ISSN 2067-9564

STUDY REGARDING THE MANUFACTURING PROCESS OF THE AUTOVEHICLES ROOF BARS

Maria-Magdalena SORA¹

Rezumat. Procesul de inovare reprezintă principalul factor ce contribuie la dezvoltarea durabilă a oricărei industrii. Industria auto este una dintre industriile puternic "afectate" de acest proces al inovării continue. Dat fiind faptul că există o gamă largă de producători de autoturisme și de o gamă variată de modele de autoturisme competiția este una acerbă și, deci, pentru a putea rezista aceștia apelează la inovare. O astfel de inovare o reprezintă barele longitudinale de pavilion, acestea evoluând de la banalul portbagaj de pavilion, la bare fixe de pavilion, sau barele longitudinale, pentru ca, in prezent, să devină bare longitudinale modulare de pavilion. Aceste bare putând fi "modelate" în funcție de încărcătura ce urmează a fi transportată pe pavilionul autovehiculului.

Abstract. The innovation process it's the main contributing factor in a sustainable development of any industry. One of the most affected industries, by this innovation process, is the auto industry. Due to the fact that is one of the most competitive industries, many car producers and a very different range of cars, it has to resort to innovation. The roof bars it is one of the innovations. They have evolved from the ordinary roof trunk, to fixed roof bars or the longitudinal roof bars, to modular longitudinal roof bars. Last of them giving the possibility of being "modeled" depending on the cargo that it has to be transported on roof of the car.

Keywords: Roof bars, Dacia Sandero Stepway, Dacia Duster, Novares Group, plastic injection, painting, assembly of car components, BOM, technical drawing

1. Introduction

The scientific paper will present the benefits of product innovation both from a functional point of view and from manufacturing point of view. The presented innovation leads to process optimization and to an increased customer satisfaction by having a brand-new product with better design and better utility.

During the analyze of the manufacturing process of the longitudinal roof bars and the modular roof bars, presenting each stage, starting from the raw material to the final product, I highlighted the benefits of the innovation.

¹ CMP master student, University POLITEHNICA of Bucharest, IIR faculty, Spl. Independenței 313, sector 6, Bucharest, ZipCode 060042, E-mail: <u>magdalena.sora@yahoo.com</u>

2. Reference models

2.1 Dacia Duster

Automobile Dacia S.A. is the largest Romanian car manufacturer, which, since September 1999, belongs to the French group Renault [1]. The object of activity of the enterprise is the production and sale of automobiles, car parts, machine tools and installations for the automobile industry.

Dacia Duster is an SUV built jointly by the French manufacturer Renault and its Romanian subsidiary Dacia since 2009.

Dacia Duster was originally introduced in the ice racing version prepared for the Andros trophy, first presented on November 17, 2009. The production version was officially unveiled on December 8, 2009 and was later launched at the Geneva Motor Show in March 2010.

In September 2013, the Dacia Duster facelift was presented at the Frankfurt Motor Show. The exterior has undergone major changes; in front a new chrome grille and redesigned headlights, restored roof bars, 16-inch wheels and modest rear modifications. The interior has also been renewed with design and features similar to the new models in the Dacia range.

The second generation of Dacia Duster was presented between 14 and 24 September 2017 at the Frankfurt Motor Show, entering the Romanian market 6 months later, in November 2017.

Several design elements present on the Dacia Duster remind of the class of off-road vehicles - large and rounded wings, double optical blocks, bumper, imposing roof bars, wheel arches and body protection elements. This model is available both in the 4x2 version, city version, and in the 4x4 version, off-road version.

Dacia Duster refers to the name of an all-wheel drive commercial vehicle produced and marketed by Dacia in the 1980s. Dacia Duster was also the name of the ARO 10 model sold on the UK market [8].

Dacia Duster is the one of the models whose manufacturing process of the longitudinal bars will be presented in this paper.

