Annals of the Academy of Romanian Scientists
Series on Engineering Sciences
ISSN 2066-8570 Volume 15, Number 1/2023 65

FIRMWARE AND HARDWARE DEVELOPMENT OF AN
EDUCATIONAL PROGRAMMABLE LOGIC CONTROLLER

Alexandru-loan ANASTASIU,
Florea Dorel ANANIA

Rezumat. Aceasta lucrare descrie un nou automat programabil (AP) care integreaza
componente hardware si software de ultima generatie, oferind o experientd educationald
imersiva si interactiva. Se detaliaza elementele constructive, caracteristicile si beneficiile
noului AP dezvoltat, subliniind potentialul acestuia de a oferi studenfilor o platforma de
invatare. Este evidentiatd, de asemenea, rentabilitatea deciziilor arhitecturale, scopul
final fiind acela de a crea un AP care sa fie atdt relevant pentru standardele industriei,
cdt si accesibil pentru universitati si scoli de invatamant superior.

Abstract. This paper describes a novel PLC system that integrates cutting-edge hardware
and software components, offering an immersive and interactive educational experience.
The design, features, and benefits of the newly developed PLC are detailed, highlighting
its potential to empower learners in various educational settings. Moreover, the cost-
effectiveness of architectural decisions is also highlighted, with the end goal being to
create e PLC that is both relevant to industry standards and affordable for universities
and higher education schools.

Keywords: PLC, Programming, Hardware & Software Development

DOI https://doi.org/10.56082/annalsarscieng.2023.1.65

1. Introduction

Programmable Logic Controllers (PLCs) have long been the cornerstone of
industrial automation, driving efficiency and productivity across numerous
industries. Despite their widespread use, however, they have remained largely
inaccessible to educational institutions due to their cost, complexity, and limited
scope of application. Recognizing the critical need for a product that is relevant to
the modern-day industry, while remaining cost-effective and affordable, a set of
specifications were laid out, quantifying the needs and capabilities of the PLC [1],

[2].

2. Programmable logic controllers — literary review

A programmable logic controller represents a computation device that can execute
a program in a closed loop, reacting to outside stimuli and being able to influence
the environment it is integrated inside of. At the very basic level, a PLC should be
able to:

66 Alexandru-loan Anastasiu, Florea-Dorel Anania

- Be programmable: Allow the user to upload an instruction stream,
which dictates the behavior of the device.

- Implement I/O functionality: Allow interaction between the device and
the environment, using Input-Output loops.

- Have connectivity to other devices: Whether it be in conjunction with
a personal computer, or a sensor array located at a different position, a
PLC must have one or multiple dedicated interfaces, implementing
respective standards.

Beyond basic requirements, one of the goals of the project was to develop a
platform that stays relevant to current-age technology, with an increased accent on
the Industry of Things (IoT) and other smart functionality.

According to Bolton (2009, p3), “A programmable logic controller (PLC) is a
special form of microprocessor-based controller that uses programmable memory
to store instructions and to implement functions such as logic, sequencing, timing,
counting, and arithmetic to control machines and processes”. This definition
provides the first avenue to identifying the general architecture of such a device:
at the core lies a microprocessor, an integrated circuit capable of a fetch-decode-
execute cycle. Instructions are fed from a memory bank, generally of a non-
volatile type, though battery-backed-up SRAM solutions have also been employed
historically. [3], [4].

Bolton also describes PLC systems as generally being a networked mesh (2009,
pS), allowing for multiple controllers to run individual tasks, while under
supervision from a “master” system. It is in this case where one of the proposed
innovations of this paper comes into play: deviating from conventional
architecture, it was decided to create a “software-defined PLC”, essentially
allowing for a single board to behave as multiple state machines would, with the
hypervisor functionality being built-in.

