
Annals of the Academy of Romanian Scientists

Series on Engineering Sciences

32 Volume 14, Number 1/2022 ISSN 2066-8570

EDUCATIONAL 5 AXIS ROBOT CONTROLLER

OPTIMIZATION USING ARM HARDWARE INSTRUCTIONS

Alexandru-Ioan ANASTASIU1,

Cozmin CRISTOIU2, Florea Dorel ANANIA3

Rezumat. Această lucrare își propune să prezinte o metodă de programare a unui

controller de tip Raspberry Pi pentru un braț articulat cu 5 axe. Scopul este optimizarea

cinematicii directe, bazându-se pe o abordare universală. Înmulțirea matricelor este

implementată folosind instrucțiuni de hardware prezente în standardul ARM. Avantajul

principal al acestei metode este viteză mai mare de programare, ceea ce oferă viteză mai

mare de reacție robotului. Cu ajutorul unui set de instrucțiuni creat în acest scop se asigură

programabilitatea brațului robotic.

Abstract. This paper presents a programming method of a Raspberry Pi controller for a

5-axis articulated arm robot. The goal is optimization of direct kinematics calculations,

based on the universal approach for direct kinematics method. Matrix multiplication is

implemented using ARM hardware instructions. The main advantage of this method is

lower computation time, which means faster robot response time. Programmability of the

robot is done by means of a custom-made instruction set, called RASM.

Keywords: Robot, Programming, Hardware instruction

DOI https://doi.org/10.56082/annalsarscieng.2022.1.32

1. Introduction

Modern advancements in technology have allowed broad access to technology. This

is beginning to show even in de domain of Robotics, where more and more kits are

becoming readily available. This availability allows students to study and

understand the key aspects of industrial robotics, without the need to access

prohibitive or specialized hardware. Using one such kits, the possibility of creating

a scaled-down but otherwise analogous 5 degree of freedom robot arm was

approached. The focus was the robot firmware, in other words the underlying

software that allows the robot to function.

2. RASM – The Robot Assembler

One of the goals of this research was development of a custom programming

language, in order to allow advanced control of the device. By definition, a robot

must be programmable, so as to be able to perform certain actions in a definite,

1 Student, University POLITEHNICA of Bucharest, IIR Faculty, Spl Independentei 313, ZipCode

060042. E-mail: a.anastasiu@outlook.com
2 Lecturer, University POLITEHNICA of Bucharest, IIR Faculty, Spl Independentei 313, ZipCode

060042. E-mail: cozmin.cristoiu@gmail.com
3 Associate Professor, University POLITEHNICA of Bucharest, IIR Faculty, Spl Independentei

313, ZipCode 060042. E-mail: dorel.anania@upb.ro

https://doi.org/10.56082/annalsarscieng.2022.1.32
mailto:a.anastasiu@outlook.com
mailto:cozmin.cristoiu@gmail.com
mailto:dorel.anania@upb.ro

 Educational 5 axis robot controller optimization using ARM hardware instructions 33

repetitive manner. The first component of the program represents such a feature.

Branded RASM (Robot Assembly), it loosely follows a syntax similar to ARM

assembly [1], being able to interpret and execute 17 specialized opcodes

(instructions), related to the spatial movement of the manipulator. This allows the

robot to be completely programmable, which includes arithmetic operations

(addition, subtraction, multiplication, as well as variable support) and logic

operations (if, else, as well as rudimentary branching support, by means of goto-

like instructions).

RASM is a hybrid language, this meaning that while it requires an interpreter (the

code does not run directly on hardware, but rather has an abstraction layer that

translates the generic instructions to the hardware-specific operations), it also

utilizes an assembler, a program that takes human-readable text code and transforms

it into machine code, reducing computational power required on the target device.

This assembler takes each text line from a .rasm file and converts them to an

Instruction class (defined as standard across RASM implementations) object. A

“program” can be defined as a vector (or array) of such Instructions. The assembler

also has a secondary role, that of variable optimization. Because a human

programmer might name a variable using an alphanumeric combination, this greatly

slows down the process of variable lookup on the machine which runs the code. For

example, computation time would be greatly increased if, instead of searching for

“variable1”, a computer would be looking for numeric value of 100. This

computation is offset by the assembler, which takes each reference to an

alphanumeric variable name and transforms it into a reference to a numeric value.

