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SCHRÖDINGER EQUATION FOR THE CHIRAL 

GEOMETRY IN ATOMIC NUCLEI  
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Abstract. The dynamical and spectral features of the chiral geometry in atomic nuclei are 

described by means of a triaxial rigid rotor Hamiltonian cranked by quasiparticle 

alignments. The problem is treated alternatively in the space of angular momentum states 

and using a Schrödinger equation for a continuous variable associated with an angular 

momentum projection. The later is constructed using a semiclassical approach. Numerical 

applications performed for various deformation and alignment conditions with both 

methods are compared in terms of energy levels and wave functions. 
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1. Introduction 

The concept of chirality or handedness is related to the asymmetry properties of a 

system. Basically, a chiral system is distinct from its mirror image. This property is 

systematically encountered in nature and subsequently is important in most do- 

mains of science. One of the most immediate examples of chirality are the human 

hands. Shells of snails, spirals and coils of plant veins, or flower formations are 

other macroscopic biological ensembles with a chiral geometry. From mathematical 

point of view, a system is chiral if its mirror image cannot be obtained by a 

combination of only translation and rotation transformations. In science, the 

chirality is more often invoked in molecular and biological chemistry, where chiral 

partners of compound molecules often exhibit drastically different properties such 

as smell, taste, or colour. A notable example of a chiral biological molecule, is the 

DNA double helix. The chirality in physics is mostly associated with spin dynamics 

and the polarization of the electromagnetic waves. 

In nuclear physics, chirality is related to the trihedral geometry of three mutually 

perpendicular angular momentum vectors corresponding to the core rotation and 

two distinct spins coming from out of core nucleons. The three vectors can therefore 

be arranged into a right-handed or left-handed order. Given the fact that vectors are 

involved instead of coordinate loci, the nuclear chirality is of the dynamical type. 

The two chiral configurations in this case can be obtained from each other through a 

rotation and a time reversal transformation instead of a space inversion employed for 
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the static chirality. The conditions in which the three spin vectors achieve a mutual 

orthogonality were originally proposed by Frauendorf and Meng [1]. It all comes 

down to the quasiparticle nature of the nucleons which couple to the triaxial core. 

More precisely, a nucleon of particle (hole) nature will rotate around the short (long) 

axis of the mean field generated by the triaxial core, which in turn favors the rotation 

around its medium body-fixed axis with the maximal moment of inertia (MOI). The 

schematic representation of such a geometrical arrangement is given in Fig. 1.  

 

 
Figure 1: Schematic representation of the chiral geometry in atomic nuclei. Right- (R) and left-

handed (L) configurations of rotor (𝑅⃗ ) and total (𝐼 ) angular momentum vectors are correspondingly 

labeled. For the direction of the total angular momentum vector one also pointed out the 

stereographic variables φ and θ. The considered departure from the perfect orthogonal alignment of 

the single particle spins (𝑗 )  and (𝑗′⃗⃗ )  is also presented. 
 

The two chiral configurations can be related either by the interchange between the 

quasiparticle alignments or considering an opposite rotation for the triaxial core. 

The distinction between the two opposite chirality configurations is valid in the 

body fixed frame of reference, but are indistinguishable in the laboratory reference 

system where the measurements are taken. Due to the restoration of the chiral 

symmetry, a degenerated pair of Δ I = 1 rotational bands of the same parity should 

be observed. The first observation of such bands and consequently the experimental 

realization of chiral geometry was reported in a few N = 75 odd-odd nuclei [2]. This 

event triggered a concerted theoretical and experimental effort for establishing the 

extent of this dynamical mode in other nuclei. As a result, chiral bands are presently 

identified in more than fifty nuclei [3, 4], be it in its originally proposed one proton 
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and one neutron configuration, or with multiple quasiparticle alignments. Most of 

the experimental realizations can be localized within the so called islands of 

chirality centered on the mass numbers A = 80, 100, 130 and 190 with specific 

single-particle states involved in the realization of the chiral geometry. The 

quasiparticle alignments are usually generated by protons and neutrons from 

intruder orbitals g9/2, h11/2, and i13/2, assuring thus a high spin contribution to the total 

angular momentum of the system. The topic of nuclear chirality evolved also to a 

point where it is considered in connection to other nuclear structure properties or 

phenomena such as octupole correlations [5], shape phase transitions [6] and shape 

coexistence phenomena [7], or softness of the triaxial deformation [8]. 

