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1 Introduction

In this paper, we assume that H1 and H2 are real Hilbert spaces with
inner product 〈.〉 and norm ‖.‖. Let D be a nonempty closed and bounded
subset of H1. Let fn : D → H1 be uniformly convergence sequence of con-
traction mappings. Then there exists a real numbers ρn ∈ (0, 1) such that

‖fn(x)− fn(y)‖ ≤ ρn‖x− y‖, ∀x, y ∈ D.

A subset C of H1 is called proximinal if, for each x ∈ H1, there exists c ∈ C
such that

‖c− x‖ = inf{‖x− y‖ : y ∈ C} = d(x,C).

Let C be a closed convex and nonempty subset of H1. It is well known that
in a Hilbert space, closed and convex sets are Proximinal (see for example,
[11, 29]). In the sequel, we denote by CB(H1) the collection of all nonempty,
closed and bounded subsets of H1.
We say that a mapping T : C → C is nonexpansive if, for all x, y ∈ C,

‖Tx− Ty‖ ≤ ‖x− y‖.

The mapping T is said to be firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, ∀x, y ∈ C.

The mapping T : H1 → H1 is said to be

(i) monotone if
〈Tx− Ty, x− y〉 ≥ 0, ∀x.y ∈ H1;

(ii) α - strongly monotone if there exists a constant α > 0 such that

〈Tx− Ty, x− y〉 ≥ α‖x− y‖, ∀x, y ∈ H1;

(iii) β- inverse strongly monotone, if there exists a constant β > 0 such
that

〈Tx− Ty, x− y〉 ≥ β‖Tx− Ty‖2, ∀x, y ∈ H1.

The Hausdorff metric H on CB(H1) is defined by

H(A,B) := max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}, ∀A,B ∈ CB(H),

where d(x,A) := inf
y∈A

d(x, y).
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Definition 1. Let S : H → CB(H) be a multi-valued mapping. An element
p ∈ H is said to be a fixed point of S, if p ∈ Sp. The mapping S is said to
be: (i) nonexpansive, if H(Sx, Sy) ≤ ‖x− y‖, ∀x, y ∈ H;
(ii) quasi-nonexpansive, if Fix(S) 6= ∅ and H(Sx, Sy) ≤ ‖x − p‖, ∀x ∈ H,
p ∈ Fix(S).

A Fixed Point Problem (FPP, for short) for multi-valued quasi-nonexpansive
mapping S is to find x ∈ C such that

x ∈ Sx. (1)

The solution set of FPP (1) is denoted by Fix(S). Fixed point theory for
multi-valued mappings has many useful application in various fields, in par-
ticular, game theory and mathematical economics. Thus, it is natural to
extend the known fixed point results for single-valued mappings to the set-
ting of multi-valued mappings. Several authors have investigated the ap-
proximations of fixed point of multi-valued nonexpansive mappings in the
literature (see, for example,[11, 12, 24, 28, 29, 32, 33, 34]).

A mapping PC is said to be the metric projection of H1 onto C if for
every point x ∈ H1, there exists a unique nearest point in C denoted by
PCx such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

It is well known that PC is a nonexpansive mapping and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y,∈ H1. (2)

Moreover, PCx is characterized by the following properties:

〈x− PCx, y − PCx〉 ≤ 0, (3)

and
‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 ∀x ∈ H1, y ∈ C. (4)

More information on metric projection can also be found in ([10], section 3).
The Variational Inequality Problem ( in short, VIP) is to find x ∈ C

such that
〈Bx, y − x〉 ≥ 0, ∀y ∈ C, (5)

where B : C → H1 is a nonlinear mapping. The solution set of V IP (5) is
denoted by Γ.

For solving the V IP in a finite-dimensional Euclidean space Rn, Kor-
pelevich [13] introduced an iterative method so-called extragradient method.
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Motivated by the idea of Korpelevich extragradient method, Nadezhkina and
Takahashi [21] introduced an iterative method for finding the common ele-
ment of the set Fix(T )∩Γ and proved the strong convergence theorem. For
related works, see [15, 16, 22, 23, 25, 30, 31].

A set valued mapping T : H1 → 2H1 is called monotone if for all
x, y ∈ H1, u ∈ T x and v ∈ T y imply 〈x − y, u − v〉 ≥ 0. A monotone
mapping T : H1 → 2H1 is maximal if the graph G(T ) of T is not properly
contained in the graph of any other monotone mapping.

It is well known that a monotone mapping T is maximal if and only if for
(x, u)×H1×H1, 〈x−y, u−v〉 ≥ 0, for every (y, v) ∈ G(T ) implies u ∈ T x. Let
B : C → H1 be an inverse strongly monotone mapping and let NCx be the
normal cone to C at x ∈ C, i.e., NCx := {z ∈ H1 : 〈y− x, z〉 ≥ 0, ∀ y ∈ C}.
Define

T x =

{
Bx+NCx, ∀x ∈ C,
∅, ∀x /∈ C.

