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Rezumat. În această lucrare sunt prezentate metode de studiu pentru reglarea automată 

a stabilităţii absolute în cazul sistemelor dinamice neliniare. Sunt menţionate două 

metode pentru stabilitatea absolută cu criterii şi mod de aplicare: a) metoda Lurie cu 

determinarea efectivă a funcţiei Liapunov; b) metoda frecvenţială a cercetătorului român 

V.M. Popov utilizând funcţia de transfer în cazurile critice. Sistemele dinamice neliniare 

care sunt raportate la clase speciale includ blocuri liniare şi neliniare. Datorită 

perturbaţiilor compuse cu acţiune inversă de răspuns a componentelor regulatoarelor 

automate,acestea conduc la obţinerea unui regim absolut stabil. Modelarea matematică 

este analizată numeric, iar aplicaţia realizată cu aceste două metode este utilizată din 

industria tăierii metalelor, în stabilitatea absolută a  aeroplanelor echipate cu pilot 

automat sau în oscilaţiile de ruliu pentru navele maritime. 

Abstract. In this paper there are presented methods of study for the automatic regulation 

of the absolute stability in case of the nonlinear dynamical systems. There are specified 

two methods for the absolute stability with criteria and mode of application: a) the Lurie 

method with the effective determination of the Liapunov function; b) the frequencies 

method of the Romanian researcher V. M. Popov using the transfer function for the 

critical cases. The nonlinear dynamical systems which include nonlinear and linear 

blocks are reported to the special classes. Due to the coposed perturbations with inverse 

response action of the automatic regulator components these will lead to obtaining an 

absolute stable regime. The mathematical modelling is numerically analysed, and the 

realized application by these two methods is used in the metal cutting tools machine, in 

the absolute stability of the rate of aircrafts equipped with autopilot or in the case of the 

rolling oscillations for the ships.  

Keywords: Nonlinear systems; automatic stabilization; frequencies method; Liapunov method 

1. Introduction  

The automatic regulation for the stability of dynamical systems holds a 

fundamental position in science and technique, following the optimization of the 

technological process of the cutting tools, of the robots, of the movement vehicles 

regime, or of some machines components, of energetic radioactive regimes, of 

chemical, electromagnetic, thermal, hydro-aerodynamic regimes, etc. 
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Both studies and technical achievements are completed with mathematical models 

for closed circuits with input - output, that enable automatic regulation to integrate 

some mechanisms and devices with inverse reaction of response for controlling 

and rapidly and efficiently eliminating the perturbations which can appears along 

these processes or dynamical regimes. Generally these dynamical regimes are 

nonlinear, thus there were necessary some contributions and special achievements 

for automatic regulation, in order to generate automatic regulation of absolute 

stability (a.r.a.s.) for these classes of nonlinearities. 

We highlight two special methods (a.r.a.s.):  • Liapunov's function method 

discovered by A. I. Lurie [13,15,20] and developed into a series of studies by M. 

A Aizerman, V. A. Iakubovici, F. R. Gantmaher, R. E. Kalman, D. R. Merkin [14] 

and others [1,17]. 

 • The frequency method developed by the Romanian researcher V. M. Popov [18] 

generalizing the criterion of Nyquist, then developed in many studies [1, 2, 15].  

We note the well-known contributions of Romanian researchers on the stability 

and optimal control theory: C. Corduneanu, A. Halanay, V. Barbu, Th. Morozan, 

G. Dinca, M. Megan, Vl. Rasvan, V. Ionescu, M. E. Popescu, S. Chiriacescu, A. 

Georgescu and also directly on (a.r.a.s.): I. Dumitrache [4] D. Popescu [16], C. 

Belea [2], V. Rasvan [19], S. Chiriacescu [3] and other recent works [6-12]. 

The research has shown that both methods are equivalent, and studies can be 

qualitatively or numerically. In this paper we will present the actual working 

methods in the cases of singularity studies through applications. 

