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Abstract

In this paper we show that if a ∈ D and R and S are two bounded
linear operators from L2

a(C+) into itself, such that RTψ1
S = Tψ1◦ta for

all ψ1 ∈ L∞(C+), then there exist α, β ∈ C such that R = αVa, S =

βVa and αβ = 1. Here ta(s) = −ids+(1−c)
(1+c)s+id and Vaf = (f ◦ ta)la, f ∈

L2
a(C+) where la(s) = 1−|a|2

((1+c)s+id)2 . Let A =
{
Tφ : φ ∈ C∞c (C+)

}
and

T = Cl A, where Cl A denotes the closure of A in L(L2
a(C+)). Let

A be the smallest closed algebra generated by the Toeplitz operators
Tφ, φ ∈ L∞(C+) in L(L2

a(C+)). In this paper we further show that the
set of all Toeplitz operators defined on the Bergman space L2

a(C+) of
the right half plane with essentially bounded symbols is dense in the
strong operator topology in the space of all bounded linear operators.
As applications of these results we establish that there is no bounded
projection from L(L2

a(C+)) onto T and if Φ0 : A → L(L2
a(C+)) is a

linear isometry such that, for each pair of vectors f, g ∈ L2
a(C+),

sup{|〈Φ0(A)f, g〉| : A ∈ A and ||A|| = 1} = ||f |||g||,

then their exits a unique extension of Φ0 to a linear isometry, Φ, map-
ping L(L2

a(C+)) into itself.
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1 Introduction

Let C+ = {s = x + iy ∈ C : Res > 0} be the right half plane. Let
dÃ(s) = dxdy be the area measure on C+. Let L2(C+, dÃ) be the space of
complex-valued, absolutely square-integrable, measurable functions on C+

with respect to the area measure. The space L2(C+, dÃ) is a Hilbert space
with the inner product defined by

〈f, g〉 =

∫
C+

f(s)g(s)dÃ(s),

and the coressponding norm is defined by

||f ||2 = 〈f, f〉
1
2 =

[∫
C+

|f(s)|2dÃ(s)

] 1
2

<∞.

The Bergman space of the right half plane denoted as L2
a(C+) is the closed

subspace of L2(C+, dÃ) consisting of those functions in L2(C+, dÃ) that
are analytic. The functions H(s, w) = 1

(s+w)2
, s ∈ C+, w ∈ C+ are the

reproducing kernels [4] for L2
a(C+). Let hw(s) = H(s,w)√

H(w,w)
= 2Rew

(s+w)2
. The

functions hw, w ∈ C+ are the normalized reproducing kernels for L2
a(C+).

The sequence of vectors {εn(s)}∞n=0 =
{

2√
π

√
n+ 1

(
1−s
1+s

)n
1

(1+s)2

}∞
n=0

forms

an orthonormal basis for L2
a(C+). Let L∞(C+) be the space of complex-

valued, essentially bounded, Lebesgue measurable functions on C+. Define
for f ∈ L∞(C+),

||f ||∞ = ess sup
s∈C+

|f(s)| <∞.

The space L∞(C+) is a Banach space with respect to the essential supre-
mum norm. For φ ∈ L∞(C+), we define the multiplication operator Mφ

from L2(C+, dÃ) into L2(C+, dÃ) by (Mφf)(s) = φ(s)f(s); the Toeplitz
operator Tφ from L2

a(C+) into L2
a(C+) by Tφf = P+(φf), where P+ de-

note the orthogonal projection from L2(C+, dÃ) onto L2
a(C+). The Toeplitz

operator Tφ is bounded and ||Tφ|| ≤ ||φ||∞. For more details see [6] and
[7]. The big Hankel operator Hφ from L2

a(C+) into (L2
a(C+))⊥ is defined

by Hφf = (I − P+)(φf), f ∈ L2
a(C+). The little Hankel operator Γφ is the

mapping from L2
a(C+) into L2

a(C+) defined by Γφf = P+Mφ(J f) where J
is the mapping from L2(C+, dÃ) into L2(C+, dÃ) such that J f(s) = f(s).