2.2 Dacia Sandero Stepway

The Dacia Sandero model is a 5-door hatchback car, whose production started in October 2007 and whose official launch, on the Romanian market, was on June 3, 2008. Sandero is also the first model whose launch was with the current Dacia logo. The Dacia Sandero Stepway model is derived from the Dacia Sandero model. This is a 5-door crossover that began production in October 2008 in Brazil. In May 2009, its European version is presented at the Barcelona International Motor Show.

In 2012, at the Paris Motor Show, the second generation of Sandero and Sandero Stepway is presented, models that could be ordered starting with October 1, 2012. The new Sandero Stepway, whose manufacture continues until now in Romania factory, was equipped with a higher ground clearance, grey plastic sills ornaments, wing protector and crossover-looking bars.

Following some minor design changes, the Sandero Stepway facelift appeared in 2017, and in 2020 the new Sandero Stepway was launched, the design of which was completely rethought. It is presented as a modern and robust crossover with an impressive profile, fluid horizontal lines, new "Y" shaped lights and a high ground clearance [9].

Sandero Stepway has kept its functionality over time and is one of the models equipped with modular roof bars whose manufacturing process we will analyse.

3. Technical drawing

In Fig. 1. a it's presented the first page from the 2D drawing where are specified the main demands of the product:

• Note no. 1 refers to the specifications, norms and rules used. These are the special features of the product and refer to the security and regulatory requirements. The table contains all the rules applicable to the product. The safety requirement refers to the fixing of the bar on the vehicle and the resistance of the product to the forces applied to it by the load.

The applicable regulations for this product are R064 and R071:

R064 - refers to the recyclability of the product.

R071 - refers to the conditions that an exterior part $\$ accessory of a motor vehicle must comply with.

• Note no. 2 refers to the marking of the part: what type of characters are used and what dimensions, the marking of the materials from which the piece is produced, the supplier's code, the logo, etc.

• Note no. 3 refers to specific or particular requirements, for example: the tightening torque of the part, the load capacity, the parts must not have excess material or scratches on the visible surface, etc.

• Note no. 4 contains other specifications, for example the explanation of norm 071.

• Note no. 5 contains the points of impact for the shock test.

The first page of the 2D drawing also contains the general tolerances, the reference to the HCPP (hierarchy of special features - rules, regulations and requirements), all the changes made, over time, on the product and the references to the annexes of the detailed drawing, see Fig. 1.