2. (A.R.A.S.) Using the Liapunov's function method 

In this part we'll present Lurie's ideas and the effective method founding 

Liapunov's function [2, 13, 14, 19]. Generally, systems of automatic regulation are 

composed of the controlled processor system, the sensory elements of 

measurement, the acquisition board, and the feedback controller mechanism. The 

regulator represents all the sensors and the acquisition board, but the controller is 

including feedback mechanism. Parameters characterizing the object of the 

control system that controls woring mode are measured by sensors, and their 

records on the sensor response mechanism   are transmitted to the acquisition 

board. This processes of command  , are mechanically transmitted to the 

controller which, on its turn, distributes the object state, and interact 

simultaneously adjusting the response mechanism. We highlight the dynamic 

system equations. We note by nxxx ,,, 21   the state parameters of the regime's 

subject which must be controlled, the coordinates and the sensorial speeds. We 

rename in variation of these parameters if the open circuit (excluding the 

controller) system is described by linear differential equations with constant 
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coefficients: nkxax jkj

n

j

k ,1,=,=

1=

   . If the system is with closed loop then the 

variables nxxx ,,, 21   will influence the regulation body, and we note by   its state. 

In this case for the autonomous closed system we have the equations:  

nkbxax kjkj

n

j

k ,1,=,=

1=

    (1) 

We'll consider that the mechanism or inverse reaction is determined on the output 

  with the rigidity connection on the input   :  

 k=   (2) 

The acquisition board collects the signals and transmits the input sensors in order 

to obtain the embedded system:  

 rxc jj

n

j


1=

=   (3) 

where rc j ,  are transfer numbers,  r is the transfer coefficient of the inverse rigid 

connection, 0>r  (the regulator characteristics) [13,14,15]. The connection 

between the output function   (linear) of the controller and the nonlinear input   

in the case of automatic regulation is express by the relation:  

)(=    (4) 

The characteristic function of the controller )(  , ),(   is continuous and 

verifies the conditions [14,6,7]:  








=)()

00,>)()

0=(0))

0






dc

b

a

  (5) 

Observe that )(=   is graphically ascending in the quarters I, III. The functions 

)(  are held admissible, and is verified the sector condition:  

k<
)(

<0




  
(6) 

where k  is the amplification coefficient.  

Example 1. 

     • 1>1),(ln)(=)( 2 ksgn    ; 

     • aka 1),e(=)(   . 
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The equations (1), (3), (4) model the perturbed system with zeros ,0)(0,0,x , 0.=  

Using the nonsingular square matrix kjaA =  of degree 1,>n  

















nb

b

B 
1

= , )(= 1 nccC   ,  C' the transpose matrix of  C, this system can be:  

),(=,=   BAXX   


















nx

x

XrXC 
1

=,=   (7) 

Observation 1. It is known that for the linear system AXX  , the second method 

of Liapunov for the null solution stability consists in ascertaining a Liapunov 

function )(xVV   fulfilling the regularity conditions associated with this system 

[1,20]. A simple technique is to search V  like square form positive defined 

PXXV '  and XPAPAXV )'('   associated with the autonomous system where 

0)0(,0)0(  VV  . For the simple or asymptotic stability in the proximity of the null 

solution must have negative sign (or be negatively defined). It must:  

QPAPA '  (*) 

Where the matrix nnQP R,  Q are symmetrically and positives. So, practically it 

is chosen Q randomize fixed and is determined the matrix P  from the equation (*) 

with A nonsingular. 

Bringing the system (7) to the canonical form and determining the Liapunov 

function: 

Suppose that  A with 0=det 0 A  is Hurwitz, which means the characteristic 

polynomial )(P  has simple roots with nkRe k ,1,=0,<)(    

0=)(det1)(=)( EAP n    (8) 

The system (7) is brought to the canonical form if the matrix A is brought to the 

Jordan form 
















n

diagAJ





0

0

==

1

  . It is determined a non-degenerate matrix 

)(= kjtT  for the diagonalization of matrix A  with the relation:  

0det,=,=1  TTJATJATT  (9) 

We make the linear transformation:  

















ny

y

YTYX 
1

=,=  (10) 
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Obtaining from (7): 

 rTYCBATYYT  =),(=,=   which means:  

TCCBTBrYC

BJYY





 =,=,=

),(=,=

1
1

1
'
1

1



 
 (11) 

Reducing the system (1) with the linear transformation:  



















nz

z

ZrYCBJYZ 
1

11 =,=,=   (12) 









)(=

)(=

1

1





rZC

BJZZ




 (13) 

The disturbed system (13) with the equilibrium solution ( 0)=0,= kz  will be 

equivalent with the system (7) with the equilibrium solution 0)=0,=( kx  and the 

transformation (12) will be non-degenerate if the determinant of the system (13) is 

non-null.  

