Annals of the Academy of Romanian Scientists
Series on Engineering Sciences
ISSN 2066 - 8570 Volume 14, Number 2/2022 97

VIRTUALIZATION AS A MEANS TO ENSURE THE
RESILIENCE OF PEER-TO-PEER COMMUNICATION
SYSTEMS

Valentin PAU!
Dorina Luminita COPACI 2

Rezumat. Resilience to failures and deliberate attacks is becoming an essential
requirement in most point-to-point communication networks today. The present paper
presents a survey of strategies to ensure resilience in peer-to-peer communication
networks by means of operating systems virtualization. Virtual machines can ensure the
resiliency of the peer-to-peer communication network both by their very use and by
providing service isolation. For hands-on research, OpenVZ as a Linux implementation
of OS-level virtualization has been used.

Keywords: virtualization, resilience, point-to-point communication systems

DOl  https://doi.org/10.56082/annalsarscieng.2022.2.97

1. Introduction

P2p networks benefit from resilience-enhancing strategies in the underlying
communication infrastructure, apart from the fact that their specific properties
require sophisticated mechanisms. The dynamic nature of nodes requires taking
certain precautions such as estimating node reliability, storing redundant
information as well as provisioning reliable routing.

In this context, network resilience — the ability to provide and maintain an
acceptable service level in the presence of failures — becomes increasingly
important. A resilient network should be able to cope with a specific number of
failures by remaining completely functional, providing connectivity to all of its
components as well as providing enough capacity to fulfil its task.

Peer-to-peer networks enable such functionalities as the distributed searches. Each
node in a point-to-point network performs both client and server functions, unlike
client-server systems with asymmetric roles. The architecture of p2p networks is
decentralized. They are built to handle choices, in the sense of adding or
removing nodes. At the same time, the data stored in a p2p network are replicated

Professor, PhD Romanian Academy of Scientists;
2 PhD, Titu Maiorescu University, Bucharest




98 Valentin Pau, Dorina Luminita Copaci

on multiple nodes in the network. At the same time, the building of services using
p2p networks is complex. The service, because it is provided by the nodes,
depends on the trust among them, i.e. if the nodes perform their tasks- especially
the tasks of storing and routing correctly-, as well as on the cooperation among
them to provide a resilient service. If a peer-to-peer network is open to the public,
as it is the case with file sharing networks, attacks are possible. An example of
such attacks is Sybil [8]. In the case of this particular attack, the attacker emulates
a big number of peers in the network both by hiding the contents or the nodes and
by preventing their accessibility. These attacks can negate the resilience benefits
of p2p networks.

2. Operating systems virtualization in a p2p communication network

Virtualization is a concept that involves running an operating system on virtual
machines (computers) which are simulated with the help of dedicated software
applications. These applications can emulate the operation of all components of a
real computer system (CD-ROM, HDD, memory, CPU, USB devices, network
card).

Basically, a virtual machine consists of a file of variable sizes that simulates the
hard disk and several other files that contain the configurations of the respective
machine (memory size, etc.). Computing power and RAM are shared from the
resources of the real machine on which the emulation application is installed.

Hardware virtualization means creating a virtual machine that behaves like a real
computer with an operating system installed. The applications running on these
virtual machines are separated from the hardware resources existing on the host
machine. In other words, if one wants to see how the new operating system
behaves, it can be installed and tested on a virtual machine without formatting the
hard disk of the real computer. At the same time, testing the behaviour of a
software application on a certain operating system can be done using a virtual
machine without worrying about the fact that the real operating system could be
affected (by viruses or because of abnormal behaviour of the application, etc.).

At the same time, if we take into account the studies that have been carried out, it
can be concluded that, in the case of server machines, on average, 16% of the
CPU resources, 50% of memory resources; 5-6% of I/O resources are used.

Virtualization is a concept that aims at optimizing the use of these resources. The
concept of consolidation appeared in the context of virtualization, too. It




Virtualization as a means to ensure the resilience of peer-to-peer comunication systems 99

represents the migration of physical machines into virtual machines, running on
the same physical machine, in order to make the most of the existing resources.

As regards resilience, the fact that virtual machines are completely isolated from
the host machine or other virtual machines, is extremely important. If one virtual
machine freezes or crashes, the rest of the machines are not affected. At the same
time, by creating a virtualization cluster, when a hardware component fails, the
behaviour of virtual machines is not affected, as they share the available hardware
resources. By means of virtualization, the entire virtual machine environment is
saved as a single file, so backing up, moving or copying is easy.

Multiple virtual machines are installed on a physical machine to maximize CPU
and hardware resources over the lifetime of the physical machine.