The expected degeneracy of the chiral bands is rarely experimentally realized, being 

confirmed only approximately for few nuclei in limited ranges of total angular 

momentum. Nevertheless, the chiral assignment of these bands persisted due to the 

same underlying structure. At low spins, the core rotation is slow and the two chiral 

configurations are attained as turning points for the so called chiral vibration [2]. 

The excited state of the same angular momentum and parity is shifted in this case 

with a vibrational energy. With the increase of core’s rotation, the chiral directions 

of the total angular momentum stabilize, marking thus the beginning of the static 

chirality regime. The lack of degeneracy between the partner bands in this high spin 

regime can be ascribed to the deviations from perfect orthogonality of the all three 

vectors involved in the chiral geometry. Indeed, the uniform rotation of the core is 

plagued by precession components coming from its triaxiality [9, 10, 11, 12, 13], 

while the fractional occupancies of the coupled quasiparticles induce tilting to their 

assumed axial alignments [14]. Of course, in this situation the system is no longer 

chiral, but valuable information can be extracted having this picture in mind. 

Although the obvious theoretical tool to approach the chiral geometry in atomic 

nuclei is the Particle-Rotor Model (PRM) [15], its interpretation regarding the 

direction of the total angular momentum in relation with the nuclear density 

distribution was achieved using the Tilted Axis Approach (TAC) [16]. On one hand, 

the quantum nature of the PRM offers spectral signatures and selection rules for the 

electromagnetic properties of the chiral partner bands [17, 18, 19, 20, 21, 22]. On 

the other hand, the semiclassical upbringing of the TAC formalism is able to unveil 

the dynamical behaviour of the chiral system [23, 24, 25, 26]. Advances in 

understanding and describing the properties of chiral bands were driven by various 

approximations and extensions of these two models such as TAC plus random 

phase approximation [27, 28], collective Hamiltonian [29, 30, 31], boson expansion 

[32, 33], projected mean-field [34, 35, 36], and semiclassical models [9, 10, 37, 38]. 

Alternative theoretical approaches to those based on PRM and TAC such as the 

Interacting Boson Model [39, 40, 41] must also be mentioned. 

The semiclassical approaches deserve a special attention due to their ability to 

combine the advantages of the PRM and TAC formalisms. This is achieved by 
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ascribing to the original quantum PRM Hamiltonian a classical picture in terms of 

directional angles of the total angular momentum vector, from which the dynamics 

of the system can be better understood. The semiclassical method can also be used 

to recast the original quantum PRM Hamiltonian into a Schrödinger equation for a 

suitably chosen continuous variable, which can calculate experimental observables 

and relate them with the underlying classical motion. The same program had great 

success in the description of the wobbling excitations [42, 43, 44, 45, 46], a 

phenomenon having many common features with the nuclear chirality. To keep the 

formalism tractable, a frozen approximation is usually adopted for the quasiparticle 

spins, which actually relates the PRM and TAC approaches. Indeed, with adoption 

of rigid or frozen quasiparticle alignments, the PRM Hamiltonian becomes a 

cranked rotor Hamiltonian with constraints defined by the quasiparticle alignments. 

Such a model is then well suited for the investigation of realistic arrangements of 

the implicated spin vectors deviating from the perfect chiral geometry. The 

analytical formalism behind this quantum model is presented in Section 2. The 

construction of the Schrödinger equation associated to this quantum problem, by 

means of a semiclassical procedure, is detailed in Section 3. Given the fact that in 

order to obtain a Schrödinger equation, one must adopt additional approximation 

and perform a requantization, it is interesting to compare the eigensystems of the 

two approaches. This is the main focus of the study and is realized in Section 4 with 

various numerical applications. The conclusions of this comparison are synthesized 

in the last section. 

2. Constrained triaxial rotor model for chiral geometry 

The interaction between the rotation of a triaxial core and two quasiparticle (𝑗 ) and 

(𝑗′⃗⃗ ), is usually described by an appropriate extension of the PRM: 

 

 H = HR + Hqp + H’qp (2.1) 

The first term 

  (2.2) 

 

is the triaxial rotor Hamiltonian for the core angular momentum (𝑅⃗ )= (𝐼 ) - (𝑗′⃗⃗ ) - (𝑗′⃗⃗ )  

, with (𝐼 ) being the total spin of the system. Each principal axis rotation component 

is factorized by the corresponding inertial parameter Ak = 1/(2Jk), which is related 

to the moment of inertia 

  (2.3) 
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defined in the hydrodynamic model [15] with the help of the triaxiality measure γ. 