00,= 1
1

1
1

1



  BJCr

rC

BJ
 (14) 

Retuning to TCCBTBABTJ  =,=,= 1
1

1
11  transforms we obtain from (14) the 

final condition:  

01   BACr  (15) 

Lurie's problem consists in calculating the asymptotic stability conditions of the 

(7) equivalent with (13) with the null solution respectively 0)=0,=( kx  , 

0)=0,=( kz  for the initial perturbations and for any admissible functions )(  

defined in (5), (6). This type of stability where the systems (7), (13) have a linear 

part which is the A  and a nonlinear part which is )( , is named absolute 

stability (a.s), [1, 16] It is observed that if )(  is linear, than the systems are 

linearized being asymptotically stable. The simplicity of system (13) entails 

immediate techniques for determining the Liapunov function ),,,(= 1 nzzVV   

attached to the system (13). The function ),( zV  of class 1C  is Liapunov function 

from the system (13) if 0=0)=0,=( zV  and if it is positively defined 0>),( zV  

and radial unlimited to   , with the absolute derivative 
dt

dV
V =  0)0,0( V  and 

V negative defined 0<
dt

dV
 for 0)0,(  z  in the proximity of the equilibrium 

point, therefore we obtain absolute stability. Here, for the case of automatic 

regulation we choose VV ,  having the special form that verifies these conditions. 
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So we search the function ),(= zVV  composed by a square form kz  

corresponding to the linear block A  and an integral term corresponding to the 

nonlinear part. 




dzVdPZZzV )(),(=)(=),(
0

1
0    (16) 

From theory [1,4] PZZ   is the square form defined strictly positive if the matrix P  

is symmetric )=( PP   and we have QPAPA  =  where Q  is symmetric and 

positive (with the eigenvalues positive). The integral term from (16) is strictly 

positive from the conditions (5) with 0  and 0=0)=0,=( zV  . Next are 

verified the regularity conditions with V  attach to (13), and with (15) are met the 

conditions for the parameters rck ,  in order to obtain (a.r.a.s.). From (16) using 

(13) and:    ZPBZPBPZBPBZPZBPPQQ )2(=)(=,=,= 11111  , 

for:  

111
2 )())(()()(=

),(
CPBZPZBrZPJPJZ

dt

zdV



  

we obtain:  

0=0)=0,=(;
2

1
)(2)(= 11

2  zVZCPBrQZZ
dt

dV 







  (17) 

The connection between the steps is obvious: from the matrix components 

)(),( ijij qQpP  to AJPPnjiji diag=,=,,1,=,0,    than from QQ =  to 

 ijjijiij ppq  =  which means:  

ji

ij
ij

q
p

 
=  (18) 

Observation 2. The matrix A  is stable with 0 ji   if Q  is a square form 

positively defined. 

Example 2. If choose EQ =  the unit matrix and P  obtained from (18) than the 

observation below is valid. Because 0<V  we prove that )( V  is positively 

defined. We apply in (17) the Sylvester criterion demanding that all diagonal 

minors of (17) to be positive. Because Q  is positive like square form, than the 

first n  inequalities are verified; it rest the last inequality from (17) after the square 

form in z  and which is:  


















 

11
1

/

11
2

1

2

1
> CPBQCPBr ; 11

2

1
, CPBrEQ   (19) 
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If the regulator parameters verify the conditions (15), (19) there are sufficient 

conditions for the asymptotic stability of the system (1), (3), (4) for the solution 

0)=0,=( x  [13, 19, 11]. 

Remark1. A technique choice of the square form )(1 zV  for ijp  according to Lurie 

is:  

jk

jjkk
n

j

n

k

ks

sn

k

kk

s

k

zaza
zzzzV







  





1=1=

2
2

2

1=

212

1=

1
2

=)( , 0  

where saaa 221 ,,,   are intricately conjugated, ns aa ,,12   are real, corresponding to 

roots k  determining the coefficients ka  . 

Remark2. The two transformations for the diagonal system (1), (3), (4) to obtain 

(13) can be directly replaced with the transformation [15]:  

i
i

ik
n

i

k z
D

N
x

)(

)(
=

1=





  (20) 

where from (7) it is obtained )(=)(),(1)(=)(

=1

 iki

n

i

k
n DbNDP  , ikD  are the 

corresponding algebraic complements of ),( ki  from EAD  =)(  . In this case the 

simplified system analogous (13):  

nkrzfzz ii

n

i

kkk 1,...,=),(=),(=

=1

    (21) 

for which we will build easier ),( zV  .   