Electrically, PLCs must provide both logic functionality (allowing for Inputs and
Outputs in the form of binary “ON” or “OFF” states) and power-driving
functionality: sourcing and sinking (the former meaning providing power from the
PLC to the outputs, essentially driving an interface to the positive voltage, the
latter meaning allowing for power to flow to the ground, into the PLC). (Bolton,
2009, p11). To lower design complexity, it was decided to bypass current sinking
capabilities, allowing the PLC to only source current. An external common
ground rail will therefore be required. Dunning (2001, p12) notes that as an
industry standard, PLCs must operate at a supply voltage of 24vDC or 220vAC,
with a split-power supply: one providing power to the PLC itself and the other to
the I/O modules. Due to risks associated with utilizing alternating current in an
educational setting, it was decided to set the input voltage to 24v. Separation of

Firmware and hardware development of an educational PLC 67

PLC and 1/O circuits is done using a step-down voltage source for the controller,
with a direct bypass of 24v to the I/O module.

To conclude the literary review, one must also bring to attention the
programmability of PLCs. Numerous general-purpose programming languages
exist, which allow low-level access for programmers. PLCs have, however, to be
easy to program by design: an abstraction level had to be devised, and therefore a
matching instruction set. Standardization was achieved with IEC 61131-3, which
is “the first real endeavor to standardize programming languages for industrial
automation, ... independent of any single company” [5]...[9]. ABB identifies 6
different languages, however, to allow for faster development and to simplify the
firmware, it was decided to implement only the textual types: Instruction List, IL,
and Structured Text, ST. There are plans for a symbol-based Functional Block
Diagram (FBD) implementation, however, they are still in early development.

3. General design

3.1. Controller

In choosing the main processing unit of the controller, numerous factors must be
considered: raw processing power (the speed at which a microprocessor can parse
and execute instructions, usually a function of processor frequency and
architecture), core count (multi-core designs allow for parallelization of tasks,
enabling synchronous execution of multiple threads) and memory characteristics.
Memory (divided into volatile, or random-access-memory, used for data
processing, and non-volatile, used for program storage) is taken as a factor into
account at this stage since most often a microcontroller will ship with onboard
flash and RAM.

With this in mind, a specification was drafted, featuring the following requirements:

- Overall core performance >= 100 CM (Core-Mark), due to the nature of
handling many tasks, communication interfaces, as well as internal housekeeping.

- Multi-core preferred: the ability to offload tasks to a second core means
higher responsiveness of a system under heavy load.

- 3.3v operating voltage: 3.3v allows devices with a (theoretical) lower power
draw. While power consumption was not a deciding factor, it is relevant since a lower
power draw means lower heat production: a concern in closed environments like the
inside of a casing.

- RAM Size > 50KB: this was determined experimentally and will be detailed
in section 3.3.

- Price < 5€: this proved to be an ambitious yet unattainable goal.
The misestimation was attributed to inexperience in the field and was a valuable
learning experience.

68 Alexandru-loan Anastasiu, Florea-Dorel Anania

- I/0 count of 32: A higher I/O count allows for higher flexibility of the PLC.
The targeted 1/0O count was chosen to create a competitive design.

3.2. Program memory (PROGMEM)

PROGMEM represents the physical location of the bytes which represent the
program to be run by the PLC. This generally takes three forms: Flash memory,
EEPROM, or battery-backed-up SRAM.

Flash has the highest write speeds, as well as generally very large capacities, but
poses the disadvantage of lower lifetime expectancy (estimated at close to 10k
write-erase cycles). EEPROM (electrically erasable read-only memory) trades
speed for endurance (usually an order of magnitude higher than flash, at 100k
cycles). Battery-backed up static RAM (SRAM) has the highest speeds of them
all, as well as having a virtually infinite lifetime, however, necessitates the use of
an external battery, to keep the data from being wiped. This becomes an issue in
the case of applications designed to run for 5+ years without reprogramming.

Taking these factors into account, the solution was chosen to be an EEPROM-
based PROGMEM, as especially during development there will be frequent write
cycles. Size was chosen to fit an average number of IL programs, at 125KB, or
2MiB.

3.3. Interpreter and Hypervisor

As highlighted earlier, the use of ST and IL instructions requires decoding and
execution. Utilizing the previous experience of the authors, a simple yet efficient
interpreter was created, which operates in a dual pipeline, 2-step execution. The
dual pipelines refer to the two moments when code is loaded: when writing to the
EEPROM, an optimizing compiler translates textual instructions and parameters
into bytecode, reducing instruction size. The second pipeline appears when
loading instructions from EEPROM into the processor, to be decoded and
executed.