Let D be the open unit disk in the complex plane C and dA = rdr dθ2π be
the normalized Lebesgue area measure so that the measure of D equals to
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1. Let L2
a(D) be the Bergman space, the Hilbert space of functions, analytic

on D and square integrable with respect to the measure dA. It is well known
that L2

a(D) is a closed subspace [5] of the Hilbert space L2(D, dA) with the
set of functions {

√
n+ 1zn : n ≥ 0} as an orthonormal basis. Let P be the

orthogonal projection from L2(D, dA) onto L2
a(D). Let L∞(D) be the space

of complex-valued, essentially bounded, Lebesgue measurable functions on
D with the essential supremum norm. For φ ∈ L∞(D), the multiplication
operator Mφ from L2(D, dA) into L2(D, dA) is defined by Mφf = φf, the
Toeplitz operator Tφ from L2

a(D) into itself is defined by Tφ(f) = P (φf) for
f ∈ L2

a(D). The little Hankel operator Γφ from L2
a(D) into L2

a(D) is defined
by Γφf = PMφ(Jf) where J is the mapping from L2(D, dA) into itself such
that Jf(z) = f(z).

Since the point evaluation at z ∈ D, is a bounded functional, there
is a function Kz in L2

a(D) such that f(z) = 〈f,Kz〉 for all f in L2
a(D). Let

K(z, w) be the function on D×D defined by K(z, w) = Kz(w). The function
K(z, w) = 1

(1−zw)2 , z, w ∈ D and is called the Bergman reproducing kernel

[10]. For a ∈ D, let ka(z) = K(z,a)√
K(a,a)

= 1−|a|2
(1−az)2 . The function ka, a ∈ D is

called the normalized reproducing kernel for L2
a(D).

Define M : C+ → D by Ms = 1−s
1+s . Then M is one-one, onto and

M−1 : D → C+ is given by M−1(z) = 1−z
1+z . Thus M is its self-inverse.

Let W : L2
a(D) → L2

a(C+) be defined by Wg(s) = 2√
π
g(Ms) 1

(1+s)2
. Then

W−1 : L2
a(C+) → L2

a(D) is given by W−1G(z) = 2
√
πG(Mz) 1

(1+z)2
, where

Mz = 1−z
1+z . If a ∈ D and a = c + id, c, d ∈ R, then ta(s) = −ids+(1−c)

(1+c)s+id is an

automorphism from C+ onto C+ and (ta◦ta)(s) = s. Let la(s) = 1−|a|2
((1+c)s+id)2

.

It is not difficult to see that t′a(s) = −la(s). For a ∈ D and f ∈ L2
a(C+),

define Va from L2
a(C+) into itself by Vaf = (f ◦ ta)la. For a ∈ D, it is not

difficult to see that (i)Vala = 1, (ii) V −1a = Va, V
2
a = I, (iii) Va is a self-

adjoint, unitary operator and VaP+ = P+Va. Let L(H) be the set of all
bounded linear operators from the Hilbert space H into itself. Let IL(H)

denote the identity operator in L(H) and LC(H) denote the space of all
compact operators in L(H).

Let U be an open, connected, nonempty and proper subset of C. Let
C∞c (U) be the set of all infinitely differentiable functions on U whose support
is a compact subset of U. The space C∞c (U) is w∗−dense in L∞(U).

Definition 1. The weak topology on L(H) is the topology generated by the
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open neighbourhood base

N (A; (xi)
n
i=1 , (yi)

n
i=1 , ε) =

{
B ∈ L(H) :

∣∣∣∣∣
n∑
i=1

〈yi, (A−B)xi〉

∣∣∣∣∣ < ε

}

for A ∈ L(H), ε > 0 and any finite sets of vectors (xi)
n
i=1 and (yi)

n
i=1 in H.

If (Bα) is a net in L(H), then Bα −→ A weakly if 〈y, (Bα −A)x〉 −→ 0 for
each x, y ∈ H.

Definition 2. The ultraweak topology on L(H) is the topology generated by
the open neighbourhood base

N (A; (xi)
∞
i=1 , (yi)

∞
i=1 , ε) =

{
B ∈ L(H) :

∣∣∣∣∣
∞∑
i=1

〈yi, (A−B)xi〉

∣∣∣∣∣ < ε

}

for A ∈ L(H), ε > 0 and sequences (xi)
∞
i=1 and (yi)

∞
i=1 in H with

∞∑
i=1

||xi||2 <

∞ and
∞∑
i=1

||yi||2 <∞. If (Bα) is a net in L(H) then Bα −→ A ultraweakly if

∞∑
i=1

〈yi, (Bα − A)xi〉 −→ 0 for each pair of sequences (xi)
∞
i=1 and (yi)

∞
i=1 in

H satisfying

∞∑
i=1

||xi||2 <∞ and

∞∑
i=1

||yi||2 <∞.