For hands-on research, OpenVZ, as a Linux implementation of OS-level
virtualization, has been used. The most important aspects related to OpenVZ and
to the operating system virtualization are: the physical machine is called
hardware node; virtual machines are known as containers; the core is shared
between node hardware and containers. Each container has: isolated file
hierarchy; isolated process space; configuration file (in which memory, "disk"
space, etc. are specified).

2.1. OpenVZ resource management
OpenVZ subsystem resource management consists of the following components:

Level Two Disk Quota — OpenVZ server administrator can configure the disk
quotas for the virtual environment in terms of disk space and number of nodes.
This is the first level of disk partitioning. The second level of partitioning allows
the virtual environment administrator to use standard partitioning tools to
configure users and groups.

CPU listing for OpenVZ 1is also two-level. At the first level, the virtualization
environment is established, taking into account the priority of the processor which
is set at the level of the virtual environment, and the limit settings. At the second
level, standard Linux scheduler decides which processes in the virtualization
environment reserve time for sharing, using standard process priorities.

User to start the search - this is a set of counters, limits and guarantees of the
virtual environment. Some parameters are set to cover all the aspects of virtual
environment functioning. Thus, a limited resource for the system, taken as a




100 Valentin Pau, Dorina Luminita Copaci

whole, cannot be used by only one virtualization environment at the expense of
others. Basically, the controlled resources are the memory and various objects in
the kernel, such as IPC shared memory segments, network buffers, etc.

2.2. The facilities provided by OpenVZ to ensure resilience

Among the many facilities provided by OpenVZ, the following ones have been
taken into account to demonstrate resilience: the possibility of creating containers;
of customizing containers; network configuration; data migration.

Installing OpenVZ support on Debian required installing a kernel that had the
appropriate support for running the OpenVZ application: Hint: uname -a.

For the global configuration of OpenVZ it was necessary to edit the file
/Jetc/vz/vz.conf accordingly. Each container had its own configuration file, which
was located in /etc/vz/conf/SVEID.conf (for example, for the container with
network ID 10, the configuration file is /etc/vz/conf/10. conf). The configuration
file of a container could be edited directly or through the utility vzctl, by means of
such commands as:

vzetl set SVEID <param>=<value> --save.

The archived container, which is called a template, is important because others
can be created based on it (by simply copying). The advantage of using templates
for creating containers is the ease of use. They can be created by the user (using
the debootstrap command) or the existing templates, available on the official
website, can be used.

2.3. Simulating virtualization in order to ensure resiliency

OpenVZ containers based on the Debian distribution (fig. 2.3.a.) were used for the
simulation.




Virtualization as a means to ensure the resilience of peer-to-peer comunication systems 101

| O Applications Places System @I__(E\ E Ej mﬂ @ ;,Eli_fl
dr@debian-master: ~
Fle Edit Wiew Terminal Help

var/lib/vz/root/103/usr/share/sendmail/cf /debian/sendmail.mc
var/lib/vz/root/103/usr/share/sendmail/cf /debian/submit. me
var/lib/vz/root/103/usr/share/sendmail/cf /domain/debian-msp.m4
var/lib/vz/root/103/usr/share/sendmail/cf /domain/debian-mta.md
var/lib/vz/root/103/usr/share/sendmail/cf /hack /debian_auth.ma4
var/lib/vz/root/103/usr/share/sendmail/cf /ostype/debian.md
var/lib/vz/root/103/usr/share/vim/vim72/debian.vim
var/lib/vz/root/103/var/lib/dpkg/infa/debian-archive-keyring.list
var/lib/vz/root/103/var/Lib/dpkg/info/deblan- archive-keyring.mdSsums
var/lib/vz/root/103/var/lib/dpkg/info/debian-archive-keyring.postinst
var/lib/vz/root/103/var/Lib/dpkg/info/debianutils. list
var/lib/vz/root/103/var/libsdpkg/info/debianutils. mdSsums
var/lib/vz/root/103/var/lib/dpkg/info/debianutils. postinst
var/lib/vz/root/103/var/lib/dpkgsinfo/debianutils. postrm
var/lib/vz/root/103/var/lib/dpkg/info/odbeinstldebian2. list
var/lib/vz/root/103/var/Llib/dpkg/infasodbeinstldebian2. mdSsums
var/lib/vz/root/103/var/lib/dpkg/info/odbcinstldebianz. postinst
var/libsvz/root/103/var/Lib/dpkg/info/odbeinstldebian2. postrm
var/lib/vz/root/103/var/lib/dpkg/infosodbcinstldebianz. shlibs
var/lib/vz/root/103/var/lib/dpkg/info/odbeinstldebianz. symbols
var/lib/vz/template/cache/debian-5.0-x86.tar.gz
var/lib/vz/template/cache/debian-6.0-x86. tar.gz %
var/log/samba/log.debian-master

