - 0000-0002-5074-8872

Florin Luca

Département de Béton, Matériaux, Technologie et Management, Faculte de Genie Civil et Installations de Iasi, Universite Technique Gheorghe Asachi de Iasi, Roumanie ORCID - 0000-0002-0691-4191

Eduard Proaspat

Département de l'Inginerie de l'Infrastructures de Transports, Faculté de l'Architecture et Urbanism, Université Technique de Moldavie, Chişinău, Republique de Moldavie ORCID - 0000-0003-4900-1154

Albina Electchih

Département de l'Inginerie de l'Infrastructures de Transports, Faculté de l'Architecture et Urbanism, Université Technique de Moldavie, Chişinău, Republique de Moldavie ORCID - 0000-0002-6960-3104

Daniel Lepadatu

Département de l'Inginerie de l'Infrastructures de transports, Faculté de l'Architecture et Urbanism, Université Technique de Moldavie, Chișinău, Republique de Moldavie ORCID - 0000-0002-5411-0542

Résumé — Le génie civil est confronté à des défis complexes tels que la durabilité des infrastructures, l'efficacité énergétique et la résistance aux conditions climatiques extrêmes. Les progrès récents dans le développement des nanomatériaux offrent des solutions prometteuses à ces défis, avec le potentiel de transformer la manière dont les structures sont conçues et construites. Les nombreuses recherches scientifiques dans le domaine des nanomatériaux ouvrent donc la voie à une transformation majeure dans de nombreux secteurs, de l'énergie à la médecine (par le développement de nanorobots), en passant par l'environnement (les capteurs intégrés nanocapteurs) et l'industrie. Les nouveaux éco-nanomatériaux cimentaires qui ont dans leurs structures plusieurs déchets recyclables sont les défis du moment pour les chercheurs qui doivent établir des relations de compatibilités et le niveau de finesse pour leur mélange ainsi que les nanoparticules nécessaires pour garder les propriétés voire même améliorer significativement celles-ci. Dans ce travail l'objectif est de présenter l'évolution des technologies récentes ainsi que les perspectives d'avenir dans ce secteur en plein ascension. Ces technologies émergentes ouvrent de nouvelles perspectives dans le domaine de la construction, permettant la réalisation de projets plus complexes, adaptables et avec une robustesse qui contribue à une durabilité à long terme.

Mots-clés — éco-nanomatériaux, impression 3D, drones, IoT, BIM, réalité virtuelle, nanorobots.

I. INTRODUCTION

Le secteur de génie civil a connu des avancées technologiques significatives au cours des dernières décennies, avec des innovations qui améliorent la durabilité, l'efficacité, la sécurité et l'impact environnemental des projets de construction. Mais il est également confronté à des défis de taille qui évoluent avec les tendances économiques, environnementales, technologiques et sociales.

Il y a aussi des tendances modernes concernant l'urbanisation rapide et les infrastructures vieillissantes par une conception innovante des villes intelligentes avec une adaptation rapide des nouvelles technologies telles que la robotique et l'automatisation [1, 2] de certaines tâches répétitives ou dangereuses ou l'intégration de IoT [3] qui permet une surveillance en temps réels de l'état des infrastructures, d'anticiper les besoins en maintenance et d'améliorer la gestion des ressources.

II. AVANCÉES TECNOLOGIQUES EN GÉNIE CIVIL

A. Béton à haute performance - BHP

Le béton ultra haute performance est un matériau exceptionnellement résistant, durable et adaptable, obtenu par des additions des différents adjuvants en poudre (ceindre volante, silice fumée, etc.) [4, 5] ou souvent renforcé par des fibres (acier, textile ou autres) [6]. L'addition des additifs ou superplastifiants très performants à la recette classique a constitué un véritable tournant dans le domaine qui a rendu le béton nettement plus fluide, sans ajouter d'eau.

Parmi tous les additifs, la silice ultrafine [5] est le plus utilisé en raison à la fois de la forme sphérique de ses granulés avec une structure amorphe et des dimensions très fines, ainsi que de sa composition chimique et de sa réactivité. La finesse des granules est jusqu'à 40 fois supérieure à celle du ciment.