Determining of ),( zV with a new efficient method for (13) or (21) 

Following the form of )(1 zV we choose the function ),( zV  for (21). 

 






0

1

2211
2 )(),...,,(

2

1
),( dzzzFzAzV

n

j

nnjj  (22) 

0

1.

,21

1
),...,,( 



 
 k

n

kj

kj
kj

n zzzzzF 


 (23) 

where, R jjA ,0  will be determined. From: 

 
 




























0

2

10 ,

)(

21

0

)(
0),...,,(0

1
dsezdsezzzzzFdse

j

s

j

kj

s

kjn

s

kj

jkjkj 


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results that F  is nullify just for 0)0,...,0,0( 21  nzzzF  and  





0

0)( d .  

So, ),( zV  has the positive sign defined and 0)0,0(  zV . 

Compute 
dt

dV
 associate to the system (21) and it must be )( V  of positive sign 

defined. 

  
   




















n

j

n

k kj

k
jjjj

n

j

n

kj

kj
kj

kjj
jjj fAzrzzzA

dt

dV

1 1

2

1 1,

2 2)(2 








  

From 0,0,2

2

11,

















 


j

n

k

kk

n

kj

kj
kj

kjj
rzzz 




 

we obtain the first three terms positives and we must nullify the coefficient of  : 

njfA

n

k kj

k
jjj ..1,02

1




 





  (24) 

In this quadratic algebraic system (24) we can consider 
j

jA


1
 , and jjf ,  as 

known, we determine the coefficients njj ..1,   and the other conditions from 

(19). If in (24) divided with j  and summing we obtain 

 
 

















 n

j

n

j j

j

j

jj
n

j j

j fA

1 1

2

2

1

,







 (25) 

So, we must have 



n

j j

jj fA

1

0


, and the solution of the system (24) ),...,,( 21 n  

is in this hyper-plane (25). 

For the case when a root is null 0=(0)P  and the others have 11,...,=0,<)( nkRe k  

the system (13) with 








nz

z
Z

~

=  becomes:  