Foot@debian-master: /home/dr/wrk.p2psip# locate debian | less
oot@debian-master: /home/dr/wrk.p2psip# vzetl create 104 --ostemplate debian-6.0-x86
Freating container private area (debian-6.0-x88)

Performing postcreate actions

Fontainer private area was created

Foot@debian-master: /home/dr/wrk. p2psip# I

B @ = = ). ). . ] (e (. (e [ (5 6]

Fig. 2.3.a. Creating a container

The created containers had a standard configuration: 512 MB RAM and 2 GB
HDD. OpenVZ, by means of available parameters, provides a fine control of the
resources allocated to the respective container. Most of these parameters are in the
form of limita_soft:limit_hard, and, when the hard limit is reached, the behaviour
for applications is non-deterministic.

Modifying these parameters in order to adjust the container so that it might
meet the resilience conditions, consisted in meeting the following conditions:

e it was necessary that all machines have a vm$NODI hostname:

o vzctl set SNOD1 --hostname vim$NOD1 --save
o vzctl set SNOD2 --hostname vm$NOD?2 —save
o vzctl set SNOD3 --hostname vm$NOD?3 --save

e it was necessary that the machine having VEID $NODI1 hostname have
128MB RAM:

vzctl set SNOD1 --privvmpages 128M:129M --save

e it is necessary that all machines have a 2GB storage space on the virtual
hard-disk-ul:

for iin $NODI § NOD2 8 NOD3; do vzctl set $i --diskspace 2G:2G --
save, done




102 Valentin Pau, Dorina Luminita Copaci

This command has changed only the size of the available space but not the

number of nodes that could be used.

For the interaction with the OpenVZ containers, the vzctl utility, with the related
commands (start, stop, restart, enter, exec, etc.), was used. After the containers

had been configured, they were started (vzctl start) (fig. 2.3.b and fig. 2.3.c.).

S Sl L T

|o Applications Places System @@ E
=

dr@debian-master; ~
File Edit Wiew Terminal Help
[UBC parameters]
|LlBC parameters (N - items, P - pages, B - bytes):
Mwo numbers divided by colon means barrier:limit.
[n case the limit is not given it is set to the same value as the barrier.

--numproc N[ :MN] --numtcpsock N[:N] --numothersock N[:n]
--wmguarpages P[:P] --kmemsize B[:B] --tepsndbuf B[:B]
--teprevbuf B[:B] --othersockbuf B[:E] --dgramrcvbuf B[:B]
- -oomguarpages P[:P] --lockedpages P[:P] --privvmpages P[:P]
--shmpages P[:P] --numfile N[:N] --numflock N[:N]
--numpty N[:iN] --numsiginfo N[:N] --dcachesize N[:N]
--numiptent N[:N] --physpages P[:F] --avnumproc N[:N]

- -swappages P[:P]
root@debian-master: /home/dr/wrk.p2psip# vzctl set 104 --save --1padd 10.10.108.15
Faved parameters for CT 104
root@deblan-master: /home/dr/wrk.p2psip# vz

zcalc vzetl vzdgload vzifup-post vEmigrate vzpid vzsplit
zefgvalidate  vzdgcheck vzdump vzlist vznetaddbr vzguota

wzcpucheck vzdqdump vzeventd vzmemcheck vznetcfg vzrestore
root@deblan-master: /home/dr/wrk.p2psip# vzctl enter

T ID missing

root@debian-master: /home/dr/wrk.p2psip# vzctl enter 104

Contalner 1s not running E&
root@debian-master: /home/dr/wrk.p2psip# vzctl start 104

Etarting container ...

IContainer is mounted

hdding IP address(es): 10.10.10.15

Fetting CPU units: 1000

Container start in progress...