CATEGOR I E CATEGORY	CDC/NORME CDC/STANDARD	INDICE LEVEL	DESIGNATION DESIGNATION		
	00-10-050	L	SUBSTANCES A USAGES INTERDITS OU SOUMIS A RESTRICTIONS		
RECYCLAGE	00-10-030		PROHIBITED OR RESTRICTED SUBSTANCES		
RECYCLING	QR(064) 00-10-050	D	CONCEPTION EN VUE DU RECYCLAGE		
	@ R(064) 00-10-000	0	DESTON FOR RECYCLING		
	15-00-003	H	PIECES EN PLASTIQUE. PRESCRIPTIONS GENERALES		
	10-00-000		PLASTIC PARTS GENERAL REQUIREMENTS		
	00-10-415	S	REALISATION ET FOURNITURE DES PRODUITS		
PRESCRIPTIONS	00-10-415		MANUFACTURE AND SUPPLY OF PRODUCTS		
GENERALES GENERAL	00-10-040	R	REPERAGE DES FRODUITS S/R ET DES CARCTERISTIQUES DE SECURITE ET/OU DE REGLEMENTATION		
SPECIFICATIONS	00-10-040	1	IDENTIFICATION OF S/R PRODUCTS AND SAFETY AND/OR REGULATORY CHARACTERISTICS		
	00-10-501	0	MARQUAGE RENAULT OU RENAULT / NISSAN		
	00-10-501	0	RENAULT OR RENAULT / NISSAN MARKING		
CATEGORIE CATEGORY	CDC/NORME	INDICE	DESIGNATION DESIGNATION		NIVEAU D'EXIGENCE / REMARQUES
© ⁵	© _{R(071)} 32-04-837	D	DISPOSITIFS PORTE-CHARGES DE TOIT	TOTALE	
÷	- R(0/1/ 02 04 00/		ROOF LOAD CARRIERS	COMPLETE	
		A	DISPOSITIFS PORTE-CHARGES DE TOIT ESSAIS STATIQUES - VALIDATION	TOTALE	
	32-04-063		ROOF LOAD CARRIERS STATIC TRIALS - VALIDATION	COMPLETE	
	A	A	PIECES ACCESSOIRES EXTERIEUR	TOTALE	
	© _{R(071)} 32-09-038		EXTERNAL ACCESSORY PARTS	COMPLETE	
CONDITIONS	47-03-003	K	REVETEMENTS DE PEINTURE SUR PIECES EXTERIEURES DE CAROSSERIE EN	TOTALE	
GENERALES DU	47-03-003	ĸ	PAINT COATING ON EXTERNAL PLASTIC BODY PARTS	COMPLETE	
PRODULT	30-00-108	A	ASPECT DES ELEMENTS EXTERIEURS RAPPORTES SUR CAROSSERIE APRES C	TOTALE	
PRODUCT	30-00-108		BODYVORK EXTERNAL COMPONENT APPEARANCE AFTER PAINTING LINE	COMPLETE	
SPECIFICATIONS			PROTECTION CONTRELLES AGRESSIONS CORROSIVES AMBIANTES POR PIECE	AS1/VA/E/NG/NT/NL/Z2	
	47-01-000	E	PROTECTION AGAINST AMBIENT CORROSIVE ATTACKS FOR VISIBLE PARTS	AST/VA/E/NG/NT/NL/Z2	
	47-01-000	E	PROTECTION CONTRELES AGRESSIONS CORROSIVES AMBIANTES FOR PIECE	AS1/NV/E/NG/NT/NL/Z2	
			PROTECTION AGAINST AMBIENT CORROSIVE ATTACKS FOR NON VISIBLE PA	NST/107 DINS/117 NO 22	
	47-07-001	H	REVETEMENTS DECORATIFS METALLISES SUR PIECES EN PLASTIQUES	CATEGORIE B	
	41-01-001		METALLIC DECORATIVE COATINGS ON PLASTIC PARTS	CATEGORY B	
	32-06-007	D	BANDES D_ETANCHEITE EN MATERIAU CELLULAIRE ETANCHEITES DIVERSES	CATEGORIE C	
	35-00-001	0	SEALING BANDS TO CELL MATERIAL	CATEGORY C	

Fig. 1. 2D drawing - the main demands of the product

3.1 BOM (Bill Of Materials)

BOM represents the list of constituent components of the product. For each manufactured component is specified the type of material used, it's supplier, technical specifications, part reference and composition coefficient.

For Dacia Duster (HJD project) the constituent elements are the following, see Fig. 2. a. and Fig. 2. b.:

01. Aluminium bar

- 02. Rivkle nut M6
- 03. Front support
- 04. Support rear interior
- 05. Support rear exterior

- 06. Overmolded stud
- 08.Cover upper front
- 09. Cover upper rear
- 10. Cover lower front
- 11. Cover lower rear
- 12. Double thread stud M6
- 14. Fixations foam
- 15. Centering foam
- 16. Cushion front
- 17. Cushion rear
- 18. Hot stamping foil
- 19. Foam after sale
- 20. Square foam