Le BHP est utilisé dans des applications critiques comme les ponts, les structures marines et les infrastructures de haute sécurité. Sa capacité à résister à la compression et aux conditions extrêmes le rend précieux pour des structures durables avec moins d'entretien.

B. Béton avec du bois

Introduction de bois (Fig. 1) ou chanvre dans la recette du béton [7, 8] afin d'augmenter les performances thermiques et de le faire passer à un béton d'ultra performance énergétique, mais pas assez performant en résistance mécanique [8]. En effet, une partie des agrégats seront substituer aux granulats minéraux en biomasse dans la formulation du béton. La partie minérale est formée principalement de fibres de bois recyclé, chanvre ou autres types qui contribuent à la réduction de poids mais avec d'excellentes propriétés d'isolation thermique et acoustique.

Fig. 1. Béton avec des déchets en bois recycles [9].

C. La Modélisation de l'Information du Bâtiment - BIM

La BIM [10] est une approche numérique intégrée pour la conception, la planification, la construction et la gestion des bâtiments et l'infrastructure. En utilisant des modèles 3D, elle permet une visualisation complète et une meilleure collaboration entre les différentes parties prenantes. La BIM aide à réduire les erreurs, optimiser les coûts, et coordonner efficacement les processus.

Cette approche a été intégré dans la conception des projets des bâtiments depuis les années 60 mais elle a connu une expansion les vingt dernières années vu le développement de la technologie digitale en intégrant des bases de données d'informations complexes liées aux matériaux, à la planification, aux coûts, et même aux performances énergétiques.

D. Impression 3D

L'impression 3D [11] est de plus en plus utilisée pour créer des éléments de construction en béton et d'autres matériaux, voire des structures entières (Fig. 2). Elle permet de produire rapidement et avec moins de déchets, et d'adapter les conceptions pour répondre aux besoins spécifiques de la globalisation des industries. Cette technologie est en pleine expansion notamment pour la construction de logements modulable, flexibles, abordables et des structures d'urgence.

a) éléments [12]

structures [13]

Fig. 2. Impression 3D en génie civil

L'impression 3D est à la fois une technique qui répond à la pénurie de main d'œuvre et à l'unicité du design ainsi qu'au besoin d'utiliser aussi d'autres matériaux, même organiques. Il y a des maisons qui ont été bâti entièrement de fibres de bois et bio-résines [14].

E. Internet des objet - IoT

Grâce à l'Internet des objets (IoT), il est possible d'intégrer des capteurs dans les bâtiments (Fig. 3), ponts et autres infrastructures pour surveiller l'état structurel en temps réel [15]. Les capteurs mesurent des paramètres tels que les vibrations, la pression et l'humidité, fournissant ainsi des données pour des inspections prédictives et la maintenance préventive.

Fig. 3. Internet des objets en génie civil [16].

F. Drones - UAV

Les drones [17] sont utilisés pour les inspections de sites et les relevés topographiques, notamment dans les zones difficiles d'accès. Ils permettent de collecter rapidement des données de haute qualité sur de vastes surfaces, avec une précision qui facilite la modélisation et le suivi de l'avancement des travaux. Les drones améliorent aussi la sécurité en remplaçant les inspections humaines dans des environnements risqués (Fig. 4).

a) Inspection toiture [18]

Zones de risque [19]

Fig. 4. Drones en service d'inspection

G. Inteligence Artificielle IA en construction

L'IA et l'apprentissage automatique par les réseaux de neurones artificiels [20] sont utilisés pour analyser de grandes quantités de données dans la planification et l'optimisation des projets ou des procédés. Ils permettent de prédire les risques, optimiser les coûts, et identifier des modèles qui améliorent l'efficacité et la sécurité. Ces technologies aident également à connaître en amont les besoins de maintenance et à optimiser et anticiper la gestion des ressources.

