Catalyseurs à base de MXène pour la transformation sélective du méthane

Florentina Neatu

Groupe Matériaux catalytiques et catalyse Institut National de Physique des Matériaux, Atomistilor 405A, Magurele, Ilfov, Romania florentina.neatu@infim.ro

Anca G. Mirea

Groupe Matériaux catalytiques et catalyse Institut National de Physique des Matériaux, Atomistilor 405A, Magurele, Ilfov, Romania Anca.coman@infim.ro

Stefan Neatu

Groupe Matériaux catalytiques et catalyse Institut National de Physique des Matériaux, Atomistilor 405A, Magurele, Ilfov, Romania stefan.neatu@infim.ro

Iuliana M. Chirica

Groupe Matériaux catalytiques et catalyse Institut National de Physique des Matériaux, Atomistilor 405A, Magurele, Ilfov, Romania Iuliana.bogdan@infim.ro

Mihaela Florea

Groupe Matériaux catalytiques et catalyse Institut National de Physique des Matériaux, Atomistilor 405A, Magurele, Ilfov, Romania Mihaela.florea@infim.ro

Alexandra C. Iacoban

Groupe Matériaux catalytiques et catalyse Institut National de Physique des Matériaux, Atomistilor 405A, Magurele, Ilfov, Romania alexandra.iacoban@infim.ro

Toton Haldar

Groupe Matériaux catalytiques et catalyse Institut National de Physique des Matériaux, Atomistilor 405A, Magurele, Ilfov, Romania totn.haldar@infim.ro

Résumé— Des matériaux actifs et sélectifs sont recherchés pour l'activation du méthane à basse température en produits à valeur ajoutée. Les carbures métalliques 2D récemment découverts, les MXènes, promettent de posséder des propriétés catalytiques intéressantes en raison d'un ensemble de propriétés particulières telles qu'une bonne conductivité électronique, une hydrophilie, une résistance aux attaques chimiques et à l'oxydation dans des conditions de haute température. Ces propriétés sont fortement liées à leur riche fonctionnalité de surface formée lors de la synthèse par gravure humide des MXènes, lorsque des groupes fonctionnels tels que -O et -OH sont formés à la surface. Dans cette étude, nous rapportons la formation sélective de formaldéhyde à partir de méthane en utilisant de l'oxygène moléculaire sur des catalyseurs VO_x/MXène à basses températures et pression ambiante.

Mots-clés — catalyse, MXènes, oxydation sélective, méthane

I. INTRODUCTION

L'utilisation du méthane pour produire des composés oxygénés reste une préoccupation scientifique majeure en catalyse [1,2]. Mais, le méthane est difficilement converti de manière directe. Les défis à relever sont l'activation des liaisons C-H qui nécessite une énergie élevée (440 kJ mol⁻¹) et les plus faibles stabilités thermodynamiques des produits souhaités (avec une énergie de dissociation de la liaison C – H inférieure de 38,6 kJ mol⁻¹ à celle du CH₄) qui peuvent entraîner une suroxydation en dioxyde de carbone, CO2, qui se produit généralement dans des conditions de réaction typiques [3]. Ceci est actuellement limité par l'absence de matériaux qui peut activer le CH4 tout en empêchant la suroxydation inhérente due à la présence d'O2 comme réactif. Des efforts conjoints de diverses disciplines sont donc nécessaires pour développer des moyens appropriés et efficaces de transformer le CH₄ en produits chimiques précieux. La plupart des études de conversion directe du méthane en produits intéressants sont restées au stade expérimental. Des matériaux actifs et sélectifs pour l'activation oxydante du méthane à basse température en produits à valeur ajoutée ont été étudiés aux dernières années. Les carbures métalliques 2D récemment découverts, les MXènes, promettent de posséder des propriétés catalytiques intéressantes [4,5] en raison d'un ensemble de propriétés particulières telles qu'une bonne conductivité électronique, une hydrophilie, une résistance aux attaques chimiques et à l'oxydation dans des conditions de haute température. Ces propriétés sont fortement liées à leur riche fonctionnalité de surface formée lors de la synthèse par gravure humide des MXènes, lorsque des groupes fonctionnels (Tx) tels