In a regular processor, a fetch-decode-execute cycle must be implemented:
instructions are fetched from memory, decoded, then executed. By employing an
optimizing compiler, the decode step is bypassed: instructions are fetched into a
stack, then, via switch statements, executed.

Previously, the term “software-defined PLC” was mentioned. This defines the
architecture utilized by the firmware. A special operating system was deployed,
called FreeRTOS. This paper shall not detail the functionality of the OS in full but
will refer to rather a detail of what has been utilized, introducing the concept of
Tasks.

Firmware and hardware development of an educational PLC 69

Traditionally, microcontrollers (even multi-cored designs), are limited to running
a single program loop per core. FreeRTOS allows the creation of “Tasks”, which
are independent program loops, which can run pseudo-simultaneously. This is
achieved by taking the processor’s rate and dividing it into “ticks”. These are time
slices, during which a certain task is active. Once the slice of a task has expired, it
is halted, and execution is handed over to the next task.

What actually happens*
"@ssuming single-core processor
“preemptive scheduling”
ISR :
(HW) |
Priority :
(S/wW) }

|TaskB {TaskC DD Task C

time

Fig. 8. FreeRTOS time slicing

By using this mechanism, a special architecture can be devised: a “hypervisor”
task that runs general housekeeping tasks (memory management, serving of the
web interface, communication to the outside) and the separate virtual PLC tasks,
which can independently run their distinct code loops.

70 Alexandru-loan Anastasiu, Florea-Dorel Anania

Task Layout and Access

3 RS232 » K [€——RS485——1—>»
Hypervisor task
R S TCP————» [€—CAN——1—>
MDnilDrJ Feled LMt::lnill:)r
£ buffers l
VvPLC Task 1 ¢ VvPLC Task 2
10 1+ Run state Shared memory pool Run state 1053
<102 (RAM) 1063

A

Access
buffers

TCP parameters
A

ssa00y

>
4
<10 3—» Program stack I—) Program stack (€ {—IO8—
10 4—p RS232 / 485 Buffer <« 107 —
1/O Buffer 1/0 Buffer

Ls:a,unq

CAN Stream

PROGMEM
(EEPROM)

Get

. . — Program 1
instructions 9

Program 2 Get
instructions

Fig. 9. Task layout inside the PLC

Fig.2 presents the advantage of this approach: A much larger number of virtual
PLCs (VPLC) can be created as tasks, each with its own instruction stack, its own
memory, and even selective access to pins. The hypervisor is the arbitrator, being
the only one to be able to access the interfaces directly [10], [11], [12].

This workaround is done in order to avoid scheduling conflicts, where two tasks
might attempt to access the same interface at the same time: a situation called a
“race condition”. The buffers are implemented as cyclical buffers, with a
predefined wrap-around time, of which each task is aware. A flaw in this approach
can be that, while interfaces are protected, the EEPROM is left unprotected. The
workaround implemented in its case is to limit access to the interface through
software methods (mutexes and semaphores), which trades off access speed (as
each VvPLC has to wait as the currently accessing one pulls an instruction out of
the EEPROM) for memory size. The use of pre-fetched instruction stacks has
been considered (having each vPLC read ahead all of its instructions, then
proceed with execution), but was abandoned after identifying that it would be a
strenuous task to manage the memory. Further developments could tackle this
design oversight.

3.4. Interfaces

To finalize the specification, it was necessary to determine the connectivity of
allotted to the PLC. While there is no “one size fits all”” solution, it was found that,
in general, industrial controllers rely on a number of interface-protocol pairs:
RS232/485 Serial, to achieve either UART or PROFIBUS, Ethernet / WiFi to

Firmware and hardware development of an educational PLC 71

achieve connectivity via TCP/IP and often CAN Bus, to achieve low-interference
long-range transmissions.

The following interfaces were therefore selected, in order to best fit educational
applications:

- RS232/485, in order to support the ubiquitous Serial protocols, as well as
older PROFIBUS and PROFINET protocols, for backward compatibility.