If H is finite dimensional, then the norm topology and the ultraweak
topology coincide. The strong topology and the ultraweak topology are
both finer than the weak topology, but in general, the ultraweak and strong
topologies are not comparable. But the ultraweak topology is stronger than
the weak topology, i.e., if Bα −→ A ultraweakly, then Bα −→ A weakly.
But if (Bα) is a bounded net in L(H), i.e., there is some M ≥ 0 such that
||Bα|| ≤ M for all α; then Bα −→ A ultraweakly if and only if Bα −→ A
weakly.

Theorem 1.1. (Von Neumann’s Density Theorem) Let R be any self-adjoint
algebra in L(H) containing the identity. Then the ultraweak, strong and
weak closures of R in L(H) are all the same.

Proof. For proof see [9].
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The layout of this paper is as follows. In §2, we prove certain algebraic
properties of Toeplitz and Hankel operators defined on the Bergman space of
the right half plane and show that the set of all Toeplitz operators defined on
the Bergman space L2

a(C+) of the right half plane with essentially bounded
symbols is dense in the strong operator topology in the space of all bounded
linear operators. Let A =

{
Tφ : φ ∈ C∞c (C+)

}
and T = Cl A, where

Cl A denotes the closure of A in L(L2
a(C+)). Let A be the smallest closed

algebra generated by the Toeplitz operators Tφ, φ ∈ L∞(C+) in L(L2
a(C+)).

In §3, we show that there is no bounded projection from L(L2
a(C+)) onto T

and if a ∈ D and R and S are two bounded linear operators from L2
a(C+)

into itself, such that RTψ1S = Tψ1◦ta for all ψ1 ∈ L∞(C+), then there exist
α, β ∈ C such that R = αVa, S = βVa and αβ = 1. Further, using Von
Neumann’s density theorem we establish that if Φ0 : A → L(L2

a(C+)) is a
linear isometry such that, for each pair of vectors f, g ∈ L2

a(C+),

sup{|〈Φ0(A)f, g〉| : A ∈ A and ||A|| = 1} = ||f || ||g||,

then their exits a unique extension of Φ0 to a linear isometry, Φ, mapping
L(L2

a(C+)) into itself.

2 Toeplitz and Hankel operators

In this section we prove certain algebraic properties of Toeplitz and Han-
kel operators defined on the Bergman space of the right half plane. We show
that the set of all Toeplitz operators defined on the Bergman space L2

a(C+)
of the right half plane with essentially bounded symbols is dense in the
strong operator topology in L(L2

a(C+)).

Lemma 2.1. If a ∈ D and φ ∈ L∞(C+), the following hold:

(i) VaTφVa = Tφ◦ta ;

(ii) VaHφVa = Hφ◦ta .

Proof. Let f ∈ L2
a(C+). Since (la ◦ ta)(s)la(s) = s, we obtain

VaTφVaf = VaTφ[(f ◦ ta)la]
= VaP+[φ(f ◦ ta)la]
= P+Va[φ(f ◦ ta)la]
= P+[(φ ◦ ta)f(la ◦ ta)la]
= P+[(φ ◦ ta)f ]

= Tφ◦taf.
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This proves (i). Now to establish (ii), let f ∈ L2
a(C+). Then

VaHφVaf = VaHφ[(f ◦ ta)la]
= Va(I − P+)[φ(f ◦ ta)la]
= (I − P+)Va[φ(f ◦ ta)la]
= (I − P+)[(φ ◦ ta)f(la ◦ ta)la]
= (I − P+)[(φ ◦ ta)f ]

= Hφ◦taf.

Lemma 2.2. For each s ∈ C+, the linear functional f 7→ f(s) on L2
a(C+)

is bounded. Consequently, f(s) = 〈f,Hs〉 for some Hs ∈ L2
a(C+). Further,

||Hs|| ≤ 1√
πr

and r = dist(s, iR).

Proof. Let r = dist(s, iR) and

γs(s1) =

{
0, if |s1 − s| ≥ r
1
πr2

, if |s1 − s| < r.

Then

∫
C+

|γs(s1)|2dÃ(s1) = (πr2)

(
1

πr2

)2

=
1

πr2
< ∞. So γs ∈ L2

a(C+).