PIECE GAUCHE	REFERENCE PIECE DROIT REFERENCE RH PART				MATIERE R(064) RAW MATERIAL									
		NUMERO	DESIGNATION PART NAME	REF. RENAULT PIECE RENAULT PART N'	ref. Fournisseur Sufflier Part N			TENTE / CODE TENTE COLOR / COLOR CODE	BRILLANCE SHIWING	GRAIN / PROFENDOUR ORAIN / DEPTH	000e ISO <i>150 000e</i>	FOURNISSEUR SUFFLIER	REF. COMMERCIALE COMMERCIAL NAME	TRAITEMEN TREATMEN
ALLIANCE NDIRE: 738217099R 90K ALLIANCE : 738217099R	DIRE : 738200465R	∎a	BARRE BAR		U2 241 A1	20	1120.0	0+R04E SATINE / 205 338		LISSE SMOOTH	ALUMINIUM EN AW 6060	ONAT/ALPROF	EN AV 6060-2	T5 ar T6
			BARRE		112 240 AL			BLACK ALLIANCE / 205 313 or BLACK GRAPHITE / 205 09		LISSE SMOOTH	ALUMINIUM EN AW 6060	ONAT/ALPROF	EN AV 6060-2	T5 ar T6
		0œ	ECROU RIVKLE M6 (010.3 RIVILE NUT M6 (210.3		122 644 AO	-	72	NA		NA	CIDC	BÖLLHOFF	23391060932-02-A	-
		03	SUPPORT AV		112 226 AL	35	39999	NATUREL INORI NATURAL (ELACK)		NA	>PBT-GF30<	SCHULMAN	SCHULADUR POR GF 30	NA
		w	FR SUPPORT		119 559 AL	35	399.9	NATUREL INORI NATURAL (BLACK)		NA	>PBT-GF30<	LANKESS	POCAAN T733	NA
		04	SUPPORT AR INTERIOR SUPPORT AR INT		112 229 AL	3,5	399,6	NATUREL INORI NATURAL (ELACK)		NA	>PBT-GF30<	SCHULMAN	SCHULADUR PCR GF 30	NA
N S N	I ANCE NO I ALL LANCE				120 753 A1	35	399.6	NATUREL (NOR) NATURAL (BLACK)		NA	>PBT-GF30<	LANKESS	POCAAN T7331	NA
I ANC	ANC ILL /	~	SUFFORT AR EXTERIOR		112 230 A1	3,5	340,4	NATUREL INORI NATURAL GLACIO		NA	>PBT-GF30<	SCHULMAN	SCHULADUR PCR GF 30	NA
ξĘ	Å H	05	SUPPORT REEXT		119 558 AL	35	304,4	NATUREL INORI NATURAL (BLACK)		NA	>PBT-GF30<	LANKESS	POCAAN T733	NA
BARRE DE TOIT G / LH ROOF RACK BLA	- H	* 06	STUD M6 SURMOULE OVERMOLDED STUD M6		118 471 AQ	-	18,3	NA		NA	ACIER STEEL	CVB	ACCIAIO 20 Mn B4	
	TOLT RACK	~ US			119 217 AO	-	18,3	NA		NA	ACIER STEEL	MKF FASTERNERS	SAE 10821/ 15825/ 20Mn 84	22-32 Hrs
	Ц Ц Ц	08	Capot haut av		113 729 AL	3,0	139,0	CHROME SATINE / 205 338		203-29 (0,005 mm)	>ABS<	RESINEX	MAGNUM 3416 SC	
	BARRE DE RH ROOF I	4	CAPOT HAUT AV		112 224 AL	3,0	141,2	BLACK ALLIANCE / 205 353	3 +/-02	203-30 (0,02 mm)	>ASA<	BISTERFELD	ASA LI941	
ВAI	A F	09	Capot haut ar Cover Upper ar		112 225 AL	30	835	BLACK ALLIANCE / 205 353	3 +/-02	203-30 (0,02 mm)	>ASA<	BISTERFELD	LG OHEM - ASA LI941	

Fig. 2.a. BOM for HJD (Duster)