H. Conception et visualisation en réalite virtuelle - RV

La réalité augmentée RA et la RV (Fig. 5) permettent une immersion dans des maquettes numériques, facilitant ainsi la visualisation des projets en 3D [21]. Ces technologies aident les équipes à mieux comprendre les espaces, tester des conceptions avant leur mise en œuvre, et coordonner efficacement les opérations sur site. Elles sont particulièrement utiles dans les phases de planification et de formation.

a) réalité augmente [22]

réalité mixte [23]

Fig. 5. La réalité virtuelle

I. Structures à basse consommation d'énergie

Le secteur du génie civil adopte de plus en plus des matériaux éco-responsables, comme le béton à bas carbone, les composites recyclés et les matériaux biodégradables. Les bâtiments incorporent aussi des systèmes d'énergie renouvelable, tels que les panneaux solaires et les éoliennes intégrées. L'objectif est de réduire l'empreinte écologique des projets et de construire des structures à basse consommation d'énergie.

J. Les robots de construction

Les robots de construction [24] sont utilisés pour des tâches répétitives ou dangereuses, comme la pose de briques (Fig. 6), le soudage et le nettoyage. Ils améliorent la précision, accélèrent les travaux, et réduisent les risques pour les travailleurs. Des initiatives de construction entièrement automatisées se développent, avec des robots capables d'assembler des structures entières.

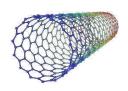
a) Robot humanoïde [25]

Robot a des tâches répétitives [26]

Fig. 6. Robots de constructions

III. DES PROGRÈS RÉCENTS DANS LE DOMAINE DES NANOMATÉRIAUX


A. Histoire des nanomatériaux


Les nanomatériaux, ont récemment connu des progrès significatifs dans plusieurs domaines scientifiques et industriels [27]. Le travail de la matière à une échelle assez petite nécessite une combinaison des connaissances des différents domaines tel que la physique, chimie, biologie, science des matériaux, etc. En 1959, le physicien Richard Feynman [28] a posé les bases scientifiques de la révolution des nanomatériaux. Il a suggéré qu'il est possible de manipuler la matière au niveau de l'atome individuel et d'ici il y a eu d'autres chercheurs qui ont poussé plus loin ces connaissances et les résultats scientifiques ont été publiés dans des revues à un fort impact sur le monde industriel qui les a mis en œuvre sous différents formes (produits).

Ces innovations offrent des applications variées et prometteuses en raison de leurs propriétés uniques, comme leur grande surface spécifique, leur résistance mécanique, leur conductivité électrique et thermique, ainsi que leurs caractéristiques optiques.

B. Les fullerènes

La découverte des fullerènes (Fig. 7) par le Prix Nobel en chimie 1996 [29] a démontré la possibilité de l'existence du carbone sous une forme jusqu'alors inconnue et a permis de découvrir des nanotubes de carbone.

a) fullerènes [30]

nanotubes de carbone [30]

Fig. 7. Structure de nanomatériaux

C. Le graphène

En 2010 le Prix Nobel [31] pour la chimie a mis en évidence le graphène qui est une feuille d'atomes de carbone disposés en un réseau hexagonal, d'une épaisseur d'un seul atome, ce qui lui confère des propriétés exceptionnelles et qui peut être utilisé dans des électroniques flexibles, applications énergétiques, biomédicale ainsi que pour être un bon adjuvant dans la recette du béton.

D. Le nanorobots

Les nanorobots en génie civil [32] représentent une avancée technologique fascinante et émergente, qui pourrait révolutionner la manière dont les infrastructures sont construites, surveillées, réparées et entretenues. Les nanorobots en génie civil pourraient intervenir avec succès dans l'infrastructure par une maintenance prédictive et surveillance en temps réel c'est à dire une inspection à l'échelle nanométrique à l'intérieur des matériaux, détectant des défauts invisibles à l'œil ce qui est impossible par des méthodes traditionnelles.

IV. NANOMATÉRIAUX EN GÉNIE CIVIL

A. Renforcement du matériaux cimentaires

Béton renforcé : Les nanomatériaux comme les nanofibres de carbone [33] et les nanoparticules de silice améliorent les propriétés mécaniques du béton en le rendant plus résistant aux fissures, aux chocs et à l'humidité. Ces matériaux prolongent la durée de vie des infrastructures tout en réduisant la quantité de béton nécessaire, ce qui diminue l'empreinte carbone des constructions.