Hence, for arbitrary f ∈ L2
a(C+),

〈f, P+γs〉L2
a(C+) = 〈f, γs〉L2

a(C+)

=
1

πr2

∫
|s1−s|<r

f(s1)dÃ(s1),

which equals f(s) by the mean value theorem. Thus, we may take Hs =
P+γs. Finally,

||Hs||22 ≤ ||γs||22 =
1

πr2
.

Lemma 2.3. Assume that φ ∈ L∞(C+) and that the support supp φ is a
compact subset of C+. Then Mφ |L2

a(C+) is a compact operator. Further, the
operators Tφ and Hφ are also compact.
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Proof. Suppose supp φ = M is a compact subset of C+, and let r =
dist(M, iR). Then r > 0. Suppose the sequence {fn} in L2

a(C+) converges
weakly to 0. Then the sequence {fn} must be bounded. Assume ||fn||2 ≤ C
for all n. Then

|fn(s)| = |〈fn, Hs〉| ≤ ||fn||2 ||Hs||2 ≤
C√
πr

for all s ∈ M. Hence |φ(s)fn(s)| ≤ C||φ||∞√
πr

for all s ∈ C+. Also, fn −→ 0

weakly implies fn(s) = 〈fn, Hs〉 −→ 0 for all s ∈ C+. Thus, we may apply
the Lebesgue dominated convergence theorem to conclude that

||φfn||22 =

∫
C+

|φ(s)fn(s)|2dÃ(s)

=

∫
M
|φ(s)fn(s)|2dÃ(s)

→ 0 as n→∞.

Thus the operatorMφ |L2
a(C+) maps weakly convergent sequences into norm

convergent sequences and therefore must be compact. Since Tφ = P+Mφ

and Hφ = (I − P+)Mφ, hence Tφ and Hφ are also compact.

Lemma 2.4. Let G(s) ∈ L∞(C+). Then the little Hankel operator ΓG de-
termined on L2

a(C+) by G is equivalent to the little Hankel operator Γφ de-

termined on L2
a(D) by the function φ(z) =

(
1+z
1+z

)2
G(Mz).

Proof. Notice that the sequence of vectors
{√

n+ 1zn
}∞
n=0

forms an or-
thonormal basis for L2

a(D). Then

ΓG(W (
√
n+ 1zn)) = P+

(
GJ

(
2√
π

(
1− s
1 + s

)n 1

(1 + s)2
√
n+ 1

))
= WPW−1

(
G(s)

2√
π

(
1− s
1 + s

)n 1

(1 + s)2
√
n+ 1

)
= WΓ

( 1+z
1+z )

2
G(Mz)

(√
n+ 1zn

)
for all n ≥ 0.

Thus ΓG is unitarily equivalent to Γφ where φ(z) =
(
1+z
1+z

)2
G(Mz). The

result follows.
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Lemma 2.5. Let G(s) ∈ L∞(C+). Then the Toeplitz operator TG defined on
L2
a(C+) with symbol G is unitarily equivalent to the Toeplitz operator Tφ de-

fined on L2
a(D) with symbol φ(z) = G

(
1−z
1+z

)
. If further, G(Mz) = G(M |z|)

where Mz = 1−z
1+z then the Toeplitz operator TG is a diagonal operator.

Proof. The operatorW maps
√
n+ 1zn to the function 2√

π

√
n+ 1

(
1−s
1+s

)n
1

(1+s)2

which belongs to L2
a(C+). The Toeplitz operator TG maps this vector to

P+

(
G(s) 2√

π

√
n+ 1

(
1−s
1+s

)n
1

(1+s)2

)
which is equal to

WPW−1
(
G(s)

2√
π

√
n+ 1

(
1− s
1 + s

)n 1

(1 + s)2

)
=WP

(
G

(
1− z
1 + z

)
zn
√
n+ 1

)

=WTφ(zn
√
n+ 1),

where φ(z) = G
(
1−z
1+z

)
. Therefore TG is unitarily equivalent to Tφ. Notice

that if G(Mz) = G(M |z|), then φ(z) = φ(|z|). That is, φ is radial. We shall
show now that if φ ∈ L∞(D) and φ is radial then Tφ is a diagonal operator
in L(L2

a(D)). This can be verified as follows: passing to polar coordinates,
we have

〈Tφzn, zm〉 =

∫
D
φ(z)znzmdA(z)

=

∫ 1

0

1

2π

∫ 2π

0
φ(r)rn+me(n−m)it2rdtdr.