a. Roof bar black alliance

		10	CAPOT INF AV COVER LWR FR	112 222 AL	30	57,1	BLACK ALLIANCE / 205 353	3 +/-02	203-30 (0,02 mm)	>ASA<	BISTERFELD	lg ohem - ASA Ligat	
	ц	1	CAPOT INF AR COVER LIAR AR	112 223 AL	30	217,1	BLACK ALLIANCE / 205 353	3 +/-02	203–30 (0,02 mm)	>ASA<	BISTERFELD	lg chem - ASA Light	
	20666' 5 <i>9R</i>	* 2	DOUBLE STUD M6 DOUBLE THREAD STUD M5	112 237 AO	-	54,4	NA		NA	ACIER STEEL	CVB	ACCIAIO 20 Mn B4	
	738: 066i	14	MOUSSE FIXATIONS	112 236 AO	7,3	1,4	NOR BLACK		NA	XEPOM + PAK<	FORMPLAST	21801.080.7,3	
	RE : 738	14	FIXATIONS FOAM	19 960 AO	7,3	1,4	NOR BLACK		NA	XEPOM + PAK<	PRECISION		
		15	MOUSSE CENTREURS	112 235 AO	7,3	12	NOR BLACK		NA	>EPDM + PAK<	FORMPLAST	21901.080.7,3	
	N U U V		CENTERING FOAM	119 561 AO	7,3	12	NOR BLACK		NA	>EPDM + PAK<	PRECISION		
	TOLT D ALLI		SEMELLE AV CUSHON FR	112 231 A1	20	39,2	NATUREL INDRI NATURAL (ELACK)	3 +/-02	203–29 (0.005 mm)	XPP + TPE<	GALLOO MULTIBASE	0P-PP-125T20 MULTIFLEX TES A7512 EVO FXT	
CHROME		17	SEMELLE AR CUSHION RR	112 232 Al	20	104.2	NATUREL INORI NATURAL (ELACK)	3 +/-02	203–29 (0,005 mm)	XPP + TPE<	GALLOO MULTIBASE	0P-PP-125T20 MULTIFLEX TES A7512 EVO FXT	
		18	FILM MARQUAGE A OHAUD HOT STAMPING FOL	113 475 AO	23 µm		0+R0ME 3 MIROIR / 205 391 0+R0ME 3 MIFROR / 205 391		NA	POLYSTER	INTERCOM KURZ LITO	CHROME EXTERIOR GLC73725-05	
	Шų	19	MOUSSE APRES VENTE	14 035 Al	7,3	14	NOR BLACK		NA	XEPOM + PAK<	FORMPLAST	21801.080.7,3	
	HRR P	13	FOAM AFTER SALE	119 562 AL	7,3	14	NOR BLACK		NA	XEPOM + PAK<	PRECISION		
ב	đ	20	MOUSSE CARRÉE SOLIARE FOAM	44 171 AO	2,0	0,5	NOR BLACK		NA	>EPDM + L<	MDE CONVERTING	EPDM-L-44171, 2MM PATRAT 40-8MM	

Fig. 2.b. BOM for HJD Roof bar

b. Roof bar chrome satine

For Sandero Stepway (X52 project) the constituent elements are the following, see Fig. 3. a. and Fig. 3. b.:

01. Aluminium bar

- 02. Modular rotative cover
- 04.Modular front bracket
- 05. Modular rear bracket
- 06. Overmolded M6 stud
- 07. Front cover
- 08. Rear cover
- 09. Rear lower cover
- 10. Front cushion
- 11. Rear cushion
- 12. Fixation foam
- 13. Center foam
- 14. Modular M6 screw T27
- 15. Modular locker cover
- 16. Modular metal clip
- 17. Modular hot stamping foil
- 18. Overmolded M6 nut