 rzCZCbzBZJz nn  0101

~~
=,=,

~~~
=~ 

 (26) 

where for z~  we have the matrix Z
~

 and J
~

 of degree 1)( n  , 11

~
,

~
CB  row, column 

matrix 1)(1,1,1),(  nn  . In this case, the Liapunov function receives the form:  
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







  


dzPzazzzV )(~'~=),,~(
0

2
11  (27) 

For further evidences and recent applications we recommend the bibliography [2, 

15, 14, 11, 12].  

2.1. The frequency method for (a.r.a.s.) 

This method obtained by V. M. Popov [18] is applied to the dynamical system 

with continuous nonlinearity. We will present in this section the method with the 

criteria given by Aizerman, Kalman, Jakubovici [19,14]. Let be the dynamical, 

autonomous, non homogeneous system:  

)(=,=;=;1,...,=,=

1=1=

   uxc
dt

dx
xniubxax ll

n

l

ilil

n

l

i
  (28) 

where liil cba ,,  are real constants, u  is the arbitrary function of input , continuous, 

nonlinear with )(  and   is the output function. Using the Laplace 

transformation, replacing the operator 
dt

d
 with s  we obtain from (2):  

nixcubxasx ll

n

l

ilil

n

l

i 1,...,=,=,=

1=1=

    (29) 

Eliminating from (21) the characteristic parameters of the regulator is obtained:  

))((=,)(=  sWusW  (30) 

where 
)(

)(
=)(

sQ

sQ
sW

n

m  is the transfer function and )(sQ  are polynomials nm <  . [4,6,16] 

The transfer function connect   and   ; the function   verifies the conditions (5) 

and the sector condition (6) k<
)(

<0



 - the plot )(=   in the plane ),(   

will be the sector  k )(0  . The sector condition and the nonlinearity of   

determine the system ),(   with closed loop through the impulse function  . We 

study the absolute stability of the perturbed system (29) from the null solution 

0)=0,=( ux  . Because the system is closed and nonlinear we can't applied directly the 

Nyquist criterion, [4, 6, 18]. If  k  then the system is linear and it can be applied 

this criterion. It can be observed that the block lil xa  is linear and ubi  is nonlinear, 

thus it results that the roots of characteristic polynomial 

0,=)(0,=)1)((=)( iPEAP    the poles of )(sW  and k  will influence the 

determination of the absolute stability criteria. From 1=),()(=)=(  jjVUjsW   

we have the hodograph for the axis ),( VU  [2, 4, 6, 7, 15]:  
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 ),0(=),(= VVUU  (31) 

If all poles of )(sW  have 0<)( isRe  then the system is uncritical; if through the 

poles of )(sW  is a null part or on the imaginary axis and the rest we have 0<)( isRe  

then the system is in the critical case. We enunciate the criteria for absolute 

stability of automatic control (a.r.a.s.) with respect to the frequency method.   

Criterion1. (the uncritical case). Let there be the conditions: 

a) The function )(  verifies (5), (6) 

b) All poles of )(sW  have 0<)( isRe   

c) If there exists a real number Rq  that 0  is satisfied the condition:  

   0)(1
1

  jWqjRe
k

 (32) 

Then the system (20) is automatic regulated and absolute stable for the null 

solution 0)=0,=( ux  .  

From (32) is obtained:  

0)()(
1

  VqU
k

 (33) 

The criterion (32) geometrically shows that in the plane geometric VVUU =,= 11  

exists the line (33) passing through 







 ,0

1

k
 and the plot of the hodograph is under 

this line for 0>0,k  .   

Criterion2. (the critical case when there is a simple null pole 0=0s  ). Let there 

be satisfied the conditions: 

a) The function   verifies (5), (6). 

b) )(sW  has a simple null pole, and the others poles is  have 0<)( isRe .  

c) We have 0>)(lim=
0

ssW
s

  and exists Rq  for 0 verifying the condition 

(33). Then for the system (28) for the null solution we have (a.r.a.s.).   

Criterion3. (the critical case when 0=s  is a double pole). Let there be the 

conditions: 

a) The function )(  verifies (5), (6) and the sector condition for =k  in the 

quarters I, III. 

b) )(sW  has a double pole in s=0 and the others poles have 0<)( isRe .  
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c) It is verifying 0>)(lim= 2

0
sWs

s
  ,   0>)(lim= 2

0
sWs

ds

d

s
  , 0<)(=)(  jImW  for 

0  then for the system (28) we have (a.r.a.s.) for the null solution.   

Observation3. The shape of these criteria (I, II, III) has an analytical character 

and their verification is required for constructing hodograph values of the 

coefficients by numbers. For special cases the recommended monographs are [2, 

4, 15, 19]. 

3. The study of the absolute stability of aircraft course with automatic pilot 

We’ll consider the airplane fly in the vertical plane xOy , the longitudinal axis of 

the aircraft is parallel with the horizontal axis Ox  and the vertical plane 

constitutes the symmetry plane for the aircraft.  In the longitudinal fly course 

(horizontal) can appear some perturbations with angular variations for:  the pitch 

angle  , between the longitudinal axis and Ox , the speed angle on the trajectory 

of fly  , with the axis Ox compared with the considered system   , 

represents the attack angle [17]. 