The shapes of the triaxial core repeat themselves at γ = π/3 intervals, with 

redistributed axis assignments. The correspondence between the MOI and the 

core’s shape can be tracked with the help of the semi-axis lengths: 

  (2.4) 

where β is the axial deformation. This allows the identification of the intrinsic axes 

as the long (l), short (s) and medium (m) depending on the value of the triaxiality 

measure γ. A triaxial rigid body will favor rotations around the medium intrinsic 

principal axis whose MOI is maximal. For the purpose of the present study, the 

third axis is chosen as a quantization axis and associated with the rotation of the 

core. The third axis become medium for γ ∈ (60
◦
, 120

◦
), implying R2 < R3 < R1, 

such that the other two axes 1 and 2, become long and respectively short. The 

alignment of the single-particle spins is determined by their quasiparticle character 

[47] as follows: a hole quasiparticle will rotate around the l axis, a particle around 

the s axis, while a nucleon in the vicinity of the Fermi surface will prefer rotations 

around the m axis. 

In what follows, the quasiparticle spins are considered rigidly aligned in respect to 

the body-fixed system of reference. This condition, also referred to as the frozen 

alignment (FA) approximation, is realized by replacing the quasiparticle spin opera- 

tors with their expectation values associated with the assumed alignment geometry. 

The perfect chiral geometry emerges when one quasiparticle is fully aligned to the 

s axis and another one to the l axis, with the core favoring rotations around the m 

axis. To encompass a more realistic situation, the spins of the quasiparticles are 

considered rigidly aligned along the principal planes 1-3 and 2-3 as in Fig. 1, with 

α and α0 angles accounting for the deviations from the full l and s axial alignments: 

  (2.5) 

The FA assumption reduces the relevant part of the PRM Hamiltonian to [37]: 

  (2.6) 

where one omitted the constant quasiparticle contribution. This operator defines a 

cranked rotor Hamiltonian for a total spin 𝐼, whose constraining terms originate 

from the quasiparticle alignments. In this way, the single-particle degrees of 

freedom are downgraded to perturbing effects for the total angular momentum. The 

Hamiltonian 𝐻̂align can be diagonalized for each angular momentum value I, in a 

basis of 2I + 1 rotation states |IMK , where M and K are projections in the laboratory 
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and respectively body-fixed reference frame of the 𝐼3. The matrix elements of the 

𝐻̂align can be expressed as: 

 
The corresponding wave function is 

  (2.8) 

where s is the solution’s order and ΛIKs are the corresponding eigenvector 

components. 

3. Schrödinger equation for a projection variable 

In order to obtain an alternative quantum description of the dynamics associated 

with the 𝐻̂align Hamiltonian, one must pass through a semiclassical description. This 

stage introduces a new restricted set of complex variables, which will be ultimately 

quantized. The semiclassical description is based on a time-dependent variational 

principle [48] 

  (3.1) 

applied to the 𝐻̂align Hamiltonian with an appropriately chosen variational state. The coherent state 

for the angular momentum operators is the standard choice for the variational state [9, 10]: 

 
 

Here one used the stereographic parametrization of the complex coordinates in 

terms of the azimuth angle φ and a polar projection variable x = I cos θ of the total 

angular momentum vector on the third (quantization) axis. Solving the variational 

principle, one obtains a classical counterpart of the quantum Hamiltonian 𝐻̂align, 
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represented by an energy function depending on the stereographic variables of the 

variational function: 

 

 
 

where ℏ = 1 is assumed. The other product of the variational principle is a pair of 

equations of motion, 

 

 
 

which are expressed with the help of the Poisson bracket. Note the canonical form 

of the equations of motion, which is due to the chosen variables. Consequently, 

these variables are canonically conjugated {φ, x} = 1, and one can assign x as being 

the generalized momentum, while φ as the generalized coordinate. This property is 

further used to quantize the classical energy function by means of a correspondence 

principle between the canonical variables and their differential operator 

counterparts. The procedure is however not straightforward, because the classical 

energy function have products of mixed rational and trigonometric functions of 

momentum and coordinate. In order to pass this obstacle, one recounts the 

properties of the classical energy function. It can be thus shown that the classical 

energy function (3.3) always has a single minimum in φ when γ is restricted to the 