					NOTA 8:	TABLEAU	J DE CI	OMPOSANTS E	T DIVER	SITE					
REFERE						COMPONE MPCSANTS MPCNENTS									
PIECE PIECE PIECE PIECE	<i>rs</i>	NUMERO NUMBER	DESIGNATION PART NAME	REFERENCE NOVARES ROMANIA NOVARES PART REFERENCE ROMANIA	REFERENCE NOVARES MOROCCO NOVARES PART REFERENCE MOROCCO	EPAISSEUR 7HIOHNESS		TENTE / CODE COLOR / CODE	BRILLANCE SHAWING	ORAIN / PROFONDEUR GRAW / DEPTH	NDH MAME	FOURNISSEUR SUFFLIER	NCN METALLIQUES NOM COMMERCIAL COMMERCIAL NAME	METALLIQUES NORME DE REFERENCE REFERENCE STANDARC	TRAITEMENT TREATMENT
CASABLANCA : 2 / RH : 73820 7071 / 119333 A2		1	MODULAR Aluminium Bar	116 438 AV/A2	18 438 AK/A2K	3/215	1036	GREY QUARTZ 205-400			Aluminium En av 6060 T6	NOVARES		9R EN 575-3	DEGREASING ACIDE ZIRCONILM PAINT
/ RH		2	MEDULAR ROTATIVE COVER	ER 118 439 AL/A2		3	26.9	BLACK ALLIANCE 205-353	4,5 +/- 0,2 UB	203-77 (3.02 mm)	»ASA«	LG CHEM	ASA LI941		
TANGER - C 73821 2921 R	2	4	MODULAR FRONT BRACKET	18 441 A1/A2	119 344 A1/A2	35	261.3	BLACK			>PP-GF50<	9.JMIKA	THERMOFIL HP F98X99		
21 2 21 2	-	5	MODULAR REAR BRACKET	118 442 A1/A2	119 345 A1/A2	35	375.2	BLACK			>PP-GF50<	9JMIKA	THERMOFIL HP F910X99		
738		6	6 OVERMOLDED MS 116 471 AD		71 7/0		15.8	COLOFILESS			STEEL 20 Mn B4	CV3		EN 19525	Zn/Ni 8
		7	FRONT COVER	118 431 AV/A2	119 336 A1/A2	25	156	BLACK ALLIANCE 205-353	4,5 +/- 0,2 UB	203-77 (0.02 mm)	×1454<	LG C-EM	ASA LI941		
_		ð	REAR COVER	118 432 A1/A2	119 337 AL/A2	25	210,8	BLACK ALLIANCE 205-353	4,5 +/- 0,2 UB	203-77 (0,02 mm)	>ASA<	LG CHEM	ASA L1941		
2€	œ	9	REAR LOWER	118 433	R/A2	4	342	BLACK ALLIANCE 205-353	4,5 +/- 0,2 UB	203-77 (0,02 mm)	~R5A<	LG CHEM	ASA L1941		
ULAR G/D SS LH/RH	0081	10	FRONT CUSHION	118 434 A1/A2	119 338 A1/A2	2	56.9	BLACK ALLIANCE	4.5 +/- 0.2 UB	203-29 (0.005 mm)	×PP TO20 + TPE<	GALLOO + MULTEASE	GPI25T20 + MULTIFLEX TES A75I2 E		

Fig. 3.a. BOM for X52 roof bar a. Tabel of the components

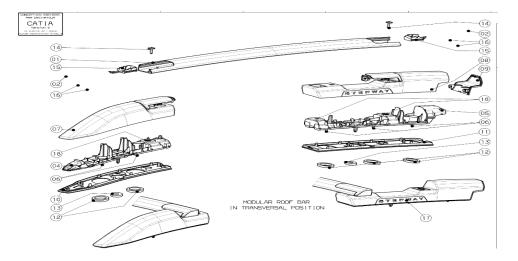


Fig. 3.b. BOM for Sandero Stepway b. the components of the roof rack

From BOM presentation is quite visible the fact that the new product, the Stepway Roof Bar, have less components that HJD Roof bar. In term of costs and productivity this fact can be translated in lower production costs and better productivity, less processes handled by less operators. I need to mention that the final product price is very close for the two analysed references, so all this gain is translated to the company profit [3],..., [9].

Further the paper presents a short analyse and the analogy between the manufacturing processes of these two roof bars.

4. Manufacturing process

The manufacturing process of modular longitudinal bars consists of three main processes: the painting process, the injection process, and the assembly process.

The painting process:

Aluminium bars go through a preparation process before painting, a process that involves washing the bars and treating them with anticorrosive substances, after which they are directed to the primer application line, and then to the paint application lines.

There are two lines of paint application: liquid paint application line, operation performed by an operator, manually, using painting guns and powder paint application line, using a robotic line, equipped with 2 robot hands.

For HJD roof bar we are using the manual paint application, while for X52 roof bar, we are using the robotic line.