root@deblan-master: /home/dr/wrk.p2psip# I

BEE. - ) = @m. . = = = m. 5.5 &

Fig. 2.3.b. Start container




Virtualization as a means to ensure the resilience of peer-to-peer comunication systems 103

|(J Applications  Places System Fi[ ¢} [z E‘*h@_ =

dr@debian-master: ~

File Edit Wiew Terminal Help

collisions:0 txgueuelen:o
RX bytes:133927 (130.7 KiB) TX bytes:10939999 (10.4 MiB)

root@debian-master: /home/dr/wrk.p2psip# vzctl enter 104
entered into CT 104
root@debian-master: /#
root@debian-master: /# ifconfig
Lo Link encap:lLocal Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNMWING MTU:164356 Metric:1
RX packets:78 errors:0 dropped:0 overruns:0 frame:0
TX packets:78 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txgueuelen:0
RX bytes:5644 (5.5 KiB) TX bytes:5644 (5.5 KiB)

venetd Link encap:UNSPEC Hwaddr 00-00-00-00-00-00-00-00- 00- 00- 00- 00- 00- 00- 00- 00
inet addr:127.0.0.1 P-t-P:127.0.0.1 Bcast:0.0.0.0 Mask:255.255.255.255
UP BROADCAST POINTOPOINT RUMNING MOARP MTU:1500 Metric:l
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txgueuelen:o h
FX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

venet®:0 Link encap:UNSPEC Hwaddr 00-00-00-00-00- 00- 00- 00- 00- 00- 00- - D0- 0R- 00- 0D
1net addr:10.10.10.15 P-t-P:19.10.10.15 Bcast:0.0.0.0 Mask:255.255.255.255
UP BROADCAST POINTOPOINT RUNNING NOARP MTU:1500 Metric:l

root@debian-master: /# |
B@Em. . & . @ = [ . (. (. . . (. . 5. [

Fig. 2.3.c. Enter container

By default, OpenVZ connects all containers in its own bridge called venet0. The
network parameters have been configured by means of vzctl. Thus, the configured
containers have been added in a communication network in view of interacting
with them remotely.

All containers have been set for the 10.0.0.0/24 network, each having such IP
addresses as 10.0.0.$VEIDi/24. 10.38.0.1 has been used as nameserver.

vzetl set SNODI --ipadd 10.0.0.$NOD1 --nameserver 10.38.0.1 --save
vzctl set SNOD?2 --ipadd 10.0.0.8NOD?2 --nameserver 10.38.0.1 --save
vzetl set $NOD3 --ipadd 10.0.0.$NOD3 --nameserver 10.38.0.1 —save

where SNOD represents the workstation number.

An IP address has been added on HN's venetO interface: 10.0.0.1/24. Because a
client needs to have a root account on that machine, unlike in the case of the
classic model, a new range of Virtual Private Servers (VPS) services has been
used. Actually, we have provided customers with VPS services using OpenVZ
containers. In order to do this, a veth interface has been added to each of the
previously created containers. At the same time, a bridge that included the virtual




104 Valentin Pau, Dorina Luminita Copaci

interfaces of the containers and et/0, has been added on HN. Thus, the VEs were
visible from the outside, that is operations such as to connect via SSH, install and
configure services, as well as other operations have become possible.

In order to ease our work, the containers needed virtual interfaces. Thus,
by adding interfaces to containers,
vzetl set SNODI --netif add eth0 --save
vzctl set $NOD?2 --netif add eth0 —save
vzetl set SNOD3 --netif add eth0 --save
a bridge on HN has been created:

bretl addbr br0
ip link set br0 up (by default the bridge is down)
and interfaces in the bridge have been added:

ip flush dev eth(

bretl addif br0 eth0

bretl addif br0 veth$NODI.0
bretl addif br0 veth$NOD2.0
bretl addif br0 veth$NOD3.0

In order to function in the network, these interfaces have been assigned IP
addresses:

o on bridge: dhclient br0

o on ethO of each container vzctl exec $NODi dhclient eth0, 1=1,2,3

o Internet connectivity will be tested from each container

Virtual machines were able to ensure the resilience of the p2p communication
network by ensuring the isolation of services. In order to show the importance of
service isolation for resiliency, a server on which an LDAP service is running, a
DNS service, and an APACHE2 have been taken into account. In the usual
version, they would run within the same operating system. It becomes
problematic when it is intended to move the services to other machines with better
performance (APACHE2) or to replace the machine on which they are running.
One solution is to use virtual machines (containers, in this case) for an easy
migration of services from one machine to another with almost 0 configuration.
This migration concept is based on the idea of checkpointing: saving the current
state and restore: restoring after a checkpoint. The machine with VEID $NODI,
on which the DNS service had been installed, was moved to machine $NOD-1.
The migration was carried out by taking the following the steps:




Virtualization as a means to ensure the resilience of peer-to-peer comunication systems 105

