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MANAGEMENT OF BIG DATA IN SCIENTIFIC 
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Rezumat. Dezvoltarile recente in sistemul de procesare al calculatoarelor au condus la 

generarea unor cantitati mare de date. Procesarea acestor large baze de data reprezinta 

adevarate provocari pentru comunintatea stiintifica. O problema particulara este 

interpretarea datelor, in particular seprarea datelor utile de cele inutile. Mai mult decat 

atat clasificarea datelor in subgrupuri de date aduce provocari suplimentare. In general 

este acceptat ca analiza acestor date este foarte dificila. De aceea modele eficiente si 

acurate de data-mining ar inlesni analiza acestor mari baze de date. In acest studiu 

propunem un odel computational basat pe algoritmul k-means, identificat ca algoritmul 

de fuzzy-clustering. Folosirea algoritmului de fuzzy-clustering reduce timpul 

computational cu 72% comparat cu metodele computationale normale. 

Abstract. The recent developments in computer processing has led to the generation of 

significant amount of data. However, the post-processing of this large amount of data 

poses significant challenges for the scientific community. A particular issues is the data 

interpretation, particularly regarding the segregation of valuable data from arbitrary 

data. Moreover, data classification in subgroups poses further challenges. It has been 

largely accepted that the analysis of these data sets may be cumbersome. Therefore, 

efficient and accurate data mining models would enable the analysis if large data-sets. In 

this research we propose a computational model based on the k-means algorithm, 

identified as fuzzy clustering algorithm. The use of the fuzzy clustering algorithm reduces 

the computational time by 72%, when compared with regular computational approaches. 
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1. Introduction 

The rapid progress in the developments of computing technologies and software 

such as high-performance computing (HPC) have generated large amounts of data 

that require further post-processing, interpretation and dissemination [1-5]. Post-

processing and visualization of this large amount of data pose significant 

challenges, particularly when the data needs to be assembled/coupled from 

various instantaneous time-frames [5, 6]. Some of these cases are encountered in 

the medical field, biology research, engineering applications, etc. Out of all these 

1PhD, Assistant Professor, Dept. of Mechanical Engineering, Georgia Southern University, 

Statesboro, GA 30458, USA, e-mail: milie@georgiasouthern.edu 
2PhD, Professor, Dept. of Material Sciences, University Politehnica Bucharest, Bucharest, 

Romania, augustin.semenescu@upb.ro 



 

 

42 Marcel Ilie, Augustin Semenescu  

 

fields, we focus on engineering applications used in the fluid dynamics analyses, 

such as particle image velocimetry (PIV). PIV is a flow visualization technique 

where visual data is collected at different instants in time and post-processed 

using correlation techniques. It is well know that in both experimental and 

computational data there is always data uncertainty. The data uncertainty may be 

reduced by proper data management, which implies, accurate data separation and 

grouping. Similarly to the experimental data management, the computational 

research also poses significant challenges with the data allocation. In this research 

we focus on the computational data resulting from computational fluid dynamics 

(CFD). In many cases the generated CFD data may or may not represent the 

accurate solution due to the space and time-discretization schemes employed. The 

space discretization is defined the size of the grid element, in the sense that the 

smaller the element grid size the smaller the numerical error. Apparently, a very 

small element size would minimize the numerical error and ensure the numerical 

stability. However, there is a drawback associated with approach, namely a larger 

amount of data than need and thus, post-processing challenges. A method that 

ensures both numerical accuracy of data and stability would be desirable.  

 

2. Background  

In the past decade there have been multiple research studies that concern the 

development of accurate and efficient computational techniques for data 

management in CFD [1, 2, and 6]. One of these methods is the adaptive-mesh 

refinement (AMR). The AMR numerical technique offers the advantage of fast 

and reliable computations with a minimum number of grid point (data recording 

points). However, most of these studies focused on a single level of refinement. 

Thus, we propose a method that is based on multiple levels of refinement with an 

aposteori data separation technique. The proposed numerical technique represents 

a novelty in the field of computational sciences. 

 

3. Modeling 

Figures 1and 2 show the schematic of the AMR algorithm based on multiple 

refinements, for both structured, Fig. 1, and unstructured meshes, Fig. 2. The 

purpose of the refinement is to identify the flow regions that are most dynamic. 

The criteria for highly dynamic flow region is defined by the values of vorticity 

vector and it is a user’s option based on the desired values of vorticity field.   
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 Fig. 1. Adaptive mesh refinement algorithm; structured mesh 

 

 

 
Fig. 2. Adaptive mesh refinement algorithm; unstructured mesh 

 

 

The vorticity field is given by the determinant of the matrix given by equation 1: 
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where u, v and w are the velocity components, corresponding to the vectors i


 

, j


, k

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It is important to mention here that the mesh refinement and implicitly data 

clustering is performed in the computing stage. The novelty of our approach 

comes from the fact that we perform the data clustering at the post-processing 

stage as well. This way we ensure the accuracy of the generated data as well 

facilitate the data management.  