B. Revêtements autonettoyants

Des nano-revêtements, souvent à base de dioxyde de titane, sont utilisés pour créer des surfaces autonettoyantes et antibactériennes pour les bâtiments et les infrastructures. Ces revêtements utilisent la photocatalyse pour dégrader les contaminants organiques et même certains polluants atmosphériques.

C. Béton avec des nanoparticules

L'intégration de nanoparticules dans le béton peut améliorer ses propriétés mécaniques, thermiques, et durables, en augmentant ses performances par rapport aux bétons traditionnels et représente une avancée technologique prometteuse dans l'industrie de la construction. Ces nanoparticules peuvent être de différentes sortes, telles que des nanoparticules de silice, de dioxyde de titanium (TiO₂), [34], des nanotubes de carbone [33], ou des nanoparticules de calcaire, marbre ou de silice peuvent également améliorer la résistance du béton à la corrosion des armatures métalliques.

Le béton enrichi de nanoparticules est une avancée prometteuse dans le domaine de la construction, offrant des améliorations significatives en termes de résistance, durabilité, et fonctionnalités écologiques.

CONCLUSIONS

Le secteur de génie civil doit relever de multiples défis, qui nécessitent une approche innovante et une adaptation continue aux exigences de plus en plus d'utilisateurs. Les ingénieurs civils jouent un rôle crucial pour répondre aux attentes de durabilité, de sécurité, de résilience et d'efficacité dans les infrastructures modernes. Grâce aux avancées technologiques et à l'intégration de pratiques durables, le secteur du génie civil peut continuer à évoluer pour construire un environnement plus résistant et adapté aux besoins futurs.

REMERCIEMENTS

Remerciement à l'AUF¹ pour avoir pris certains frais liés à la participation à cette manifestation scientifique francophone. Les recherches concernant ce papier sont parties du projet ECONANODERE² qui est subventionné par L'AUF dans le cadre de l'appel - Soutien à la recherche scientifique francophone en Europe Centrale et Orientale – RESCI – ECO édition 2024.

REFERENCES

- Kim, M.J., Chi, HL., Wang, X. et al. Automation and Robotics in Construction and Civil Engineering. J Intell Robot Syst 79, 347–350 (2015)
- [2] Yajima R., Matsushita F., Nagatani K., Ozawa K., System Integration of Construction Planning and Robots for a Joint Civil Engineering and Robotics Course, (2024) Proceedings of the International Symposium on Automation and Robotics in Construction, pp. 193 – 198
- [3] Yankah J.E., Adjei K.O., Tieru C.K., Apps as partial replacement for robotics and automation systems in construction health and safety management, (2024) Frontiers in Engineering and Built Environment, 4 (2), pp. 90 – 100.
- [4] Reddy U., Swaminathan P., Reddy C.V., Lakhanpal S., Tyagi L.K., Muhsen M., Khan I., Use of silica fume as a replacement of cement in the concrete, (2024) E3S Web of Conferences, 529, art. no. 01036.
- [5] Daniel Lepadatu, Marinela Barbuta, Mircea Rujanu, Loredana Judele, Raluca Mitroi, Fly ash concrete with fibers: comparison of tensile strength using neural network and design of experiments methods. Environmental Engineering and Management Journal, Volume: 17(6) Pages: 1321-1328, 2018.
- [6] Marinela Barbuta, Emanuela Marin, Sorin Mihai Cimpeanu, Gigel Paraschiv, Daniel Lepadatu, and Roxana Dana Bucur, Statistical Analysis of the Tensile Strength of Coal Fly Ash Concrete with Fibers Using Central Composite Design, Advances in Materials Science and Engineering, Volume 2015 (2015), Article ID 486232, 7 pages
- [7] Jonas Nässén, Fredrik Hedenus, Sten Karlsson, John Holmberg, Concrete vs. wood in buildings – An energy system approach, Building and Environment, Volume 51, 2012, pp. 361-369.
- [8] Adam, Laurentiu, Loredana Judele, Iuliana Motrescu, Ion Rusu, Daniel Lepadatu, and Roxana Dana Bucur. 2023. "Advanced Design for Experimental Optimisation of Physico-Mechanical Characteristics of Sustainable Local Hemp Concrete" Sustainability 15, no. 11: 8484.
- [9] https://www.infociments.fr/
- [10] Ismail N.H., Kamal E.M., Fizal M.F.M., A Systematic Literature Review: Implementing Building Information Modelling (BIM) for TVET Educators in Malaysia, (2025) Journal of Advanced Research in Applied Sciences and Engineering Technology, 49 (1), pp. 194 – 210
- [11] Fasihi A., Libre N.A., Interaction between material and process parameters during 3D concrete extrusion process, (2024) Structures, 70, art. no. 107678.