(60
◦
,120

◦
) interval. The classical energy function can be then approximated by 

means of a harmonic expansion around the corresponding minimum points in φ0(x) 

for fixed values of x: 

 
With this, the trigonometric functions are replaced by powers of φ, up to the second 

order. The minimum path function φ0(x) is defined as the solution of a quartic 

equation for cosφ0(x): 

 

 
which originates from the minimum condition ∂H(x,φ)/∂φ = 0. The role of the 
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harmonic approximation is twofold. Indeed, the classical energy approximated as a 

second order function in φ, can now be quantized into a Schrödinger equation in 

the momentum space. Symmetrizing the mixed products of coordinate and 

momentum, and then applying the correspondence principle φ = i
𝑑

𝑑𝑥
, one arrives at 

the following differential equation: 

 

 
 

For an unknown wave function F(x). Prime and double prime denote x derivatives. 

Making the change of function 

 

 
 

one can see that 

 

 
 

plays the role of a coordinate dependent effective mass for the Schrödinger 

equation: 

 

 
 

The effective mass defines the potential 

 
 

and is also involved in the normalization condition for the new wave-function 
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The Hamiltonian of Eq.(3.10) is similar to those constructed based on TAC 

formalism [29, 30, 31], but is completely determined just by the deformation and 

the alignment geometry of the treated system.  

If φ0(x) is known, then the two quantities B(x) and V(x) can be analytically 

described. When γ = 90◦ (A1 = A2 = A1,2), Eq.(3.6) has a simple solution, represented 

by a constant tan Φ0 = 
𝑗՚𝑐𝑜𝑠𝛼՚

𝑗𝑐𝑜𝑠𝛼
. Moreover, the potential V(x) acquires in this case a 

relatively simple compact expression:   

 

 
where 

 
 

The corresponding mass function is also simplified: 

 

 
 

Note that B(x) is invariant to the change x ⇄ −x, while V(x) is not. This aspect is 

actually generally valid, regardless of the triaxial deformation γ.  

 

However, for a γ ≠ 90°, Eq.(3.6) must be solved numerically. Only one out of its 

four solutions is real and physically relevant. A continuous and differentiable 

instance of φ0(x) to be used in the above definitions of the effective mass and 

potential is obtained as follows. The selected solution is calculated for each angular 

momentum in an extended array of values for x. As can be seen from the Eq.(3.6), 

the minimum condition is symmetric to the change ±x, therefore one can limit the 

calculation only to x ∈ [0, I). These points are then interpolated with a spline 

function. Few instances of the φ0(x) are shown in Fig.2. It is clear that the effect of 

the tilting becomes important only at high angles, being materialized in an 

extension of the functions’s range. 
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Figure 2: Solution φ0(x) of Eq.(3.6) for j = j’ = 11/2 and selected values of the 

triaxiality parameter γ = 80°, 90°, 100°, angular momentum I = 10 and 16, with and 

without tilting. 

 

The natural boundary |x| ≤ I of the problem [49] leads to the inevitable choice of 

particle in the box wave-functions: 

 

 
or the diagonalization basis. These functions satisfy the Dirichlet boundary 

condition FI
s (I) = FI

s(-I) = 0. 

The basis dimension is truncated when a satisfactory convergence of eigenvalues is 

achieved. Previous numerical applications of the model established that a hundred 

basis states assures a satisfactory convergence of the diagonalization results for all 

relevant deformation and alignment conditions. The order s of the diagonalization 

solutions distinguishes the energy states belonging to distinct chiral bands. For a 

meaningful comparison with the exact diagonalization results, one expresses the 

total wave function as an expansion in rotation states 

 
 

The expansion coefficients 
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are determined with the help of the continuous probability distribution 

 

 
 

resulting from the diagonalization of the Schrödinger equation. 

4. Numerical application 

The energy splitting between the yrast and yrare partner bands 

 

 
 

is calculated by means of the two methods presented above for different alignment 

geometry and triaxiality. For this task one chosen the most common quasiparticle 

configuration of one proton and one neutron with j = j’ = 11/. The results of the 

exact diagonalization procedure and that obtained with the Schrödinger equation 

are visualized in Fig.3. First of all, one must remark the strong effect of even a small 

amount of tilting. Indeed, the degeneracy of the partner states achieved at high spins 

when the quasiparticle alignments are axial, is transformed into an increasing 

energy shift as a function of total angular momentum, regardless of the method. 