To understand better the difference between these two lines, and how important is the paint application, is important to points the following parameters:

- 1. Painting angle
- 2. Distance between the painting pistol and the bar
- 3. Painting trajectory
- 4. Painting pressure and debit

Taking into consideration that for liquid line we are using 2 operators per shift and the four key points described above, the conclusion is that a robotic line is a must have.

Using robot hands allows to obtain a better control on the painting process and a better-quality result.

I cannot present the real data for confidentiality reason, but I can sustain that robotized line have two times less scrap rate than the manual painting line.

The new product, X52 Roof Bar, brought a modern painting line, with a huge improvement in the quality product, productivity, and production cost.

The injection process:

The plastic components of the bars are produced during the injection process. The granular material is dried at a certain temperature in the Moretto station, after which it is transported to the injection machines that melt it and inject it into the mold.

The injected parts are then stored in a buffer stock, from where they will be taken, depending on the orders, on the assembly lines. In Fig. 4. is presented the layout for the injection machine and mold of edge caps left and right.

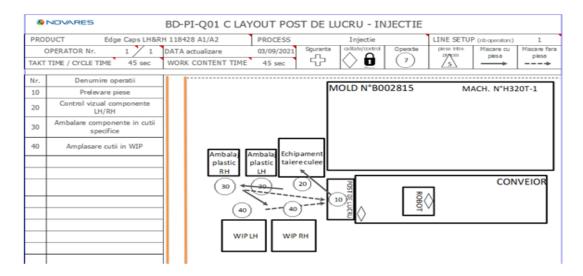


Fig. 4. Injection layout for the edge caps

The lessons learned from the HJD project were applied to X52 project also for injection process. The main action was to reduce the number of operators:

- 1. The number of molds was decreased from 10 to 7, combining front side part with rear side part, left hand part with right hand part. So instead of using several molds obtaining one set of parts, some of the molds were increased, containing all sides references (ex. for front and rear support, left and right)
- 2. Second point considered was the improvement of the machines where normally should work 2 operators. (ex.: For the brackets/supports, an automatic feeder was installed for the 16 inserts that need to be used; in current production, for HJD Roof Bar, there are 2 operators that place the inserts into the robot hand)

122

The assembly process:

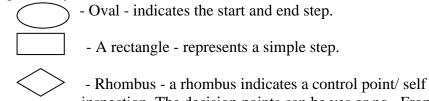
The assembly process is the process of joining all the components to create the final product. This process involves joining the components with the help of screws, by clipping and welding.

BD-PI-Q01 C TEMPLATE FOR LAYOUT OF STANDARDIZED WORK - Layout NOVARES PRODUCT X52 Roof bar assembly Foldable PROCESS Assembly LINE SETUP (nb operator 3 OPERATOR n DATE update 24/05/201 A with part ÷ 2 (\mathbf{r}) 75 TAKT TIME / CYCLE NORK CONTENT TIMI 65 sec ---+ 65 sec TIME Designation of operation 650x800 Dimensiuni standard WIP 1 Take the FR & RR support from WIP troley 2 Place FR & RR support in assy focure 600x600 3 Take the cushions FR from WIP troley TROLLEY 4 Take the cushions RR from WIP troley SUPPORT FR 5 Assembly FR & RR cushions UPPORT RE 6 Place 4 x foam washer on RR support Place 3 x foam washer on FR support SUPPORT 8 Take the RR cover from WIP trolev 9 Take the FR cover from WIP troley 10 Assembly cover on FR support 4 11 Assembly cover on RR support WIR WH WI WP TROLLEY FE TROLLEY RE TROLLEY RF TROLLEY FR 12 Assembly lower cover on RR support COVER COVER **OISHION** CUSHION Take the FR & RR suport subassy Place the part on support for next operation

In Fig. 5. is presented the layout for the assembly line for the roof bars.

Fig. 5. Assembly layout.

Flowchart of the manufacturing process:


The flowchart is a diagram that uses graphic symbols to describe the nature and the steps made in a process. This type of diagram helps us to understand how the process really works, with its help we can forecast or plan various changes in the process. Among the benefits of using the flowchart we can list:

- 1. It promotes understanding of a process, explaining the process step by step and presenting the steps graphically.
- 2. It is a tool for employee training because it represents in a graphical way the sequence of the steps. Flowchart can be very useful in training employees to perform the process in accordance with existing standardization procedures.
- 3. Helps us to identify the problem areas and opportunities to improve the process.