- WiFi, in order to achieve compatibility with modern systems, as well as
allow for the creation of a user-friendly web interface.

- CAN, in order to allow for interfacing over long ranges.

An important design consideration appeared at this stage: it would be useful to
maintain a log of errors, complete with timestamps. This introduced the need to
implement a Real-Time Clock module.

3.5. Hardware selection

To finalize the design process, it was necessary to do a cost analysis of the
solutions to be employed, as well as a side-by-side comparison of the modules to
be chosen. While this was done for every part chosen, for brevity, this section will
only detail what was done for the microcontroller, from which the others can be
extrapolated.

A grading system was designed, where parts were graded according to the
criterions described in section 3.1:

Table 4. Device choice and specification

No. Name CM Multicore? |Voltage CAN? RAM(KB) Price Wifi?
1|Arduino Due 95(No 3.3v Yes, XCV 96 45.00 €|No
2|Teensy 3.5 265[No 3.3v No 256 27.50 €|No
3|ESP32 DvKit v4 351(Yes, 2 3.3v Yes, XCV 520 7.00 €|Yes
4(RPI Pico W 235(Yes, 2 3.3v Yes, XCV 264 6.00 €|Yes
5|dsPIC33EV 234|Yes, 2 3.3v/ 5v Yes 16 0|No

After initial selection, grades were awarded from 1 to 10. Grading methodology is
as follows:

- Values under specification: automatic fail, 1

- Values over specification: the maximum value is considered a 10, others
are referenced to it

72 Alexandru-loan Anastasiu, Florea-Dorel Anania

- Since none of the modules fit the price budget, grades were awarded by
closeness to the value specified.

Table 5. Grades awarded and final selection

No. Component §CM Multicore? [Voltage CAN? RAM Price Final grade
1| Arduino Due 1 1 9 9 1.85 1 3.808
2|Teensy 3.5 7.55 1 9 1 4.92 4.5 4.662
3| ESP32 Devkit 10 10 9 9 10 8.6 9.433
4|Raspberry Pi 6.7 10 9 8.5 5.08 8.8 8.013
5|dsPIC33EV Cf 6.67 10 10 10 5 10 8.612

A similar process was employed for each other component, resulting in a BOM
which totals close to 120€. Comparative solutions are priced at almost triple
values, which proves that the design is viable economically.

4. Hardware design

With the specification locked in, the process of hardware development begins, by
following the general architecture of a PLC, as described in section 1.

4.1. Inputs

An important part of PLC design involves the choice of input type: either analog
(able to take discrete samples of a wave), or digital (able to measure position
between a set of thresholds, obtaining a binary value). It was decided that all
analog pins would be utilized on the microcontroller, allowing for all inputs to be
analog (and by a simple thresholding operation, reduced to digital values). It is,
however, important to clarify that this could not be established directly: input
values in the industrial space range from 0 to 24v, which would instantly destroy
the microcontroller, which operates at 3.3v. A special step-down configuration
would be necessary, in order to measure accurately.

Traditionally, a resistor-based voltage divider would be used, however, this
introduces the issue of current draw by the resistors, which can interfere with
weak signals. A special circuit was devised, using a voltage follower operation
amplifier, to repeat the voltage, followed by the divider. The amplifier chosen was
of the RRIO type, allowing for full rail-to-rail input-output operation.

Firmware and hardware development of an educational PLC 73

Ic21
———DLACT6 TLV9351IDCKR
R27 R33 te IN-p3
RK73B2ETTD152) RMCF1210FT10KO s f, v-|-2
2 1 2 1 4 lout IN+2—ai_DAT_6 J;,
GND
Ic22

GND '—DIJCT,E TLV9351IDCKR

Fig. 10. Voltage follower and divider circuit

The microcontroller has a resolution of 12 bits, which equates to total of 4096
possible discrete voltage levels. By dividing the voltage range (3.3/4095), the
resolution is calculated at 0.8mV / division, a resolution considered to be
acceptable.

4.2. Outputs

When designing the output circuit, an important condition was imposed: the
output must be galvanically isolated from the rest of the circuit, in order to not
risk any kind of damage by the high voltage rail (+24v) to the (+3.3v) one. This
was achieved using optoisolated solid-state relays.