Thus

〈Tφzn, zm〉 =


0, n 6= m;∫ 1

0
F (r2)r2n2rdr, n = m.

But

∫ 1

0
F (r2)r2n2rdr =

∫ 1

0
F (t)tndt where F (t) = φ

(
t
1
2

)
, t ∈ [0, 1).

Thus the matrix of Tφ with respect to the orthonormal basis {en(z)}∞n=0

where en(z) =
√
n+ 1zn, n = 0, 1, 2, · · · , is a diagonal matrix with diagonal

entries

an(φ) =

∫ 1

0
F (t)(n+ 1)tndt

where F (t) = φ
(
t
1
2

)
, t ∈ [0, 1). This implies TG is a diagonal operator in

L(L2
a(C+)) since TG is unitarily equivalent to Tφ.
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Theorem 2.1. The set {Tψ : ψ ∈ L∞(C+)} is dense in L(L2
a(C+)) in the

strong operator topology.

Proof. Let T ∈ L(L2
a(C+)). Then S = W−1TW ∈ L(L2

a(D)). Let fi, gi ∈
L2
a(D), i = 1, 2, · · · , N. We shall show that there exists φ ∈ L∞(D) such

that 〈Sf
i
, g
i
〉 = 〈Tφfi, gi〉, i = 1, 2, · · · , N . Let f1, f2, · · · , fn be a basis

of the finite-dimensional subspace of L2
a(D) generated by f

1
, · · · , f

N
. Let

g1, g2, · · · , gn be a basis of the finite-dimensional subspace of L2
a(D) gen-

erated by g
1
, g

2
, · · · g

N
. Clearly, it is sufficient to find φ ∈ L∞(D) such

that 〈Sfi, gi〉 = 〈Tφfi, gi〉 for all i = 1, · · · , n, and j = 1, · · · ,m. Define
an operator

∧
from L∞(D) into Cn×m by (

∧
φ)i,j = 〈Tφfi, gj〉. Suppose

u =
(
uij
)1≤j≤m
1≤i≤n ∈ Cn×m and u is orthogonal to the range of

∧
. Then

n∑
i=1

m∑
j=1

(∧
φ
)
i,j
uij = 0 for all φ ∈ L∞(D). This implies that

∫
D
φ(z)

n∑
i=1

m∑
j=1

uijfi(z)gj(z)dA(z) = 0

for all φ ∈ L∞(D).
Hence

n∑
i=1

m∑
j=1

uijfi(z)gj(z) = 0 (1)

almost everywhere in D. Since the left side of (1) is continuous on D, this
equality holds in fact on the whole of D. Thus the function

F (x, y) =
n∑
i=1

m∑
j=1

uijfi(x)gj(y),

which is analytic in D×D, equals zero whenever x = y. By [8], this implies
that F ≡ 0 on D × D. Because the functions fi, i = 1, 2, · · · , n are linearly

independent we have

m∑
j=1

uijgj(y) = 0 for all y ∈ D, i = 1, 2, · · · , n; but

gj , j = 1, 2, · · · ,m, are also linearly independent, and so uij = 0 for all
i, j. That is, u ≡ 0. Thus the range of

∧
is equal to Cn×m. Thus it follows

that the collection B = {Tφ : φ ∈ L∞(D)} is dense in L(L2
a(D)) in the

weak operator topology. As B is a subspace, i.e. a convex set, its weak
operator topology and strong operator topology closures coincide. Now let
T ∈ L(L2

a(C+)). This implies W−1TW ∈ L(L2
a(D)). Since B is dense in
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L(L2
a(D)) in strong operator topology hence, there exists a sequence {φN} ∈

L∞(D) such that TφN −→ W−1TW in strong operator topology. Thus
TφN◦M = WTφNW

−1 −→ T in strong operator topology as N → ∞ and
φN ◦M ∈ L∞(C+).

Remark 2.1. Notice that Theorem 2.1 remains in force if we replace L∞(C+)
by C∞c (C+) which is a w∗−dense subset of L∞(C+).