que -O et -OH sont formés à la surface. Dans cette étude, nous rapportons la formation sélective de formaldéhyde à partir de méthane en utilisant de l'oxygène moléculaire sur des catalyseurs VO_x/MXène, Ti₃C₂T_x à basses températures et pression ambiante. Le comportement compositionnel et structurel de ce système catalytique a été suivi par XRD, Raman, SEM, TEM, XPS. La caractérisation indique une coexistence en surface des espèces VO₂/V₂O₅ et une modification de surface du Ti₃C₂, au cours de différentes étapes de synthèse et de réaction bénéfiques pour l'oxydation du CH₄ en CH₂O.

II. EXPERIMENTAL

A. Préparation de catalyseurs

<u>Préparation de Ti₃C₂ MXène.</u> À une solution fraîchement préparée de HCl 9 M (20 ml), 1,32 g de fluorure de lithium (LiF) ont été ajoutés et agités en continu pendant 30 min. A cette solution, 2 g de poudre de Ti₃AlC₂ ont été ajoutés lentement et la suspension a été maintenue sous agitation à 49°C pendant 24 h. Le résidu solide restant a été récupéré par centrifugation après plusieurs lavages avec de l'eau distillée et de l'éthanol jusqu'à pH 7. Le résidu solide a été séché sous vide à 60 °C pendant 24 h.

Préparation de VO_x/Ti₃C₂. Pour synthétiser le catalyseur appropriée VO_x/Ti₃C₂, quantité une de VO(acac) (vanadyacétylacétonate) correspondant à 20% en poids de V₂O₅) a été solubilisée dans 45 ml d'éthanol et agitée pendant 24 h. À cette solution, 0,5 g de Ti₃C₂ MXène ont été ajoutés à la solution sous agitation suivi d'une ultrasonication pendant 10 minutes. La suspension résultante a été transférée dans un autoclave maintenu à 180 °C pendant 20 h. Après refroidissement à température ambiante, le produit synthétisé a été centrifugé, lavé avec de l'eau et de l'éthanol. Enfin, la poudre obtenue a été séchée pendant 12 h à 80 °C et calcinée à l'air à 300 °C avec une vitesse de chauffage de 5 °C/min pendant 5 h. La Figure 1 représente la méthode de pr éparation des catalyseurs utilisés dans cette étude.

Fig. 1 Représentation schématique de la synthèse de VO_x/Ti₃C₂

B. Caractérisation des catalyseurs

La structure cristalline des catalyseurs préparés a été analysée par diffiraction des rayons X sur poudre (DRX). Les diagrammes DRX ont été obtenus à l'aide d'un diffiractomètre à rayons X Bruker D8 Advance équipé d'un rayonnement Cu Ka (λ =0,15406 nm). Les données ont été collectées dans une plage de 5° à 80°, avec un incrément précis de 0,02°. Les spectres Raman ont été enregistrés à l'aide du spectromètre Raman HORIBA LabRAM HR Evolution Scientific, en utilisant une longueur d'onde d'excitation laser de 633 nm.