4. Describes the customer-supplier relationship, helping the people involved in the process to understand who their customers are and when they are in the role of supplier.

The symbols used in flowchart have a specific meaning and are connected to each other by arrows that indicates the flow from one step to another.

The general symbols are:

inspection. The decision points can be yes or no. From this rhombus must emerge two possible variants that indicate the evolution of the process.

- Circle - a circle indicates that a flowchart step is connected to another page or to another part of the flowchart. Usually, a

letter is written in a circle to show the connection.

- Tria

- Triangle shows where the units of measurement appear in

the process.

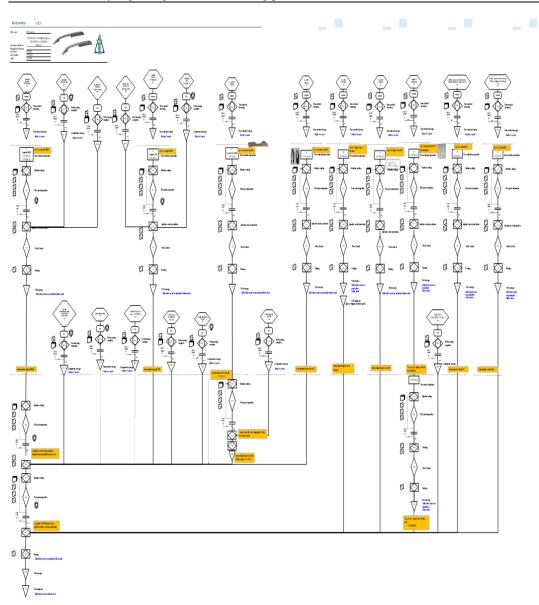


Fig. 6. The flowchart of manufacturing process for roof bars

In the Fig. 6. it's presented the flowchart of the production for the longitudinal modular roof bars within Novares factory [2].

Conclusions

The benefits of the innovation of longitudinal roof bars from fixed version to modular version:

- 1. For the painting process, the replacement of the manual painting line with the automatic painting line reduced the number of the operators, decreased the scrap rate and improved the quality of the product (painted bars).
- 2. For the injection process, there was an important improvement by decreasing the number of the molds used to produce all the components, by adding modern solutions for reducing the number of the operators and reducing their efforts.
- 3. For the assembly line an assembly machine and an operator were removed, using a single operator to prepare the front and rear support subassembly. Here I want to highlight that sometimes the solutions can be reversed, using operators instead of complicated assembly machines, if the part design is user friendly.
- 4. The part design was a real success. Even if there is something wrong in the process and the final part has a defect, the current design allows to rework (by replacement) all the impacted components. In opposite side, the fixed bars with defects are not reworkable, so lots of components need to be scrapped, causing a major cost in case of nonconformity.

REFERENCES

[1] www.Dacia.ro

- [3] "Definition of roof-rack" www.dictionary.com, 1 februarie 2019
- [4] Sturney, Hery; Walter Staner, H. 1978 "Mitsubishi Mirage" The Autocar
- [5] Dahl, Timothy 4 mai 2018 "How to choose the right roof rack to carry all your gear" Popular Mechanics
- [6] www.renault.com
- [7] "Dacia Sandero va fi lansat oficial pe 3 iunie 2008" www.Informatii.Auto.ro, 27 mai 2008.
- [8] "Inauguration of second production line at Renault-Nissan Tangier plant" <u>www.renault.com</u>, 08.10.2013.
- [9]"Dacia Duster la Salonul Auto de la Geneva" 2019, <u>https://www.auto.ro/dacia/dacia-duster-</u> ultimate--cel-mai-puternic-duster-din-istorie-face-furori-la-salonul-auto-de-la-geneva--56270.html

^{[2] &}lt;u>www.novaresteam.com</u>