3 The algebra of Toeplitz operators

Let A =
{
Tφ : φ ∈ C∞c (C+)

}
. Then A ⊂ L(L2

a(C+)) and let T =
Cl A, where Cl A denotes the closure of A in L(L2

a(C+)). Let A be the
smallest closed algebra generated by the Toeplitz operators Tφ, φ ∈ L∞(C+)
in L(L2

a(C+)). The algebra A is called the Toeplitz algebra.
In this section we show that there is no bounded projection from L(L2

a(C+))
onto T and if a ∈ D and R and S are two bounded linear operators from
L2
a(C+) into itself, such that RTψ1S = Tψ1◦ta for all ψ1 ∈ L∞(C+), then

there exist α, β ∈ C such that R = αVa, S = βVa and αβ = 1. We also
show that if Φ0 : A→ L(L2

a(C+)) is a linear isometry and if for each pair of
vectors f, g ∈ L2

a(C+),

sup{|〈Φ0(A)f, g〉| : A ∈ A and ||A|| = 1} = ||f || ||g||,

then their exits a unique extension of Φ0 to a linear isometry, Φ, mapping
L(L2

a(C+)) into itself.

Lemma 3.1. There is no bounded projection from L(L2
a(C+)) onto T.

Proof. From Lemma 2.3, it follows that Tφ ∈ LC(L2
a(C+)) for φ ∈ C∞c (C+).

Hence Cl A ⊂ LC(L2
a(C+)). We shall now show that LC(L2

a(C+)) ⊂ T. Let
Tr(L2

a(C+)) denote the space of all trace class operators on L2
a(C+) equipped

with the trace norm || . ||Tr. It is well-known that dual of LC(L2
a(C+)) '

Tr(L2
a(C+)) and the pairing is given by (K,T ) 7→ Tr(KT ) = Tr(TK); where

Tr(A) denotes trace of A where A ∈ L(L2
a(C+)). Suppose T = Cl A is a

proper subset of LC(L2
a(C+)). By the Hahn Banach theorem, there exists

T ∈ Tr(L2
a(C+)), T 6= 0 such that Tr(TTφ) = 0 for all φ ∈ C∞c (C+). Let A,B

be two Hilbert -Schmidt operators such that T = AB∗. Let fn = Aεn, gn =
Bεn where {εn}∞n=0 is an orthonormal basis for L2

a(C+). Then

Tr(TTφ) = Tr(B∗TφA) =
∞∑
n=0

〈B∗TφAεn, εn〉,
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and so the last condition may be rewritten as

∞∑
n=0

〈Tφfn, gn〉 = 0 for all φ ∈ C∞c (C+).

That is,

∞∑
n=0

∫
C+

φ(s)fn(s)gn(s)dÃ(s) = 0 (2)

for all φ ∈ C∞c (C+). Because supp φ is compact and
∞∑
n=0

||fn||2 < ∞ and

∞∑
n=0

||gn||2 < ∞, we may interchange the integration and summation signs

in (2) to obtain ∫
C+

φ(s)F (s, s)dÃ(s) = 0

for all φ ∈ C∞c (C+), where F (x, y) =

∞∑
n=0

fn(x)gn(y) = Tr(TGx,y) and

G(x, y) = 〈., Hx〉Hy.

It then follows that F (s, s) = 0 for almost all s ∈ C+; in other words,
the function F (x, y), analytic in C+ × C+, vanishes when x = y. By the
uniqueness principle [8], we obtain F = 0 everywhere on C+ × C+, i.e.,
Tr(TGx,y) = 0 for all x, y ∈ C+. Since the reproducing kernels Hs, s ∈ C+

span L2
a(C+) hence Tr(TK) = 0 for all rank one operators K; by linearity

and continuity, Tr(TK) = 0 for all compact K. Hence T = 0. This is a con-
tradiction. Thus Cl A = T = LC(L2

a(C+)). Since there is no bounded pro-
jection [5] from L(L2

a(C+)) onto LC(L2
a(C+)) and LC(L2

a(C+)) = T, hence
the theorem follows.

Theorem 3.1. Let a ∈ D. If R and S are two bounded linear operators
from L2

a(C+) into itself, such that RTψ1S = Tψ1◦ta for all ψ1 ∈ L∞(C+),
then there exist α, β ∈ C such that R = αVa, S = βVa and αβ = 1.