+24V i1 o
TLPAV2AN TFR.E CRCW1210267RFKEA
4 1DRAIN_1 CATHODE |3 1 2
*—=2—NpP_2 NP_1 |2
0_DAT_6G———L IpRAIN 2 ANODE-L—q0_ACT_6
GND

Fig. 11. Solid state relay

This design has, however, one major oversight, which was not caught until the
initial prototype run: when unpowered, the output pins are left floating, neither at
a logic level 1 nor at a logic level 0. This has, thus far, not caused any issues in
testing, but could be a point of failure in the future.

74 Alexandru-lIoan Anastasiu, Florea-Dorel Anania

Due to the ambitious pin count, an extra component was needed, in order to
extend those available on the microcontroller: the PCA9555 is an
inter-integrated-circuit (i2c) I/O extender, allowing for outputs to be switched on
through digital commands from the microcontroller. The added latency associated
with utilizing such a module was considered, tested, and found acceptable, in the
region of 1-2ms.

4.3. General diagram

w
E5E32- DEVKITE

Alexandru=aan Anastasic
| UPB ~ FIR ~ Robofi 51 sisteme de productie

[Shest ~
| File: PLC-CIM kicad_sch el
| Title: PLC CIM
[Sze pe T Gate: zoz3-va—is TRev:d
[KiCad EDA_Weat 7.03-0 & <
Js s S

r % I

Fig. 12. The complete diagram

Firmware and hardware development of an educational PLC

75

Microcontroller

AN

Output block

Huitt

O
D000

@):

o]0 0 0 O O

Fig. 13. Hardware implementation

5. Closing thoughts

Input block

This paper presented a novel approach to build a low-cost, educational
programmable logic controller that aimed to implement as much industrial
functionality as possible, while remaining an open, flexible platform. Both
hardware and firmware will be made available as an open-source repository
hosted online, in order to allow students as well as teachers to reproduce elements
described.

The field of Programmable Logic Controllers opens up a vast array of
possibilities, both in automation, robotics, and factory processes. By having a
low-cost alternative to a commercially available product, it is possible to develop
the necessary skills to program such devices.

(1]
(2]
(3]
(4]

Gary Dunning, Introduction to Programmable Logic Controllers [2 ed.] (2001).
William Bolton, Programmable Logic Controllers (Elsevier, Burlington, USA, 2009)

REFERENCES

ABB, Overview of the IEC 61131 Standard

Bruce Carter and Thomas R. Brown, Handbook of Operational Amplifier Applications

(2001)

76

Alexandru-loan Anastasiu, Florea-Dorel Anania

(3]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

Cozmin Cristoiu, Adrian Nicolescu, “New approach for forward kinematics modeling of
industrial robots with closed kinematic chain”, 2017

Balasubramanian, Ravi. “The Denavit Hartenberg Convention.", USA: Robotics Institute
Carnegie Mellon University (2011)

Slabaugh, Gregory G. "Computing Euler angles from a rotation matrix." Retrieved on
August 6.2000 (1999): 39-63.

Reddy, Venu Gopal. "Neon technology introduction." ARM Corporation 4.1 (2008): 1-33
Kim, Dae-Hwan. "ARM NEON Assembly Optimization."

Dobrescu, Tiberiu Gabriel & Dorin, Alexandru & Nicoleta-Elisabeta, Pascu & Ivan,
Ioana. (2011). CINEMATICA ROBOTILOR INDUSTRIALIL.

Blanchette, Jasmin, and Mark Summerfield. C++ GUI programming with Qt 4. Prentice
Hall Professional, 2006.

Garbev, Atanas, and Atanas Atanassov. Comparative Analysis of RoboDK and Robot
Operating System for Solving Diagnostics Tasks in Off-Line Programming. 2020
International Conference Automatics and Informatics (ICAI). IEEE, 2020.

Holubek, Radovan, et al. Offline programming of an ABB robot using imported CAD
models in the RobotStudio software environment. Applied Mechanics and Materials. Vol.
693. Trans Tech Publications Ltd, 2014.