C. Réaction catalytique

La réaction d'oxydation du méthane a été réalisée dans un réacteur catalytique à lit fixe avec la charge de réactif gazeux CH₄, O_2 et N_2 , contrôlée à l'aide de régulateurs de débit massique. Le catalyseur a été chargé sur un lit garni de laine de silice placé à l'intérieur du réacteur et monté verticalement sur un four intégré à un thermocouple. Le flux de produit résultant a été analysé à l'aide d'un chromatographe en phase gazeuse en ligne (Shimadzu, GC-2010, Kyoto, Japon) équipé d'un détecteur de conductivité thermique et d'un détecteur à ionisation en flamme. Dans une réaction typique, 100 mg de catalyseur ont été utilisés et prétraités à $300 \,^{\circ}\text{C}$ pendant 60 min sous flux de N_2 . Le test d'activité catalytique a été surveillé de $200 \,^{\circ}\text{C}$ à $300 \,^{\circ}\text{C}$. Le débit total optimisé du mélange gazeux $\text{CH}_4/\text{O}_2/\text{N}_2$ a été maintenu à $20 \,^{\circ}\text{L}$ mL.min $^{-1}$, et un rapport $\text{CH}_4:\text{O}_2$ de $1 \,^{\circ}\text{pour}$ 1 et la vitesse spatiale horaire du gaz (GHSV) correspondante ont été estimés à $12 \,^{\circ}\text{000} \,^{\circ}\text{L}$

III. RESULTATS ET DISCUSSIONS

Les propriétés catalytiques de catalyseur 20% VO_x supporté sur Ti_3C_2 ont été testés pour l'oxydation du CH_4 à l'aide d'oxygène moléculaire dans un réacteur à lit fixe à flux continu. Avant la réaction, 100 mg du catalyseur ont été prétraités pendant 1 h à $300\,^{\circ}\text{C}$ puis refroidis à $200\,^{\circ}\text{C}$ sous l'écoulement de N_2 . L'alimentation en réactifs était constituée de 5 mL.min $^{-1}$ $CH_4/5$ mL.min $^{-1}$ $O_2/10$ mL.min $^{-1}$ N_2 , correspondant à une GHSV (vitesse spatiale horaire du gaz) de $12\,000$ mL.g $^{-1}$ h $^{-1}$. Les résultats obtenus sont compilés dans les Figures 2a et 2b. Le support, Ti_3C_2 , a également été testé seul à différentes températures et aucune conversion en CH_4 ou O_2 n'a été observée.

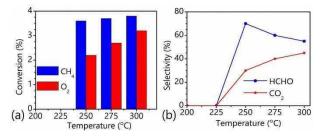


Fig. 2 Résultats des tests catalytiques

Aucune conversion évidente pour les deux réactifs, CH₄ et O₂, n'a été observée à 200 et 225 °C même lorsque VO_x/Ti₃C₂ était utilisé comme catalyseur. Cependant, à 250 °C, les conversions de CH₄ et d'O₂ ont atteint 3,6 % et 2,2 %, respectivement. La conversion du CH₄ est restée constante avec de nouvelles augmentations de température jusqu'à 275°C et 300°C, tandis que la conversion de l'O₂ a augmenté jusqu'à 2,7 % et 3,2 %, respectivement. Dans toutes les conditions utilisées dans cette étude, CH₂O et CO₂ étaient les seuls produits carbonés observés en sortie du réacteur. À 250°C, la sélectivité en CH₂O atteint jusqu'à 70 %, puis diminue à 60 % et 55 % avec une nouvelle augmentation des températures jusqu'à 275 °C et 300 °C, respectivement. Il est intéressant de noter qu'aux valeurs de sélectivité plus faibles, le CH₂O restait toujours supérieur aux

rapports existants sur l'oxydation du CH_4 par rapport aux catalyseurs à base de vanadium [6–8]. De plus, le catalyseur était stable pendant 30 h en fonctionnement. Il est à noter que la réaction a été réalisée en une seule étape et que ces résultats ont été obtenus en l'absence de métaux ou de co-réactifs coûteux, à pression atmosphérique, soulignant ainsi le potentiel catalytique du $VO_x/Ti_3C_2T_x$ pour la conversion sélective du méthane.