In order to better explain how logic is handled, one must first define how a program

is structured. Since instructions are stored in an array, these can be parsed by means

of an index (referred to as a Program Counter, abbreviated PC, analogous to x86

and ARM64 assembly). This index can, hence, be manipulated in any way, in order

to skip instructions, jump backwards in the program, or enable branched execution.

The assembler takes a label defined by the user and simply replaces all references

in the program with the respective PC values.

Both the RASM interpreter and assembler utilize highly optimized switch

statements in order to achieve fast execution of user code. Being a specialized

language with few instructions, this allows it to be faster than equivalent,

general-purpose languages (for example Python), while also having a much lower

memory footprint (a 1000-instruction program will consume around 40kb of

memory). Additionally, the interpreter is designed to be extendable, with anyone

being able to add code to it, in order to better suit their application (this means

custom instructions can be added, as well as existing ones being redefinable).

34 Alexandru-Ioan Anastasiu, Cozmin Cristoiu, Florea-Dorel Anania

Fig. 1. An example of a pick and place application simulated in RoboDK

and corresponding RASM code

3. Teach Pendant

In order to provide a graphical interface for the robot, a program was developed.

Designed to run on handheld devices (laptops, tablets or similar), it emulates the

functionality of a Teach Pendant. Internally, it is based on two different event loops

(Fig. 2), running on a fixed time pattern. The first handles mechanical control of the

robot, while the second performs video processing. The two run on different

threads, allowing faster execution.

Fig. 2. Two different loops algorithms

 Educational 5 axis robot controller optimization using ARM hardware instructions 35

Fig. 3. The teach pendant interface.

The Teach Pendant program allows a user to control every aspect of the robot (Fig.

3). As such, it has independent control over the axes, by means of sliders, text boxes

into which absolute angle values can be introduced, or by means of an attached

joystick.

3.1. Camera

The robot kit utilized is equipped with a camera for machine vision, whose output

is displayed within the center of the interface. This represents a direct stream from

the sensor, alongside a crosshair that is meant to aid in positioning of the gripper.

Additionally, in order to better exemplify the utility of such a sensor, the robot is

able to detect, isolate and follow objects based on color. red, blue, and green items

are each assigned a color-matching bounding box. Upon the user pressing the

“Track object” button, he can select which color the robot must follow, after which

input is disabled (the robot enters an automated mode), in which it attempts to

always center the respective object to the viewfinder.

3.2. Learning mode

Analogous to real-life industrial robots, a teach-in mode is available, in which the

robot can be positioned by means of the joystick. Upon a certain position and

orientation is determined, an operator can press a button to record that target. The

robot will then follow the given path, staying as faithful as possible to the given

Axis control area

Robot function selection area

Axis display

area

Kinematics

display area

36 Alexandru-Ioan Anastasiu, Cozmin Cristoiu, Florea-Dorel Anania

coordinates. A (virtually) infinite number of points may be recorded, thanks to

coordinates taking little in the way of program memory.

3.3. Program

The robot may also be programmed by loading a compiled RASM binary, by an

operator pressing the “load program” button. After load, a confirmation prompt is

displayed, after which the robot begins automatically following the program. It will

do so indefinitely, or until stopped by an operator.

3.4. Outputs

The Teach Pendant also informs an operator of the various parameters of the robot

at any time: the side panel shows a live (updated every 100ms) readout of the angles

of each axis. Additionally, a triplet of coordinates is displayed, calculated by means

of direct kinematics (section 4 describes the means of how this is achieved).

4. The robot firmware

The robot’s firmware represents the interface between RASM, the Teach Pendant

and the actual robot hardware which comprises the platform. While the formerly

discussed components were universal, requiring only minor modifications or even

no modification, the firmware is specific to each robot. A new robot kit will require

a new firmware.