Considering these 3 angles without yaw and roll, it is written the system of 

disturbed differential equations compared with the mass centre, corresponding to 

 ,, , the coefficients being linearized, depending of the gyroscopic momentum 

created by the stability gyroscopes and the automatic regulation mechanisms for the 

pitch stability [5,17]. Eliminating  ,     from the system we’ll study the equation 

for  in concordance with the regulator characteristics. The object of automatic 

regulation is the horizontal course of the plane. The important elements of the 

measurement, control, sensors and with response with inverse reaction to the 

perturbations that compose the regulator are considered: a gyroscope that measures 

the pitch speed   and a gyrotachometer that measures the angular speed  , [5,17]. 

With sensors and potentiometers help these values are transmitted on the collector 

plate, while transducers and amplifiers are turned into electrical signals, they are 

transmitted through the input function   for the output command function to the 

server  rCC  
21 . By mechanical, electromagnetic, hydroelectric and 

gyroscopic effects, with the reaction parameter   determined, in accordance with 

the conditions from §2, it is obtained the stability for the null solution.  
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Fig. 1 The momentums in the case of the airplane dynamics. 

The mechanical reactions of replay to the control will be transmitted by the 

commanded stabilizer to the ailerons, shutters (solid or jet type), horizontal 

empennage, horizontal rudder, to the pitch momentum around the Oy axis to 

converge to zero, considering that the perturbations moments by rolling or yaw 

are very small; in this way it is obtained the absolute stability of the horizontal 

course, (fig. 1). 

3.1. The method of the Liapunov solution for (a.r.a.s.). 

 We’ll write the reduce system of equations dimensionless [17], corresponding to 

the pitch perturbation x  in concordance with the functions and characteristics 

of the regulator connections. 

dt

dx
xrxcxclmyylxaxax    ;;; 2121  (34) 

Here, in the constants that appear have been included mass moments, moments of 

inertia, gyroscopic moments 2
2
121 4,0,,, aamlaa   and the characteristic parameters 

of the regulator )(,,0,, 13221 amlblbrcc  . The right side of the equation is 

actually the expression of the server represented by the nonlinear function )( . 

We will write the system (34) with (1)-(4) using the next notations:  xx1 , 

  12 xxx , lyxx  23
 , y , )(  y . 

 rxcyByAxx  '),(,   (35) 

The matrix from (35) are: 












































































0

,

0

,

0

100

010

, 2

1

3

2

123

2

1

c

c

C

b

bB

aa

A

x

x

x

x  (35') 
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Using the linear transformation: 



















3

2

1

,',

u

u

u

urxCBAXu    (36) 

We obtain the simplified system, by derivation: 

)('),(  rUCBAUU    (37) 

The system (35) has the unique solution )0,0(  x  and (37) )0,0(  U . The 

absolute stability will be achieved relatively to these null solutions. The 

characteristic polynomial 0)det()(  EAP   , 0)( 21
2  aa   with the 

notations: qapa  21 ,2  has the roots: 

0,0,0;, 321
2

2
2

1   qppqpp  (38) 

After the diagonalization method (9) – (13), the system (37) will be transformed 

with TzU  , 3,2,1,),( jitT ij , determining the matrix T  with (9) diagAJTJAT  , , 

and thus obtaining : 

















































































 

3

2

1

2121

1

2

1

21

2

21

1

2121

21212211

,

1)(

10

10

0

0
11

1

)(

1

)(

1

z

z

z

zTT


















 

(39) 

)('),(1  rTzCBTJzz     (40) 

The system (40) is equivalent with (35) (36), and has the unique solution 

)0,0(  z   and for this solution we study (a.r.a.s), determining the Liapunov 

function. To build the Liapunov function corresponding to the transformed system 

(40) ))(,( zVV  , we apply the calculus technique  presented in (22) – (25) for 

the special case 0,0)Re( 32,1    at (26), (27). The system (40) became: 

)();(),();( 332211
'
33

'
1222

'
1111  rzfzfzfbzbzzbzz    (41) 

2213
'
3213

'
2223

'
1 )(,, bbbbbbbbb   ; 

21

1
3

212

221
2

211

211
1 ,

)(
,

)( 





 c
f

cc
f

cc
f 









 . 

In this case, we choose the Liapunov function in accordance with (22), (27) 







0

2
3

2
22

2
11 )(

2

1

2

1

2

1
),( dzAzAzAzV  (42) 
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where 0,, 21 AAA  are fixed, 0)0,0(  zV  and ),( zV  is positively defined. 

Compute the derivative V associated to the system (41) 

)()()( 33
'
3

2

1

2

1

'22  zfAbzfbArzAV

j j

jjjjjjjj  
 

  (43) 

We observe that taking 0
1


j

jA


 the negativity of this form  is ensured from 

the first  terms, forcing the cancellation of the last term: 0' 33  fAb , that means: 

0
)( 1

1

2131

1

'
3

3 



lma

c

baba

c

b

f
A . From  



















2

1

'
22

2
2
1 )(

j

j
j

j
j f

b
zrzzV


  (44) 

The quadratic form is positively defined for )( V in relation with ,, 21 zz , with the 