The exact calculations are overestimated in the chiral vibration region represented 

by the decrease of the energy difference with spin, and then underestimated in the 

higher spin regime, where few distinct dynamical scenarios can occur depending 

on the tilting. As the most experimental data are encompassed in the first vibrational 

regime, a suitable adjustment of the scale 1/J0 can in principle achieve an 

approximate equivalence between the two approaches. Comparing the whole 

spectrum, one observes that the minimum in the energy difference which marks the 

end of the chiral vibration regime is shifted to higher angular momentum values in 

comparison to the exact diagonalization results. The discrepancy between two 

calculations at higher spins increases for larger tilting angles. Nevertheless, the 

Schrödinger equation results exhibit the same qualitative behavior as a function of 

total angular momentum as the exact problem. 
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Figure 3: The energy splitting of the chiral bands with j = j’ = 11/2 as a function of 

angular momentum, determined within the Schrödinger equation and the exact 

diagonalization for γ = 90°, 100° and tilting angles α = α’ = 0° (a), 1° (b), 3° (c). 

The Schrödinger equation results shifted to I — 1 position are also given as a 

reference. 
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A close inspection of Fig.3 suggests that the two calculations are congruent within 

a positive translation of angular momentum δI ≈ 1 in the case of the Schrödinger 

problem. More precisely, the results of the exact diagonalization for an angular 

momentum I is equivalent with the results for the Schrödinger equation 

corresponding to I + 1. This relationship can be traced back to the dequantization 

and quantization procedures leading to the Schrödinger picture, where the 

uncertainty principle changes the original meaning of the angular momentum [46]. 

The correspondence I ⇄ I + 1 between the two results is indeed one to one for the 

most part of the angular momentum range. Only the initial low spin part slightly 

deviates from this rule for more axially symmetric deformation (γ ≷ 90°). As the 

diagonalization of the Schrödinger equation is significantly more computationally 

demanding than the exact diagonalization of the original cranked rotor 

Hamiltonian, their relationship can be used to determine model parameters of the 

first more easily. The usefulness of the more intricate Schrödinger picture resides 

in the separation of the kinetic and potential energy for a continuous variable 

associated with the total angular momentum projection, which allows the 

phenomenological interpretation of the quantum states in terms of anharmonic 

oscillations of the total angular momentum vector [38, 46]. The absolute energies 

visualized in Fig.4, are quite different in the two approaches. The excitation 

energies in the ground and excited bands obtained within the Schrödinger equation 

approach agree with those of the exact diagonalization mostly for very triaxial 

deformations γ = 90° ± 5° and low angular momentum states. The ground band 

levels calculated in the space of angular momentum states are underestimated up to 

I = 13 and I = 12 for axial and α = α′ = 3° quasiparticle alignments when maximal 

triaxiality γ = 90° is assumed. Above these levels the exact excitation energies begin 

to be increasingly underestimated. This relationship depends on the triaxial 

deformation, such that at sufficiently axial deformation (γ > 90°) all exact 

diagonalization excitation energies become underestimated. This is the result of the 

contradictory evolution of the energy spectrum from maximal triaxiality to more 

axial deformation. Indeed, Fig.4 (a) and (c) shows that the Schrödinger equation 

spectrum becomes more compressed with the increase of γ, while the exact 

diagonalization spectrum become slightly expanded at low spins. In comparison to 

the ground band, the exact diagonalization results for the levels of the excited band 

are all underestimated. Excited energy levels of the exact diagonalization increase 

with the γ deformation, whereas those coming from the Schrödinger equation have 

a similar behaviour only for axial alignments. When tilting is present, the excited 

states from the Schrödinger equation behave quit erratically at more axial 

deformations. As can be observed in Fig.4 (d), the Schrödinger equation spectrum 

for large values of γ, is elevated in energy at low spins and lowered in energy at 

higher spins. A more general comparison between the axial and non axial alignment 

results, reveals the fact that the Schrödinger equation approximates better the 
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ground band for axial alignments and the excited band for tilted alignments. 