- [12] https://fra.sika.com/
- [13] https://www.bfmtv.com/
- [14] https://www.ecohabitation.com/
- [15] Vestfal P., Seduikyte L., Systematic Review of Factors Influencing Students' Performance in Educational Buildings: Focus on LCA, IoT, and BIM, (2024) Buildings, 14 (7), art. no. 2007.
- 16] https://www.linkedin.com/
- [17] Gu R., Zhang S., Zhu J., Shu X., Zhu H., Li Y., Damage identification for UAV composite propeller blades based on transmissibility probabilistic distance and attention bidirectional temporal convolutional network, (2025) Measurement: Journal of the International Measurement Confederation, 241, art no. 115751
- [18] https://www.mirs-innov.com/
- [19] https://www.auav.com.au/
- [20] Manalindo A.Y.L., Silva D.L., Diona R.L., de Jesus K.L.M., Artificial Neural Network Prediction of Total Construction Cost Using Building Elements for Low- to Mid-Rise Buildings, (2025) Lecture Notes in Civil Engineering, 539 LNCE, pp. 441 - 452,
- [21] Rajadurai R., Vilventhan A., Integration of Building Information Modeling, Geographic Information System, and Augmented Reality for Visualization and Management of Multiple Underground Utilities (2025) Journal of Pipeline Systems Engineering and Practice, 16 (1), art. no. 04024058.
- [22] https://www.univers-habitat.eu/
- [23] https://www.activbrowser.com/
- [24] i F., Sun H., Liu E., Du F., Human–robot collaborative handling of curtain walls using dynamic motion primitives and real-time human intention recognition, (2024) Biomimetic Intelligence and Robotics, 4 (4), art. no. 100183
- [25] https://www.design-mat.com/
- [26] ttps://kramerengineers.com/
- [27] Pandey A.K., Singh V., Dubey D.D., Pandey K.K., Avaish M., Dwivedi A., Alkali Metal-Doped Fullerenes as Hydrogen Storage—A Quantum Chemical Investigation, (2024) Macromolecular Symposia, 413 (5), art. no. 2400071
- 28] https://fr.wikipedia.org/wiki/Richard Feynman
- 29] https://www.nobelprize.org/
- [30] https://commons.wikimedia.org/
- [31] https://www.nature.com/
- [32] Hansen G., Benson J.R., Danish M.R., Truong K., Yu X., Saniie J., Advanced Robotic Surveillance for Urban Air Quality Safety, (2024) IEEE International Conference on Electro Information Technology, pp. 167 - 172
- [33] Wang Z., Bai E., Ren B., Du Y., Liu C., Mechanical properties and cross-scale synergistic modification mechanism of micro-nano carbon fiber modified concrete, (2024) Materials Today Communications, 41, art. no. 110401
- [34] Wei X., Xiaoqing W., Chunmei L., Effect of Nano-TiO2 and Polypropylene Fiber on Mechanical Properties and Durability of Recycled Aggregate Concrete, (2024) International Journal of Concrete Structures and Materials, 18 (1), art. no. 28

aux bétons ÉCOlogiques obtenus à partir de mélanges des NANOparticules et additions de DÉchets REcyclable de bâtiments

¹ https://www.auf.org/

Méthodes modernes d'optimisation et de planification des essais expérimentaux des processus sous environnements contraints : application