system (41) or (9). From the Sylvester determinant is obtained the necessary and 

sufficient condition (41) for the rigidity coefficient. 

2

2
2

'
2

2

1
1

'
1





























 f

b
f

b
r


 (45) 

In this way, the characteristic parameters of the regulator 21,, ccr  verify the 

condition (45), and ensure the absolute stability of the horizontal fly course of the 

aircraft. It is observed that whenever the function   does not appear, the nonlinear 

control function can be choose arbitrarily from the admissible class (5), (6). 

3.2. The frequency method for (a.r.a.s.).  

For this study we have applied the frequency method used in §3. Since the system 

(35) is equivalent with (37) and (41), the function )(u  verifies the sector 

condition. By replacing the operator 
dt

d
 with the factors is found the transfer 

function )(sW . For simplicity we choose the system (37) with (35), we deduce the 

transfer function )(sW that is the same for (35) and (41). Applying the Laplace 

operator in (37) we have: 

 rUcUcsbUaUasUbUsUUsU  221133122323221 ;,,  (46) 

Eliminating from these relations 321 ,, UUU  it is found the connection ))((   sW : 




















21
2

12312
2

)]()([1
)(

asas

cscbasb
rs

s
sW  (47) 
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We observe that )(sW  has a double pole in 00 s  and 0,0 2211   ss , 

meeting the special case of the frequency method, Criterion3 (a.r.a.s) from §3. 

Then, we verify the conditions from Criterion3. 

0,0,0,0)(,0,0)(lim 121132
2

12

0



caaamlblb

a

lmc
sWs

s
  (48) 

  0)()())((lim 22112
2
112

2

2

0



cacamaac

a

l
rsWs

ds

d

s
  (49) 

From (49) we obtain the conditions for 2,, cmr  

  0,0
)(

;0)()( 2
2

11

2211

2
2
11

2
2
1122112

2





 c

a

ca

caca

aac
maaccacam

a

l
r  (50) 

)(
22

1
2)2

2(

)]1(11)21(2[)]21(21[2

)(Im)( 



 gr

aa

amcamccamccca
lrjW 






 

(51) 

0)0()(lim,0)(lim
0




grr 


 (52) 

From (52) we observe that )0(gr   is from (50) condition. For the rigidity 

coefficient r  we obtain the equivalence with (45). It is observed that by this 

qualitative criterion are also necessary numerical data in the space of the 

parameters for the regulator. The condition 0,0)()(   gr  as 0)0( g  it 

is the right member from (50), )(g  is derivable, ,0)(' g 0)(lim 





g ( )(gg  is 

an even function on ),(   with )0(g  maximal. The automatic regulation for the 

absolute stability of the horizontal course of flying is presented in the figures 2 

and 3.  

 

Fig. 2 The scheme of the arrangement for the horizontal empennage compare with the wing. 
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Fig. 3 The command of the pitch momentum. 

4. The absolute stability in the automatic regulation of the wood cutting 

The high precision of wood cutting with tools machine implies an automatic 

regulation of these processes. Our approach aims at studying and modelling the 

nonlinear dynamics of the cutting processes (CP) with tools inside wood blocks, 

composite materials blocks, or hardwood. [3] 

These (CP) are: CP of drilling, CP of milling, CP of grinding, screw machine, 

spindle bearing. Machine tool bar is provided with an inner elastic hard wood 

cutting, cutting inside to run the required geometric rotation and advancing in 

slow step. Because of the variation in hardness, density, coefficient of elasticity, 

material composition manufactured by the process disturbances will occur in the 

working mode: transverse vibration due to shaft rotation or longitudinal vibrations 

due to advance. Automatic controller is equipped with sensors, micrometers, 

tensiometers, rigid response mechanisms of signals, output power amplifiers, and 

accelerators. Their purpose is to adjust the characteristics in order to obtain 

asymptotic stability of the system work, resulting in high precision components. 

We will study the two methods described above in §2, §3. 

4.1. The (a.r.a.s.) method by Liapunov function 

Consider the dynamic system mathematically modelled, brought to a canonical 

form of Cauchy, autonomous, with features automatically adjusted for absolute 

stability of dynamic cutting machining processes. [3] [14]  
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 (53) 

where ,,, rba iij  are constants 4,3,2,1, ji . 

0,0,0,0,1.1

0,0,0,0,0

414223

4433323111
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These, according to Lagrange's equations of the parameters are mass produced; 

mass inertia, elastic constants, strain or pressure coefficients, and  ,, r are the 

characteristics of the server. We assume that the input function   is generally 

nonlinear, and checks conditions (5), (6). We observe that the linear response 

function  of the server controls the elements 2x - the rotational speed of the 

cutting bar, and 4x - the speed of its advancing material. 

We check the absolute stability of the system solution from zero )0,0(  x . 

Suppose that the block linear system )(XA  is asymptotically stable as follows from 

relations: 4,3,2,1,0)Re(,0det  iA i . 