1. I suspended the current machine from execution using the command:
vzctl chkpnt $NOD 1 —suspend
2. I created the checkpointing:
vzctl chkpnt $NOD1 --dump --dumpfile dump.$NOD 1
3. I shut down the machine in order to save the information from the file system:
vzctl chkpnt SNOD1 --kill
At this point, the checkpointing information was stored and the migration
process could begin:
a. L archived the contents of /~var/lib/vz/private/SNOD1
b. I copied the previously created archive together with the checkpoint
and the configuration file located in /etv/vz/conf/S$NOD.conf to the destination
machine ($NOD-1)
c. [ unzipped the machine in /var/lib/vz/private/SNOD1
d. I recreated the checkpoint
vzctl restore SNOD1 --undump --dumpfile dump.§NOD1
vzctl restore SNODI --summary
I did the reconfiguration taking the following steps:
* the imported machine will stop
vzctl stop SNOD1
* the suspended machine will be resumed
vzctl restore SNOD1 --undump --dumpfile dump.$NODI1
vzctl restore SNOD1 — resume

Increasing the resilience of p2p communication networks generates many
algorithmic challenges. In particular, creating alternative routes to protect
communication often requires hardware troubleshooting and can often be done
entirely heuristically or by means of special topologies.

Conclusions

Conclusion (1) The present paper has focused on the study of peer-to-peer
communication networks. They are networks that evolve together with the
development of computing systems and communication environment. Such
networks can evolve with potential vulnerabilities that cannot be predicted and
that can be exploited. These vulnerabilities can be the result of an attack or a
network failure, following a confluence of unexpected circumstances.

Conclusion (2) The present research has focused on the concept of virtualization
to show that the systems using virtualization are resilient systems with a high
degree of operational safety. As concerns resilience, the fact that virtual
machines are completely isolated from the host machine or other virtual machines




106 Valentin Pau, Dorina Luminita Copaci

is of particular importance. If one virtual machine freezes or crashes, the others
are not affected. At the same time, the creation of a virtualization cluster is a
guarantee of the fact that, when a hardware component fails, the operation of the
virtual machines is not affected due to the fact that virtual machines can share the
available hardware resources. By means of virtualization, the entire virtual
machine environment is saved as a single file, so backing up, moving or copying
is easy.

Conclusion (3) Resource management is very important for OS-level
virtualization solutions because there is a finite set of resources in a single core.
These resources are shared between multiple virtual environments. At the same
time, all these resources must be controlled in a way that allows multiple virtual
environments on a single system, and that do not influence each other.

Notes and abbreviations

DNS Domain Name System

1P Internet Protocol

IPC Mecanisme de comunicare intre procese
LDAP Lightweight Directory Access Protocol
NAT Network Address Translator

p2p Peer to Peer

RAM Random-Access Memory

SIP Session Initiation Protocol

VPN Virtual Private Network

VoIP Voice over Internet Protocol

OpenVZ Open Virtualization




Virtualization as a means to ensure the resilience of peer-to-peer comunication systems 107

REFERENCES

[1] A. Bacivarov, “Fault tolerant techniques for integrated circuits in submicron and
nanotechnologies”, Proc. SPIE, Vol. 6635, 66350B (2007); SPIE Digital Library
doi:10.1117/12.741873.

[2] A.-L. Barabasi, R. Albert, and H. Jeong, “Scale-free Characteristics of Random Networks:
The Topology of the World Wide Web,” Physica A 281, 2000.

[3] A. Fessi, “Resilient Application Layer Signaling based on Supervised Peer-to-Peer (p2p)
Networks”, Technische University at Munchen, 2010.

[4] C. Baransel, W. Doboseiwicz, and P. Gburzynski, “Routing in Multi-hop Packet Switching
Networks: Gbps Challenge,” IEEE Network Magazine, 1995.

[5] F. Auder, C. Jennings, Nerwork Address Translation (NAT), January 2007

[6] M. Fisher, S. Grau, G. Schafer, T. Strufe, “Methods for Improving Resilience in
Communication Networks and P2P Overlays”.

[7] J. Aspnes, Z. Diamadi, and G. Shah, “Fault-Tolerant Routing in Peerto-Peer Systems,”
ACM PODC, July 2002.

[8] J. Douceur. The Sybil attack. In Proc. of the IPTPS02 Workshop, Cambridge, MA (USA),
March 2002.

[91 R. Albert, H. Jeong, and A.-L. Barabasi. “Error and attack tolerance of complex networks”
Nature, 406(6794):378-382, July 2000.
[10] V. Pau, D.L. Copaci, “Considerations on the resilience and security of Communication
Networks”, Annals of the Academy of Romanian Scientists, Series on Engineering Sciences, Vol.
11, nr. 1/2019, ISSN 2066-8570.
[11] Y. Azar, A. Broder, A. Karlin, and E. Upfal, “Balanced Allocations,” SIAM J. on
Computing, vol. 29, no. 1, 1999.

[12] https://openvz.org/.