 

 
Figure 4: Energy spectra of the ground band for axial (a) and tilted (c) alignments, 

and of the excited band for axial (b) and tilted (d) alignments, as a function of 

deformation γ. The absolute energies are calculated for j = j′ = 11/2 and given in 

units of 1/J0 in reference to the ground band level I = 8. 

 

In order to demonstrate the practical usefulness of the Schrödinger equation 

approach, one considers here a particular numerical application performed on the 

observed partner bands in the 138Pm nucleus [50]. Previous descriptions of the chiral 

bands in this nucleus performed with the Schrödinger equation approach [37, 38], 

considered maximal triaxiality γ = 90° and established that one of the quasiparticles 
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is axially aligned, while the other has a sizable ≈ 8° tilting. Note that due to the fact 

that at γ = 90°, two MOI are equal (A1 = A2), the problem with j = j′ cannot 

distinguish which quasiparticle is tilted, as the two alignment possibilities become 

equivalent. A microscopic investigation of the two chiral partner bands must be 

invoked in order to make an informed choice for the tilted quasiparticle. The 

findings of Ref.[51] can perfectly serve this role, which established that the 

dominant quasiparticle configuration in the structure of the chiral partner bands in 
138Pm is represented by a proton particle h11/2 spin with a substantial deviation from 

the s axis. Therefore the tilting in the present model for this nucleus is associated 

with the quasiparticle spin j′. The energy difference between the two partner bands 

obtained form fitting experimental data for 138Pm, is confronted with the 

corresponding experimental quantity in Fig.5. The model reproduces correctly the 

evolution with spin of ∆E, including the decreasing part associated with the chiral 

vibration, the increasing part corresponding to the stabilized rotations, and the 

correct position of the minimum marking the transition between the two distinct 

regimes. Fig.5 also shows the energy difference resulting from the exact 

diagonalization of the original Hamiltonian containing angular momentum 

operators with the same scaling, alignment and deformation parameters. As was 

previously pointed out, these results shifts the minimum to lower angular 

momentum but qualitatively presents the same behaviour. It is worth to emphasize 

the fact that the evolution of the observed energy difference cannot be reproduced 

with considering tilting. 

 

 
Figure 5: The evolution of the experimental energy difference between partner bands 

of the 138Pm nucleus [50] as a function of total angular momentum is compared with 

the results of Schrödinger equation fits as well as with associated exact 

diagonalizetion results. The theoretical results correspond to J0 = 35.68 MeV-1 and 

tilting angles α = 0°, α′ = 8°.  
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Beside the energy levels, it is also instructive to compare the wave-functions 

resulting from the two formalisms. This is done in Fig.6, where one compared the 

coefficients of the total wave function expansion in rotation matrices obtained from 

exact diagonalization of the cranked rotor Hamiltonian and those resulted from the 

continuous density probability distribution offered by the Schrödinger equation. 

The results are shown only for the states with experimental chiral partners. It is 

remarkable to find that the two approaches are very much alike, with a predilection 

for higher K values in case of the exact diagonalization expansion coefficients. The 

ground band states have a single peak initially localized around K = 0 and which 

moves to positive K values with the increasing of total spin. On the other hand, the 

chiral partner states exhibit a node separating two peaks. This structure is well 

known to be associated with vibrational excitations, where the two peaks 

correspond to the turning points of the classical oscillation. The interpretation of 

this regime as vibrational cannot be confidently deduced from the discrete 

distribution of the K components, but it is naturally emerging from the continuous 

density distribution coming from the Schrödinger equation. This is one of the 

advantages of the Schrödinger equation over the solution of the problem in discrete 

angular momentum states. However, as spin increases, one of the two peaks starts 

to disappear by feeding the other. The surviving peak is opposite to the one from 

the ground band. One can therefore affirm that there is a transition from a chiral 

vibration to a static rotation where the two partner states achieve opposite 

handedness. 