Thus, a word on the hardware is necessary. At the center of the robot lies a

Raspberry Pi board, a single-board ARM based computer which acts as the robot

controller. However, its role is only achieved when used in conjunction with an

on-board coprocessor (an stm-8 microcontroller). Through reverse-engineering the

code and documentation provided by the manufacturer, the architecture was

understood: The Raspberry issues commands to the microcontroller over the i2c

(inter-integrated circuit) bus. The microcontroller then controls the servomotors

which make up the robot.

The firmware can generally be divided in 4 sections:

Motor module This component represents the interface with motors. Incoming

angle commands are parsed, error-checked (in order to prevent erroneous or

dangerous commands, such as an angle that might put the robot in an

invalid pose), then issued to the accompanying microcontroller.

Camera module The camera feed is processed on-device, with the output being

displayed on the Teach Pendant. The image is taken from the sensor, converted

 Educational 5 axis robot controller optimization using ARM hardware instructions 37

from RGB to HSV (hue-saturation-value), in order to get better color recognition,

then the isolation step begins. During this, an algorithm is used to threshold the

different color values, resulting in a decomposition of the initial image into three

different profiles: red, green, and blue (Fig. 4).

a. Raw image b. Red component

c. Green component d. Blue component

Fig. 4. An example of image decomposition into colors

The algorithm takes the initial image, then blurs it. This is done in order to remove

much of the picture noise that might confuse the algorithm. While details are lost

in this way, the general outline (which is representative for the color) remains

unaltered. After that, the image is “thresholded”, a process by which pixel values

are checked to see if they are in within a certain range on the color spectrum. If they

are in that range, they are left untouched, else, they are filled with black. The

resulting images contain only the color profile, which is searched for, and nothing

else. Then, a rectangle is generated in such a way that it completely encases the

areas of non-black color. The coordinates and size of this rectangle are used to draw

onto the initial image, resulting in an outline of each colored object. In order to

simplify matters, only the largest area of color is considered when drawing the

borders.

Kinematics module The kinematics module handles the calculations required for

the position of the end-effector of the robot arm. In order to reduce code complexity,

38 Alexandru-Ioan Anastasiu, Cozmin Cristoiu, Florea-Dorel Anania

the “Universal method” [3] is used. This approach deviates from the usual Denavit-

Hartenberg [4].

method by keeping the coordinate frames constant across axes (the “x” axis is

always pointing in the direction of the robot’s “home” pose, the “y” axis is always

perpendicular to the “x” axis and pointing into the plane, and the “z” axis always

points upwards.). Furthermore, a single matrix is used to represent a joint, one that

contains 4 rows and 4 columns. The first 3x3 sub-matrix represents the orientation

of the axis, the next 3x1 represents the spatial coordinates of it, while the bottom

row denotes the scale at which the modeling is done.

Matrix multiplication is done between each one of these joint matrices, resulting in

the end effector matrix. Traditionally, this is done in programming using an iterative

method, performing repeated multiplications and additions. This approach is valid,

but requires great computational power, and due to the fact that it utilizes three

loops, puts a great demand on the processor’s cache and arithmetic logic unit.

Below are presented the matrices used in calculating the coordinates and orientation

of the robot’s tool flange.

[

R1 R2 R3 Tx

R4 R5 R6 Ty

R7 R8 R9 Tz

0 0 0 1

] = [

cos(1) - sin(1) 0 0

sin(1) cos(1) 0 0

0 0 1 74

0 0 0 1

] × [

cos(2) 0 sin(2) 0

0 1 0 0

- sin(2) 0 cos(2) 29

0 0 0 1

]

× [

cos(3) 0 sin(3) 0

0 1 0 0

- sin(3) 0 cos(3) 82.85

0 0 0 1

] × [

cos(4) 0 sin(4) 0

0 1 0 0

-sin(4) 0 cos(4) 82.85

0 0 0 1

] ×

[

1 0 0 71.5

0 cos(5) -sin(5) 0

0 sin(5) cos(5) 0

0 0 0 1

]

(1)

Explained briefly, each joint can be represented through an X-Y-Z coordinate

system. As illustrated in Fig. 4 and detailed above, these frames maintain

orientation throughout the length of the robot. For rotations around each axis, the

rotation matrix component stays the same (the only difference being the argument

of the trigonometric functions, which represents the value of the angle on each axis).