The post-processing data clustering is performed using a fuzzy clustering 

algorithm, based on the k-means. The mean idea of k-means algorithm is to 

partition large data points (n-data points) into k clusters. It is worth to mention 

here that each data belongs to the cluster with the nearest mean. 

The k-means algorithm is briefly described in the following. Given a set of data, 

and assuming 1-D problem, ( )nxxxx .........,, 321 we can cluster the data into k 

clusters where ideally nk  , resulting into a data set  nSSSSS ........,, 321= . The 

objective, of the k-means algorithm, is to minimize the variance of the data sets. 

Thus 
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where i is the mean of the points in the data set iS . By doing this, the deviations 

of the points, in the same cluster, are minimized such that  
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4. Results and discussion  

Figure 3 presents the numerical results using the AMR approach. The data 

represents CFD results of cross-flow jet at different instants of time. The analysis 

of the results in Figure 3 reveals the efficiency of the AMR algorithm and 

illustrates how the grid point are clustered in the regions of highly dynamic 

vorticity. Regions of low or no vorticity are discretized using a coarser mesh size. 

This is also observed from the distance between the grid points. The size of the 

mesh elements, in the case when using the AMR, is about 
510 .  
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a. t=0.1s b. t=0.15s 

  
c. t=0.2s d. t=0.25s 

Fig. 3. Computational results of cross-flow jet using AMR 

Figure 4 presents the computational results of the cross-flow fluid dynamics 

analysis suing the DNS along with the AMR. This study concerns the effect of the 

velocities’ ratio, jet velocity to free-stream velocity, on the development of the 

fluid flow. The analysis shows that there is a detachment of the flow with the 

increase of blowing-ratio. 
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 a. velocity  b. temperature  
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 c. velocity  d. temperature 

Fig. 4.  Computational results of cross-flow using the AMR 
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To assess the efficiency of the AMR, we compare the size of the computational 

domain, and implicitly the number of data points, using AMR versus direct 

numerical simulation computations. For DNS computations, the size of 

computational domain is proportional to the Reynolds )( eR  number and 

proportional with the 4
9

eR . Thus, for a 000,5eR , the number of grid points 

would be proportional to 610210  grid (data) points. This means a very large 

number data that is cumbersome to analyze. A simple calculation shows that the 

use of AMR reduces the number of data points by a factor of 2,100. This is 

significant data reduction, while capturing all the fluid dynamics of flow field. In 

the following, the data clustering using the k-means approach is employed for the 

aerodynamic studies of helicopter blade-vortex interaction (BVI). Thus, Figure 5 

presents a schematic of the helicopter BVI phenomenon.  

 
Fig. 5. Schematic of helicopter aerodynamics [7] 

 

   
a. t=0.01s b. t=0.015 c. t=0.025s 

Fig. 6. Computational results of helicopter BVI 
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a. data set  b. data clustering  

  

c. refinement of data clustering  d. data comparison  

Fig. 7. Data clustering for the problem of BVI 

Figure 6 presents the computational results of helicopter BVI for a two-blade 

configuration. The study reveals the interactions between the advancing blade and 

the tip-vortex formed at the tip of the blade. These interactions are main factors of 

noise and vibration in the helicopter dynamics. A set of experimental data 

(pressure data) is presented in Figure 7a. As it can be seen from Figure 7a, the 

data contain some noise and we want to separate the good data from the noise data 

using the k-means algorithm. Performing an initial clustering of data, we are able 

to cluster the data based on the pressure values, Figure 7b. Further clustering of 

data reduces even further the variance of the data, Figure 7c. Integrating the data 

points after the clustering process we obtain the values of the experimental data, 
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Figure 7d. The comparison between the experimental and computational data 

shows a very good agreement with the percentage error %5 . It is important to 

mention here that the AMR algorithm along with the k-means algorithm reduces 

the computational time by 72%. 

Conclusions 

An efficient computational approach for data management is developed to 

facilitate the post-processing of large-set of data. The data management approach 

comprises two different algorithms, namely the adaptive-mesh refinement and 

data clustering. The first algorithm reduces the size of the computational domain, 

while the second algorithm clusters the useful data. The comparison between the 

experimental and computational data shows very good agreement with a 

percentage error %5 . The proposed algorithm reduces the computational time 

by 72% , and this is a significant achievement of the developed method. 
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