The phenomenological analysis of the states resulting from the Schrödinger 

equation is completed by plotting in Fig.7, the chiral potential and the effective 

mass associated with angular momentum states considered in Fig.6. The transition 

between vibrational regime and the stable rotation mode discussed above can now 

be better understood by correlating it with the evolution of the chiral potential. The 

potential have a single asymmetric minimum at the lowest spin state and then starts 

to develop a second x < 0 minimum higher in energy. At higher spins, the second 

well completely traps the excited state forcing a stable rotation with K < 0 on it. In 

what concerns the symmetric mass function, it evolves from a flat shape towards a 

more parabolic x dependence as angular momentum is decreased. 
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Figure 6: The total wave function components ΛIK of the first (s = 1) and second (s 

= 2) solutions spread over K = -I, -I + 1, ..., I - 1, I, determined from the exact 

diagonalization of equation (2.6) (blue histogram) and deduced from the 

Schrödinger equation (3.10) (red circles) when γ = 90° and α = 0°, α' = 8°, matching 

the experimental data fits for the 138Pm nucleus. The continuous line represents the 

density distribution  in respect to the dx metric. 
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Figure 7: The evolution with total angular momentum of the quantum chiral 

potential V(x) (a) and of the B(x) mass function (b), obtained from the numerical 

application on 138Pm nucleus for the states I = 11, 12, 13, 14 and 15. The first two 

excited states, s = 1 (right) and s = 2 (left), are visualized for each angular 

momentum relative to their corresponding potentials. 

 

5. Conclusions  

The chiral geometry in atomic nuclei was modeled by means of a rigid alignment 

hypothesis applied to a Particle-Rotor Model extended to two quasiparticles. The 

rigid or frozen alignment approximation renders the relevant part of the Particle-

Rotor Hamiltonian to a form of a simple rotor for the total angular momentum 

constrained by cranking terms resulting from the quasiparticle alignments. The 

resulted quantum problem is solved in the space of angular momentum states. 

Alternatively, one constructed a Schrödinger equation for a continuous projection 

variable, by means of a semiclassical description of the same cranked Rotor 

Hamiltonian. The two approaches are compared to each other in regard to the 
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corresponding energy spectra, in order to ascertain the deformation and alignment 

conditions for their equivalence. It is found, that although the results are 

quantitatively different, the spectral properties and different dynamical regimes of 

the chiral partner bands are qualitatively similar in both cases. A possible 

correspondence of the energy difference between the partner bands calculated in 

the two approaches is identified and proposed for the optimization of numerical 

applications. The two formalisms were also confronted in what concerns the 

properties of their corresponding wave function. This is realized by taking as a 

concrete example, the chiral partner bands observed in the 138Pm nucleus. It thus 

found that both models provide the same evolution of the wave function with the 

total angular momentum, which is transiting from a vibrational regime towards a 

stable rotation mode where the partner bands have well established opposite 

handedness. In conclusion, the Schrödinger equation is a good approximation for 

the exact diagonalization results for low and intermediate spin values when the 

core’s shape is very triaxial. Otherwise, the Schrödinger equation approach can be 

considered as a stand alone model with similar spectral features and dynamic 

behavior to those of the exact problem. 

 

REFERENCES 

 

[1] S. Frauendorf and J. Meng, Nucl. Phys. A 617, 131 (1997). 

[2] K. Starosta et al., Phys. Rev. Lett. 86, 971 (2001). 

[3] B. W. Xiong and Y. Y. Wang, At. Data Nucl. Data Tables 125, 193 (2019). 

[4] Shou-Yu Wang, Chinese Phys. C 44, 112001 (2020). 

[5] S. Guo et al., Phys. Lett. B 807, 135572 (2020). 

[6] Y. Zhang, B. Qi, and S. Q. Zhang, Sci. China Phys. Mech. Astron. 64, 122011 (2021). 

[7] J. Meng, J. Peng, S. Q. Zhang, and S. G. Zhou, Phys. Rev. C 73, 37303 (2006). 

[8] B. F. Lv et al., Phys. Rev. C 98, 044304 (2018). 

[9] R. Budaca, Phys. Rev. C 98, 014303 (2018). 

[10] R. Budaca, Phys. Lett. B 797, 134853 (2019). 

[11] R. Budaca, Bulg. J. Phys. 46, 411 (2019). 

[12] R. Budaca, J. Phys.: Conf. Ser. 1555, 012013 (2020). 

[13] R. Budaca, Bulg. J. Phys. 48, 467 (2021). 

[14] E. A. Lawrie and O. Shirinda, Phys. Lett. B 689, 66 (2010). 

[15] A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, Reading, Massachusetts, 

1975). 

[16] S. Frauendorf, Nucl. Phys. A 557, 259c (1993). 