The resulting matrix contains the 3x3 sub-matrix which represents rotation of the

end effector (R1-R9) and the translation (Tx, Ty, Tz), relative to the robot’s base.

Furthermore, the rotation matrix may be decomposed into Euler angles, utilizing

the method described in [5].

First, create the generalized rotation matrix of any spatial point, by multiplying the

matrices which describe rotation around each axis (x, y, z):

 Educational 5 axis robot controller optimization using ARM hardware instructions 39

G = [
cos(ϕ) -sin(ϕ) 0

sin ϕ cos ϕ 0

0 0 1

] × [
cos(θ) 0 sin(θ)

0 1 0

-sin(θ) 0 cos(θ)
] × [

1 0 0

0 cos(ψ) -sin(ψ)

0 sin(ψ) cos(ψ)
]

(2)

From this, it can be concluded that

𝐺 = [

cos(θ)cos(ϕ) sin(θ)sin(ψ)cos(ϕ)-cos(ψ)sin(ϕ) sin(θ)cos(ψ)cos(ϕ)+sin(ψ)sin(ϕ)

cos(θ)sin(ϕ) sin(θ)sin(ψ)sin(ϕ)+cos(ψ)cos(ϕ) sin(θ)cos(ψ)sin(ϕ)-sin(ψ)cos(ϕ)

-sin(θ) cos(θ) sin(ψ) cos(θ)cos(ψ))

]

(3)

And thus, if R7 ≠ ±1:

θ1 = -arcsin(R7)

θ2 = π + arcsin(R7)

ψ1 = arctan2(
R8

cos θ1
,

R9

cos θ1
)

ψ2 = arctan2(
R8

cos θ2
,

R9

cos θ2
)

ϕ2 = arctan2(
R4

cos θ1
,

R1

cos θ1
)

ϕ2 = arctan2(
R4

cos θ2
,

R1

cos θ2
)

(4)

Else:

ϕ1 = ϕ2 = 0 (or any value)

θ = π / 2, if R7 = -1, else θ = - π / 2

ψ = ϕ + arctan2(R2,R3) if R7 = -1 , else ψ = -ϕ + arctan2(-R2,-R3)

(4)

These values must then be checked against the actual manipulator, in order to verify

that the position generated is achievable (Fig.5).

40 Alexandru-Ioan Anastasiu, Cozmin Cristoiu, Florea-Dorel Anania

Fig. 5. Positions of the axes along the robot

A newly proposed method is to leverage AARCH64 (the instruction set utilized on

arm64 processors hardware instructions, in the form of ARM NEON [6]. NEON is

a SIMD (single-instruction, multiple-data) instruction set, designed to accelerate

computation of vector operations.

 Educational 5 axis robot controller optimization using ARM hardware instructions 41

At a silicon level, a processor has a set of small, fast-access memory locations called

registers. These registers are used by the processor during operation, as a location

to execute calculations, logical operations, as a fast storage for the stack and frame

pointers. ARM64 offers 64 such registers (32 for integer operations, 32 for

floating-point), each register being 64 bits wide.

A processor is limited in computational speed by the number of operations it must

undertake in order to execute a certain task. This is where SIMD is utilized. Suppose

a mathematical operation, such as addition of two vectors, were to be performed.

An iterative method will load a register with the first value of the vector, the next

with the first value of the first vector, then may allocate a third register to store the

result of the addition. This results in a complexity (the number of operations that

must be performed in order to execute a task of size “N”) of O(N).

For an array of 4 elements, 4 operations must be performed. Using ARM NEON,

this may be optimized in such a way that only one operation is performed [7]. This

is done by combining 4 floating point registers into 1 quadword register.

Effectively, these behave as vectors, with the added benefit of being able to do

arithmetic operations using just one instruction

Applying this technology to the use case presented, matrix multiplication is greatly

simplified. The resulting code executes almost two times faster (determined

experimentally). The robot is therefore able to execute cycles that would require

faster movement, spending less processing time on kinematics calculations.