Proof. Suppose RTψ1S = Tψ1◦ta for all ψ1 ∈ L∞(C+). Then by Lemma 2.1,
RTψ1S = VaTψ1Va. Since V 2

a = I and V ∗a = Va, we obtain

VaRTψ1SVa = Tψ1 (3)
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for all ψ1 ∈ L∞(C+). Let Ma = VaR and SVa = Ga. Then from (3), we
obtain MaTψ1Ga = Tψ1 for all ψ1 ∈ L∞(C+). Hence

(W−1MaW )(W−1Tψ1W )(W−1GaW ) = W−1Tψ1W (4)

for all ψ1 ∈ L∞(C+). Let W−1MaW = Ma and W−1GaW = Ga. From
Lemma 2.5 and from (4), it follows that MaTψ1◦MGa = Tψ1◦M for all
ψ1 ∈ L∞(C+) where Ms = 1−s

1+s . That is, MaTψGa = Tψ for all ψ ∈ L∞(D).
We shall show that Ga commutes with the Bergman shift operator Tz de-
fined by Tzf = zf on L2

a(D). Suppose on the contrary that there is a
nonzero vector f in Ran(GaTz − TzGa). Now MaTψGaTz = TψTz = Tψz =
MaTψzGa = MaTψTzGa. Hence, MaTψ(GaTz−TzGa) = 0 for all ψ ∈ L∞(D).
So Ker Ma ⊇ E where
E = {Tψf : ψ ∈ L∞(D)}. Suppose there is a vector g ∈ L2

a(D) such that g
is orthogonal to the set E. Then∫

D
g(z)ψ(z)f(z)dA(z) = 〈g, ψf〉

= 〈g, P (ψf)〉
= 〈g, Tψf〉 = 0,

for all ψ ∈ L∞(D). As fg ∈ L1(D), we obtain fg = 0. This implies at least
one of the analytic functions f, g is identically zero. But we have assumed
that f 6= 0. Thus g must be the zero function. It follows therefore that E =
L2
a(D). Now since E ⊆ KerMa, we have Ma = 0. Hence Tψ = MaTψGa = 0

for all ψ ∈ L∞(D) which is not true. Thus Ga commutes with Tz. Now let
Ga1 = g ∈ L2

a(D). Then Gaz
n = GaT

n
z 1 = Tnz Ga1 = zng for all n ≥ 0 and

therefore, Gap = gp for all polynomials p(z). Since polynomials are dense
[10] in L2

a(D), for f ∈ L2
a(D), take a sequence {pn} of polynomials converging

to f in L2
a(D, dA). This implies Gapn → Gaf in norm and 〈pn, kz〉 → 〈f, kz〉

for all z ∈ D. That is, pn(z) → f(z) and (Gapn)(z) → (Gaf)(z) for all
z ∈ D. On the other hand, (Gapn)(z) = (png)(z) = pn(z)g(z) → f(z)g(z),
for all z ∈ D. Thus Gaf = gf for all f ∈ L2

a(D); i.e., Ga is the operator of
multiplication by g ∈ L2

a(D). Now MaTψGa = Tψ for all ψ ∈ L∞(D) implies
G∗aTψM

∗
a = Tψ for all ψ ∈ L∞(D); thus, we can deduce in the same way that

M∗a is the operator of multiplication by some φ ∈ L2
a(D). Hence Ma = Tφ

and we have TφTψTg = Tψ for all ψ ∈ L∞(D). Taking ψ ≡ 1, we obtain
Tφg = T1 = IL(L2

a(D)). For non-negative integers m and r, the functions zm

and zr belong to L2
a(D). Since Tφg = IL(L2

a(D)), we get
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∫
D
zm zr φ(z)g(z)dA(z) = 〈φgzm, zr〉

= 〈zm, zr〉

=

∫
D
zmzrdA(z).

This implies that the measure dγ(z) = (φ(z)q(z)−1)dA(z) on D is anni-
hilated by all monomials zmzr,m, r ≥ 0. By linearity and Stone-Weierstrass
theorem it is annihilated by all functions in C(D), and so is the zero mea-
sure and necessarily φq = 1 on D. But this means that the functions
φ = 1

q is both analytic and anti-analytic, and so must be constant. Hence

Ma = Tφ = αIL(L2
a(D)) and Ga = Tq = 1

αIL(L2
a(D)) = βIL(L2

a(D)) where

β = 1
α , α, β ∈ C. Thus Ma = αIL(L2

a(C+)) and Ga = βIL(L2
a(C+)) where

αβ = 1 and R = αVa and S = βVa. This completes the proof.