Nous avons en outre étudié l'évolution structurelle et compositionnelle de notre catalyseur. Les diagrammes DRX obtenus pour le Ti₃C₂T_x pur, 20 % VO_x/Ti₃C₂T_x obtenu après traitement hydrothermal, après calcination à 300 °C et récupérés après réaction à 300 °C, sont présentés dans la figure 3. L'absence de pics de diffraction d'ordre supérieur ainsi que la présence d'un pic à faible angle (002) à $2\theta = 7.1$ ° avec un espacement d de 12,5 Å, indique la formation de poudre de MXène Ti₃C₂Tx hydratée. Après le traitement hydrothermal, ce pic à faible angle s'est déplacé vers 20 = 6,1 ° avec un espacement d de 14,5 Å, en raison de l'expansion des plans MXène, prouvant l'incorporation d'espèces de vanadium entre les deux. De plus, les intensités maximales correspondant aux espèces de vanadium multivalentes étaient négligeables, indiquant la formation d'espèces de vanadium amorphes hautement dispersées à la surface de Ti₃C₂T_x. Après la calcination, un léger déplacement vers le haut du pic à faible angle $(2\theta = 6,1)^\circ$ a été observé avec un espacement d de 13,8 Å, qui peut être attribué aux modifications du vanadium intercalé et aux modifications de volume qui en résultent. De plus, un pic de faible intensité correspondant au $TiO_2(2\theta = 25,2^\circ)$ s'est développé, indiquant des dommages structurels mineurs au Ti₃C₂T_x. D'autres pics de faible intensité identifiés peuvent être indexés sur le pentoxyde de vanadium orthorhombique (V2O5). Il convient de noter ici que la présence de formes amorphes d'autres polymorphes d'oxyde de vanadium ne peut être exclue. En bref, les paramètres hydrothermaux et de calcination utilisés dans cette étude ont facilité la formation de V₂O₅ à la surface de Ti₃C₂T_x plus ou moins stable et prouvent ainsi l'adéquation de ce matériau composite comme catalyseur pour la conversion oxydative du CH₄.

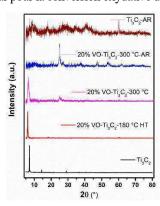


Fig. 3. Diagrammes de rayons X des matériaux étudiés

Une analyse spectroscopique Raman a ensuite été réalisée et les images obtenues sont compilées dans la figure 4. Pour le Ti₃C₂T_x pur (excité au laser à 633 nm), un pic de faible intensité à 143 cm⁻¹ indique la présence d'une petite quantité de TiO₂ amorphe en accord avec l'analyse DRX. La bande Raman caractéristique autour de 200 cm⁻¹ correspondant à Ti₃C₂T_x était absente tandis que la bande autour de 260 cm⁻¹ appartenant généralement au précurseur de la phase MAX a été observée. [Il est probable que le Li⁺ (utilisé dans l'étape de la préparation de MXène) ait contribué à préserver l'ordre structurel dans la phase parent MAX par intercalation, comme observé précédemment]. Le pic autour de 412 cm⁻¹ représente les vibrations dans le plan des groupes OH de surface tandis que celui centré autour de 612 cm⁻¹ représente les vibrations Ti-C hors plan dans Ti₃C₂T_x. Après traitement

hydrothermal, même avec des intensités diminuées, les modes Raman (412 et 612 cm⁻¹) pour Ti₃C₂T_x étaient clairement visibles, ainsi que des pics de faible intensité correspondant aux modes vibrationnels des oxydes de vanadium. Après calcination à 300 °C, un spectre complexe représentant la présence d'espèces de vanadium polyvalentes a été observé ainsi que deux fortes vibrations se produisant à 1364 et 1569 cm⁻¹ correspondant aux bandes D et G des matériaux carbonés. Les bandes observées à 139, 194, 261 et 484 cm⁻¹ indiquent clairement la présence d'espèces VO₂ déposées à la surface de Ti₃C₂T_x. Ces résultats confirment en outre la coexistence d'espèces VO_x avec Ti₃C₂T_x, formant ainsi le composite. Pour 20%VO_x/Ti₃C₂T_x récupérés après la réaction, des caractéristiques spectrales attribuées à l'anatase TiO₂ sont apparues. Ceci a été confirmé par comparaison avec les spectres Raman de Ti₃C₂T_x traités dans les mêmes conditions. Il convient de noter ici qu'on ne peut pas exclure la présence d'espèces de vanadium en faibles concentrations, mais que cellesci peuvent être est très difficiles à identifier.

