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Abstract

We consider a recent result for expanding augmented monomial
symmetric functions in terms of the power sum symmetric functions
to illustrate a technique for proving and generating inequalities involv-
ing specializations of monomial symmetric functions.
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1 Introduction

Any positive integer n can be written as a sum of one or more positive
integers, i.e.,

n = λ1 + λ2 + · · ·+ λr . (1)

When the order of integers λi does not matter, this representation is known
as an integer partition [1] and can be rewritten as

n = t1 + 2t2 + · · ·+ ntn ,

∗Accepted for publication on September 26-th, 2017
†mircea.merca@profinfo.edu.ro Academy of Romanian Scientists, Splaiul Indepen-

dentei 54, Bucharest, 050094 Romania

249



250 M. Merca

where each positive integer i appears ti times. In order to indicate that

λ = [λ1, λ2, . . . , λr] or λ = [1t12t2 . . . ntn ]

is an integer partition of n, we use the notation λ ` n.
Let λ = [λ1, λ2, . . . , λk] be a partition with k 6 n. Being given a set of

variables {x1, x2, . . . , xn}, the monomial symmetric function

mλ = m[λ1,λ2,...,λk](x1, x2, . . . , xn)

on these variables is the sum of monomial xλ11 x
λ2
2 · · ·x

λk
k and all distinct

monomials obtained from it by a permutation of variables. For instance,
with λ = [2, 1, 1] and n = 4, we have:

m[2,1,1] = x21x2x3 + x1x
2
2x3 + x1x2x

2
3 + x21x2x4 + x1x

2
2x4 + x1x2x

2
4

+ x21x3x4 + x1x
2
3x4 + x1x3x

2
4 + x22x3x4 + x2x

2
3x4 + x2x3x

2
4 .

In particular, when λ = [k], we have the kth power sum symmetric function
pk = pk(x1, x2, . . . , xn), i.e.,

m[k] = pk =

n∑
i=1

xki .

In every case p0(x1, x2, . . . , xn) = n. Proofs and details about monomial
symmetric functions can be found in Macdonald’s book [2].

For each partition

λ = [λ1, λ2, . . . , λk] = [1t12t2 · · · rtr ] ,

with k 6 n, the augmented monomial symmetric function

m̃λ = m̃[λ1,λ2,...,λk](x1, x2, . . . , xn)

is defined by
m̃λ = t1!t2! · · · tr! ·mλ .

Recently, we introduced in [4, Theorem 1] a simple recursive formula for
the expansion of the augmented monomial symmetric functions into power
sum symmetric functions, i.e.,

m̃[λ1,λ2,...,λk] = pλk · m̃[λ1,λ2,...,λk−1] −
k−1∑
i=1

m̃[λ1,...,λi−1,λi+λk,λi+1,...,λk−1] , (2)

where m̃ and p are functions of n variables, n > k.
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Example 1. Replacing k by 2 in (2), we get

m̃[λ1,λ2] = pλ1pλ2 − pλ1+λ2 . (3)

Then, for k = 3, we obtain

m̃[λ1,λ2,λ3] = pλ3 · m̃[λ1,λ2] − m̃[λ1+λ3,λ2] − m̃[λ1,λ2+λ3] . (4)

By (3) and (4), we deduce that

m̃[λ1,λ2,λ3] = pλ1pλ2pλ3 − pλ1pλ2+λ3 − pλ2pλ1+λ3 − pλ3pλ1+λ2 + 2pλ1+λ2+λ3 .

In this paper, we consider (2) in order to derive some inequalities involv-
ing specializations of monomial symmetric functions.

2 Main results

In this section, we illustrate a technique for proving and generating in-
equalities involving specializations of monomial symmetric functions based
on (2).

Theorem 1. Let x1, x2, . . . , xn be positive real numbers, n > 1. If k, p and
q are positive integers such that k < n, then

n

n− k
m[p,qk] 6 m[p]m[qk] 6

n

k
m[p+q,qk−1], p 6= q,

and
n(k + 1)

n− k
m[pk+1] 6 m[p]m[pk] 6

n

k
m[2p,pk−1],

where m are monomials symmetric functions in x1, x2, . . . , xn.