[17] J. Peng, J. Meng, and S. Q. Zhang, Phys. Rev. C 68, 044324 (2003). 

[18] T. Koike, K. Starosta, and I. Hamamoto, Phys. Rev. Lett. 93, 172502 (2004). 

[19] K. Higashiyama and N. Yoshinaga, Eur. Phys. J. A 33, 355 (2007). 

[20] S. G. Rohozinski, L. Prochniak, K. Starosta, and C. Droste, Eur. Phys. J. A 47, 90 (2011). 

[21] K. Starosta and T. Koike, Phys. Scr. 92, 093002 (2017). 



 

 

26 Radu BUDACA  

[22] Q. B. Chen, N. Kaiser, Ulf-G. Meifiner, and J. Meng, Phys. Rev. C 99, 064326 (2019). 

[23] V. I. Dimitrov, S. Frauendorf, and F. Donau, Phys. Rev. Lett. 84, 5732 (2000). 
[24] A. A. Hecht et al., Phys. Rev. C 63, 051302(R) (2001). 
[25] P. Olbratowski, J. Dobaczewski, J. Dudek, and W. Plociennik, Phys. Rev. Lett. 93, 052501 

(2004). 
[26] P. W. Zhao, Phys. Lett. B 773, 1 (2017). 
[27] S. Mukhopadhyay et al., Phys. Rev. Lett. 99, 172501 (2007). 
[28] D. Almehed, F. Donau, and S. Frauendorf, Phys. Rev. C 83 (2011) 054308. 
[29] Q. B. Chen, S. Q. Zhang, P. W. Zhao, R. V. Jolos, and J. Meng, Phys. Rev. C 87, 024314 

(2013). 
[30] Q. B. Chen, S. Q. Zhang, P. W. Zhao, R. V. Jolos, and J. Meng, Phys. Rev. C 94, 044301 

(2016). 
[31] X. H. Wu, Q. B. Chen, P. W. Zhao, S. Q. Zhang, and J. Meng, Phys. Rev. C 98, 064302 

(2018). 
[32] A. A. Raduta, C. M. Raduta, and A. Faessler, J. Phys. G: Nucl. Part. Phys. 41, 035105 

(2014). 
[33] A. A. Raduta, Al. H. Raduta, and C. M. Petrache, J. Phys. G: Nucl. Part. Phys. 43, 095107 

(2016). 
[34] G. H. Bhat, J. A. Sheikh, and R. Palit, Phys. Lett. B 707, 250 (2012). 
[35] F. Q. Chen, J. Meng, and S. Q. Zhang, Phys. Lett. B 785, 211 (2018). 
[36] M. Shimada, Y. Fujioka, S. Tagami, and Y. R. Shimizu, Phys. Rev. C 97, 024319 (2018). 
[37] R. Budaca, Phys. Lett. B 817, 136308 (2021). 
[38] R. Budaca, Front. Phys. 19, 24301 (2024). 
[39] D. Tonev et al., Phys. Rev. C 76, 044313 (2007). 
[40] S. Brant, D. Tonev, G. de Angelis, and A. Ventura, Phys. Rev. C 78, 034301 (2008). 
[41] H. G. Ganev, A. I. Georgieva, S. Brant, and A. Ventura, Phys. Rev. C 79, 044322 (2009). 
[42] R. Budaca, Phys. Rev. C 97, 024302 (2018). 
[43] R. Budaca, Phys. Rev. C 103, 044312 (2021). 
[44] B. F. Lv et al., Phys. Rev. C 105, 034302 (2022). 
[45] R. Budaca and C. M. Petrache, Phys. Rev. C 106, 014313 (2022). 
[46] R. Budaca and A. I. Budaca, J. Phys. G: Nucl. Part. Phys. 50, 125101 (2023). 
[47] S. Frauendorf and F. Donau, Phys. Rev. C 89, 014322 (2014). 
[48] A. A. Raduta, R. Budaca, and C. M. Raduta, Phys. Rev. C 76, 064309 (2007). 
[49] R. Budaca, Ann. Acad. Rom. Sci. Ser. Math. Appl. 11, 115 (2019). 
[50] K. Y. Ma et al., Phys. Rev. C 97, 014305 (2018). 
[51] P. Siwach, P. Arumugam, L. S. Ferreira, and E. Maglione, Phys. Lett. B 811, 135937 (2020). 