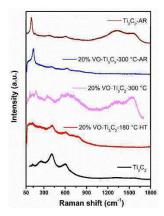


Fig. 4. Spectres Raman des matériaux étudiés

CONCLUSIONS

Dans cette étude nous avons étudié l'effet des catalyseurs composites $VO_x/Ti_3C_2T_x$ pour la transformation sélective du CH_4 en présence d'oxygène. Une sélectivité remarquable en formaldéhyde a été observée pour ce matériau dans les conditions utilisées dans la présente étude. En particulier, une sélectivité de 70 % envers le formaldéhyde a été obtenue à 250°C et 1 atm. Un

comportement compositionnel et structurel complexe a été observé à partir de XRD et Raman. La caractérisation indique une coexistence en surface des espèces VO₂/V₂O₅ avec une déformation minimale de la structure du Ti₃C₂T_x, au cours des différentes étapes de synthèse et de réaction. Une variation de concentration observée avant et après la réaction indique que le VO₂ est l'espèce active. D'autres études sont en cours pour valider la nature exacte des sites actifs ainsi que le rôle du Ti₃C₂T_x dans cette réaction.

REMERCIEMENTS

Les auteurs remercient le Ministère de la Recherche, de l'Innovation et de la Numérisation, CNCS - UEFISCDI pour leur soutien financier à travers le projet no. PN-III-P4-ID-ERC-2021-0007 et le Programme NUCLEU 2023-2026 (contrat PC3-PN23080303). Mahesh Nair est remercié pour les discussions scientifiques.

RÉFÉRENCES

- P. Schwach, X. Pan, X. Bao, Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects, Chem. Rev. 117 (2017) 8497

 –8520.
- [2] A. Blankenship, M. Artsiusheuski, V. Sushkevich, J.A. van Bokhoven, Recent trends, current challenges and future prospects for syngas-free methane partial oxidation, Nat. Catal. 6 (2023) 748–762.
- [3] H. Schwarz, Chemistry with Methane: Concepts Rather than Recipes, Angew. Chemie Int. Ed. 50 (2011) 10096–10115.
- [4] I.M. Chirica, A.G. Mirea, Ş. Neaţu, M. Florea, M.W. Barsoum, F. Neaţu, Applications of MAX phases and MXenes as catalysts, J. Mater. Chem. A 9 (2021) 19589–19612. https://doi.org/10.1039/D1TA04097A.
- [5] M.M. Trandafir, F. Neatu, I.M. Chirica, Ş. Neatu, A.C. Kuncser, E.I. Cucolea, V. Natu, M.W. Barsoum, M. Florea, Highly Efficient Ultralow Pd Loading Supported on MAX Phases for Chemoselective Hydrogenation, ACS Catal. 10 (2020) 5899–5908.
- [6] K.J. Zhen, M.M. Khan, C.H. Mak, K.B. Lewis, G.A. Somorjai, Partial oxidation of methane with nitrous oxide over V2O5 SiO2 catalyst, J. Catal. 94 (1985) 501–507.
- [7] B. Kartheuser, B.K. Hodnett, H. Zanthoff, M. Baerns, Transient experiments on the selective oxidation of methane to formaldehyde over V 2 O 5/SiO 2 studied in the temporal-analysis-of-products reactor, Catal. Letters 21 (1993) 209–214.
- [8] M.L. Ferreira, M. Volpe, On the nature of highly dispersed vanadium oxide catalysts: effect of the support on the structure of VOx species, J. Mol. Catal. A Chem. 164 (2000) 281–290.