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  (55) 
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
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  inpplama  ,04
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1
,0,0 2

3,2444111  (56) 

In this case, following the diagonalization method §2 with the formulas (9) - (13) 

or directly choosing the option remark (R2), we get the diagonal system in iz  and 

  (12), (13): 
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 (56) 

We observe that 0321  fff  and whatever is the choice of order quantities 

321 ,,   are strictly negative, always two of the functions 3,2,1, ifi  have the same 

sign and the third function takes opposite sign using relation (26).  

In this case the stability of the following (29) from the null solution ( 0,0  iz ) 

and that 04f  we can construct such a Liapunov function: 
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  (55) 

where the real coefficients 321 ,, aaa  will be determined. 

From 0)0(,0,0  Vjii  , the summative  terms after 3,2,1i  determine a 

positive quadratic form positive definite and the integral positive term, we have 

0),( zV allowed in the vicinity.   

We calculate ),( zV  attached to the system (29), and we obtain: 
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Observe that 0)0,0(  zV  and to have the strict negativity, the parenthesis 

from the term   must be null 
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iif
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ij
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ji
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i


 (S*) (57) 

The system (S*) 3,2,1,0),,( 321  iaaaFi is implicit with three equations with three 

unknowns, and the existence of solutions is provided by the Jacobian system 

0
),,(

),,(

321

321 
aaaD

FFFD
J .  

A helping calculation proves that if each equation from (33) is multiplying 

respectively by 
i

1
 and summing, it is obtained: 

SS
fa

i i

i

i i

i 













 



,0

3

1

2
3

1

2


 (58) 

A condition that indicates that the knowing sum (S) is strictly positive and in the 

parametric space ),,( 321 aaa  the symmetrical plane )( 12  , 




3

1i i

i S
a


 where exists 

a solution, don’t admit the null solution  because 0if . Is obtained as: 
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))()((
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 aaaaaaS
J  (59) 

Because the two factors from the numerator parenthesis are planes passing 

through the origin, the solution is contained in the planes )( 12 . By analysing the 

system (S*) after the sign of ),,(, 321 aaafi  these solutions from )( 12  are not in the 

I,V octant. If all would have the same sign than 0if . We proved that exists 

solutions of the system (33) and 0V ; results that the Liapunov function provide 

the automatic regulation of the absolute stability. For this application and 

sufficient conditions of type (15), (16) with numerical data, are obtain. 

4.2. The frequency method for (a.r.a.s.) 

For this study we have applied the frequency method used in §3. Because the 

system (53) is equivalent with (39), the function )(su   verifies the sector 
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conditions. By replacing the operator 
dt

d
 with the factor s  is found the transfer 

function )(sW . So, from (29) is obtained for ))((   sW  
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Eliminating from (60) iz we obtained the transfer function from ))((   sW  
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Because the real roots iis  verifies 0)Re( i  the transfer function has a simple 

pole in 0s and the rest of real roots with 0)Re( is .  

In this case we have the Criterion II of critical singularity from §3 for (a.r.a.s.). 

Here, the conditions (15), (19) and II a), b) are verified from the method A, and 

must verify the condition c).  

So, 
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For given 0k , from the condition  ks  )(0  with )( specified, it can be 

determined Rq  verifying the condition (24’). The parameters ii f,  are known 

from (56), (60), the nonlinear function   is chosen with   from (53), and for 

specified numerical data determine k  and the delimitation of q . The existence of 

these conditions can be performed hodographically for (a.r.a.s.) at this application. 

5. Conclusions 

The relevancy of this paper consists in the fact that the problem of absolute 

stability is systematized by the two methods. It should be noticed the fact that the 

application with respect to (a.r.a.s.) for the horizontal fly course with automatic 

pilot is studied for the critical difficult cases, when the roots of characteristic 

polynomial or the pole of transfer function is in its origin (on the imaginary axis). 

For the Liapunov function building we have applied an original method. For 

further and more profound details we recommend the published results of some 

other researchers [1,15,19,20,11]. 
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