Program module This represents the RASM interpreter, which loads the program

from a compiled binary into memory, then fetches instructions, executing them in

a programmed manner. The program module gives a user full control over the

robot’s hardware, allowing full mobility, trajectory generation, integration with the

camera module [8], [9].

By developing a postprocessor for a robot simulation program (such as RoboDK),

programs can be developed that integrate the robot into a real application, beyond

the demonstration purpose [10], [11].

42 Alexandru-Ioan Anastasiu, Cozmin Cristoiu, Florea-Dorel Anania

Fig. 2. Final construction of the robot arm

 a. The Robot arm b. The Raspberry Pi

 and microcontroller

Conclusions

This software presented a novel method of exploiting a low-cost, commercially

available robotics kit, with applicability in the educational domain, by simulating

the functional principles of an analogous industrial robot (programmability,

teach-pendant functionality). The approach used in this direction implements

current technologies, by using hardware instructions in order to accelerate

computation. The application is easily adaptable to any robot kit, bringing real-life

engineering notions into the grasp of students. Such software had not been created

at the time of writing.

Micro robotics is an area of technology that has seen rapid development in the past

years, having great applicability in areas such as personal services and

entertainment. However, such robots may also be utilized in educational

applications, since they mimic the real-life construction of industry-used robots.

Articulated arm type robots have great utility thanks to their flexibility and

versatility, given by the kinematic structure. Moreover, robots equipped with

cameras have the capability to be semi-self-programmable, reacting to their

environment and adapting to the conditions. This paper presented a possible such

application, through the ability of the arm to do color-based object tracking. This

was done utilizing a thresholding algorithm, by isolating specific areas of the

spectrum and defining them as a specific color, then matching pixels recorded from

a camera.

One of the great challenges in robotics is represented by programming. This paper

proposed a new pseudo-programming language, named RASM, that aims to greatly

 Educational 5 axis robot controller optimization using ARM hardware instructions 43

simplify the way such a robot may be controlled. It is compliant with the rules of

direct kinematics and could in the future be interfaced with different off-line

programming environments, through the use of postprocessors. Thanks to the fact

that the interpreter is built using C++, it maintains speed and performance, critical

in any application.

In order to further optimize the execution of instructions, hardware acceleration was

used where possible, fully utilizing the ARM-based architecture. This results in

matrix multiplication that is twice as fast compared to an iterative approach.

R E F E R E N C E S

[1] ARM Architecture Reference Manual, 2022 Arm Limited,

https://developer.arm.com/documentation/ddi0487/latest

[2] Basic Thresholding Operations, https://docs.opencv.org/3.4/db/d8e/tutorial_threshold.html

[3] Cozmin CRISTOIU, Adrian NICOLESCU, “New approach for forward kinematics modeling

of industrial robots with closed kinematic chain”, 2017

[4] Balasubramanian, Ravi. “The Denavit Hartenberg Convention.", USA: Robotics Institute

Carnegie Mellon University (2011)

[5] Slabaugh, Gregory G. "Computing Euler angles from a rotation matrix." Retrieved on

August 6.2000 (1999): 39-63.

[6] Reddy, Venu Gopal. "Neon technology introduction." ARM Corporation 4.1 (2008): 1-33

[7] Kim, Dae-Hwan. "ARM NEON Assembly Optimization."

[8] Dobrescu, Tiberiu Gabriel & Dorin, Alexandru & Nicoleta-Elisabeta, Pascu & Ivan, Ioana.

(2011). CINEMATICA ROBOTILOR INDUSTRIALI.

[9] Blanchette, Jasmin, and Mark Summerfield. C++ GUI programming with Qt 4. Prentice Hall

Professional, 2006.

[10] Garbev, Atanas, and Atanas Atanassov. "Comparative Analysis of RoboDK and Robot

Operating System for Solving Diagnostics Tasks in Off-Line Programming." 2020 International

Conference Automatics and Informatics (ICAI). IEEE, 2020.

[11] Holubek, Radovan, et al. "Offline programming of an ABB robot using imported CAD

models in the RobotStudio software environment." Applied Mechanics and Materials. Vol. 693.

Trans Tech Publications Ltd, 2014.

https://docs.opencv.org/3.4/db/d8e/tutorial_threshold.html