Theorem 3.2. Let Φ0 : A→ L(L2
a(C+)) be a linear isometry such that, for

each pair of vectors f, g ∈ L2
a(C+),

sup{|〈Φ0(A)f, g〉| : A ∈ A and ||A|| = 1} = ||f || ||g||. (5)

Then their exits a unique extension of Φ0 to a linear isometry, Φ, mapping
L(L2

a(C+)) into itself.

Proof. Let f, g ∈ L2
a(C+). Define linear functional w0

f,g on A by w0
f,g(A) =

〈Φ0(A)f, g〉. From (5), we obtain ||w0
f,g|| = ||f || ||g||. By the Hahn-Banach

theorem [2], there exists an extension, wf,g of w0
f,g to L(L2

a(C+)) such that
||wf,g|| = ||f || ||g||. Further, by [3], it follows that wf,g has a unique decopmo-
sition wf,g = L1+L2, where L1 is ultraweakly continuous; L2

∣∣
LC(L2

a(C+))
= 0;

and ||wf,g|| = ||L1|| + ||L2||. Since
∣∣ ||wf,g|| ∣∣ = || wf,g

∣∣
LC(L2

a(C+))
|| = ||L1||,

we obtain L2 = 0. That is, wf,g is ultrawekly continuous. Now, to prove the
uniqueness of extensions, let Φ1 and Φ2 be two linear isometries that are ex-
tensions of Φ0 to L(L2

a(C+)). Then the linear functionals T → 〈Φ1(T )f, g〉
and T → 〈Φ2(T )f, g〉 are both ultraweakly continuous and agree on A. From
Theorem 2.1 and by Theorem 1.1, it follows that the Toeplitz algebra A is
ultraweakly dense in L(L2

a(C+)). Thus we obtain 〈Φ1(T )f, g〉=〈Φ2(T )f, g〉
for all f, g ∈ L2

a(C+). Hence Φ1 = Φ2. Notice that the linear functional
wf,g is ultraweakly continuous. Now for each T ∈ L(L2

a(C+)), define ΩT :
L2
a(C+)×L2

a(C+)→ C as ΩT (f, g) = wf,g(T ). The map ΩT is a bilinear form
on L2

a(C+) bounded by ||T ||. Thus by [1], there exists an operator Φ(T ) in
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L(L2
a(C+)) such that ΩT (f, g) = wf,g(T ) = 〈Φ(T )f, g〉, for all f, g ∈ L2

a(C+),
and ||Φ(T )|| ≤ ||T ||. The map Φ is linear and that Φ

∣∣
A

= Φ0. We shall now
prove that Φ is an isometry. Let Pn denote the orthogonal projection from
L2
a(C+) onto the span of {ε1, ε2, · · · εn} where {εi}∞i=0 forms an orthonormal

basis for L2
a(C+). It is easy to see that Pn → αIL(L2

a(C+)) in the strong
operator topology. Let T ∈ L(L2

a(C+)) and let Tn = TPn for each n ∈ N.
Then Tn ∈ A for all n ∈ N as the operators Tn are of finite-rank and there-
fore compact and LC(L2

a(C+)) ⊂ A. Again, Tn → T in the strong operator
topology as Pn → αIL(L2

a(C+)) in the strong operator topology. Further, for
f, g ∈ L2

a(C+),

〈Φ(T )f, g〉 = wf,g(T ) = lim
n→∞

wf,g(Tn) = lim
n→∞

〈Φ0(Tn)f, g〉.

Hence, given ε > 0, there exist unit vectors f and g in L2
a(C+) such that

|〈Φ(T )f, g〉| > ||Φ0(Tn)|| − ε = ||Tn|| − ε. Thus, ||Φ(T )|| ≥ ||Tn||, for all n.
Since ||Tn|| → ||T ||, we have ||Φ(T )|| = ||T ||, for all T ∈ L(L2

a(C+)) and Φ
is an isometry.

References

[1] N. I. Akhiezer, I. M. Glazman: Theory of Linear Operators in Hilbert
Space, Monographs and Studies in Mathematics 9, Pitman, USA, 1981.

[2] B. V. Limaye: Functional Analysis, New Age International Limited,
2nd edition, New Delhi, 1996.

[3] J. Dixmier: Les fonctionelles lineaires sur l′ensemble des opérateurs
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