Proof. We start with the following identity

m̃[p,qk] = m̃[p]m̃[qk] − km̃[p+q,qk−1],

that is a very special case of (2). This identity can be rewritten as

m[p,qk] +m[p+q,qk−1] = m[p]m[qk]. (5)

For p 6= q, according to Muirhead’s inequality [3, p. 87], we have

m[p,qk](
n

1,k,n−k−1
) 6

m[p+q,qk−1](
n

1,k−1,n−k
) , (6)
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where the usual symbol for the multinomial coefficient has been used. On
the other hand, the case p = q is given by

m[pk+1](
n

k+1,n−k−1
) 6

m[2p,pk−1](
n

1,k−1,n−k
) . (7)

By (5)-(7), we arrive at our inequalities.

Corollary 1. Let x1, x2, . . . , xn be positive real numbers, n > 1. Then

n

n− 1

∑
16i<j6n

(
xpi x

q
j + xqix

p
j

)
6

(
n∑
i=1

xpi

)(
n∑
i=1

xqi

)
6 n

n∑
i=1

xp+qi ,

where p and q are positive integers.

This corollary is the case k = 1 in Theorem 1. In addition, for p = q we
obtain the following Maclaurin’s inequality

m[1](
n
1

) >

√
m[12](
n
2

)
and the AM-QM inequality

m[1]

n
6

√
m[2]

n
.

Theorem 2. Let x1, x2, . . . , xn be positive real numbers, n > 2. If k, p, q
and r are positive integers such that k < n− 1, p > q and r /∈ {p, q, p− q},
then

1. n−1
k m[r+q,p,qk−1] +m[r+p,qk] > m[r]m[p,qk],

2. m[r,p,qk] + (k + 1)m[r+p,qk] > m[r]m[p,qk],

3. n−1
n−k−1m[r,p,qk] +m[r+p,qk] 6 m[r]m[p,qk],

4. m[r,p,qk] + k+1
k m[r+q,p,qk−1] 6 m[r]m[p,qk],

where m are monomials symmetric functions in x1, x2, . . . , xn.

Theorem 3. Let x1, x2, . . . , xn be positive real numbers, n > 2. If k, p, q
and r are positive integers such that k < n− 1, p < q and r /∈ {p, q, q − p},
then
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1. m[r+q,p,qk−1] + (n− k)m[r+p,qk] > m[r]m[p,qk],

2. m[r,p,qk] + k+1
k m[r+q,p,qk−1] > m[r]m[p,qk],

3. n−k
n−k−1m[r,p,qk] +m[r+q,p,qk−1] 6 m[r]m[p,qk],

4. m[r,p,qk] + (k + 1)m[r+p,qk] 6 m[r]m[p,qk],

where m are monomials symmetric functions in x1, x2, . . . , xn.

Proof of Theorems 2 and 3. For p 6= q and r /∈ {p, q, |p− q|}, we consider
the following case of (2)

m̃[r,p,qk] = m̃[r]m̃[p,qk] − m̃[r+q,p,qk−1] − m̃[r+p,qk],

that can be written as

m[r,p,qk] +m[r+q,p,qk−1] +m[r+p,qk] = m[r]m[p,qk]. (8)

For p > q, taking into account the Muirhead inequality, we have

m[r,p,qk](
n

1,1,k,n−k−2
) 6

m[r+q,p,qk−1](
n

1,1,k−1,n−k−1
) 6

m[r+p,qk](
n

1,k,n−k−1
) . (9)

In the case p < q, we get

m[r,p,qk](
n

1,1,k,n−k−2
) 6

m[r+p,qk](
n

1,k,n−k−1
) 6

m[r+q,p,qk−1](
n

1,1,k−1,n−k−1
) . (10)

By (8)-(10), we derive our inequalities.

The case n = 3 and k = 1 of Theorems 2 and 3 can be written as

Corollary 2. Let a, b, c be positive real numbers. If p, q and r are positive
integers such that p < q and r /∈ {p, q, q − p}, then

1. ar+p(bq + cq) + br+p(aq + cq) + cr+p(aq + bq)
> ap(brcq + bqcr) + bp(arcq + aqcr) + cp(arcq + aqcr);

2. (ar+p + br+p + cr+p)(aq + bq + cq) 6 (ar+q + br+q + cr+q)(ap + bp + cp).
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3 Concluding remarks

A new technique for proving and generating inequalities has been in-
troduced in this paper. Similar inequalities can be obtained if we consider
other special cases of (2), for instance

m̃[p2,qk] = m̃[p]m̃[p,qk] − km̃[p+q,p,qk−1] − m̃[2p,qk], p 6= q,

that can be written as

2m[p2,qk] +m[p+q,p,qk−1] +m[2p,qk] = m[p]m[p,qk], p 6= q.

In addition, one can show that Corollary 2 holds for any value of r.
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