Then T is maximal monotone and 0 ∈ T x if and only if x ∈ Γ, see [21].
Further, it is easy to see that

x ∈ Γ⇐⇒ x = PC(x− λBx), λ > 0.

For a bifunction F : C × C → R, the Equilibrium Problem (in short,
EP) is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (6)

This was introduced by Blum and Oettli [2]. The solution set of EP (6) is
denoted by EP(F).

Combettes and Hirstoaga [9] introduced and studied an iterative method
for finding the best approximation to the solution of the EP (6) and proved
a strong convergence theorem. Subsequently, Takahashi and Takahashi [35]
introduced another iterative scheme for finding the common element of the
set EP (F )∩Fix(T ). Using the idea of Takahashi and Takahashi [35], Plub-
tieng and Punpaeng [27] introduced the general iterative method for find-
ing the common element of the set EP (F ) ∩ Fix(T ) ∩ Γ. Also Liu et al.
[16] introduced and studied an iterative method, an extention of the vis-
cosity approximation method, for finding the common element of the set
∩∞i=1Fix(Ti) ∩ EP (F ) ∩ Γ, where {Ti}∞i=1 is an infinite family of nonexpan-
sive mappings.

Censor et al. [6] introduced and studied some iterative method for the
following Split Variational Problem (in short, SVIP): Find x∗ ∈ C such that

〈f(x∗), x− x∗〉 ≥ 0, ∀ x ∈ C, (7)
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and such that

y∗ = Ax∗ ∈ Q solves 〈g(y∗), y − y∗〉 ≥ 0, ∀y ∈ Q, (8)

where f : H1 → H1 and g : H2 → H2 are nonlinear mapping and A : H1 →
H2 is a bounded linear operator. The special case of SVIP (7) and (8)
is split zero problem and split feasibility problem which has already been
studied and used in practice as a model in intensity-modulated radiation
therapy treatment planning, see [7, 8]. Recently, Moudafi [20] introduced
an iterative method, an extension of a method by Censor et al. [6] for the
following split monotone variational inclusion:

Find x∗ ∈ H1 such that 0 ∈ f(x∗) +B1(x∗),

and such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ g(y∗) +B2(y∗),

where Bi : Hi → 2Hi is a set-valued mapping for i = 1, 2. Later on Byrne
et al. [4] generalize and extend the work of Censor et al. [6] and Moudafi [20].

Let F1 : C × C → R and F2 : Q × Q → R be nonnilear bifunctions
and A : H1 → H2 be bounded linear operator, then the Split Equilibrium
Problem (SEP) is to find x∗ ∈ C such that

F1(x∗, x) ≥ 0, ∀x ∈ C, (9)

and such that

y∗ = Ax∗ ∈ Q solves F2(y∗, y) ≥ 0, ∀y ∈ Q. (10)

When looked upon separately, we observed that (9) is the classical Equilib-
rium Problem (EP) and we denote it’s solution set by EP (F1). The SEP (9)
and (10) constitute a pair of equilibrium problems which we have to solve
so that the image y∗ = Ax∗ under a given bounded linear operator A, of
the solution the EP (9) in H1 is the solution set of EP (10) in another space
H2. The solution set of SEP (9) and (10) is denoted by

Ω = {p ∈ EP (F1) : Ap ∈ EP (F2)}.

Motivated by the work of Censor et al.[5, 6], Moudafi [20], Byrne et al
[4], Liu et al. [16], Kazmi and Rizvi [14] obtained the following converges
result.
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Theorem 1. Let H1 and H2 be two real Hilbert spaces and C ⊆ H1 and
Q ⊆ H2 be nonempty, closed and convex subsets of H1 and H2, respectively.
Let A : H1 → H2 be a bounded linear operator. Let D : C → H1 be a
τ -inverse strongly monotone mapping. Assume that F1 : C × C → R and
F2 : Q × Q → R are two bifunctions satisfying Assumption 2.1 and F2 is
upper semicontinuous in first argument. Let S : C → C be a nonexpansive
mapping such that Θ := F (S)∩Ω∩Γ 6= ∅. For a given x0 = v ∈ C arbitrarily,
let the iterative sequences {un}, {xn} and {yn} be generated by

un = JF1
rn (xn + γA∗(JF2

rn − I)Axn);

yn = PC(un − λnDun);

xn+1 = αnv + βnxn + γnSyn,

(11)

where rn ⊂ (0,∞), λn ∈ (0, 2τ) and γ ∈ (0, 1/L), L is the spectral radius
of the operator A∗A and A∗ is the adjoint of A and {αn}, {βn} and {γn}
are sequences in (0, 1) satisfying the following

(i) αn + βn + γn = 1,

(ii) lim
n→∞

αn = 0 and
∑∞

n=0, αn =∞,

(iii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 2τ, and lim
n→∞

|λn+1 − λn| = 0,

(iv) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(v) lim
n→∞

rn > 0,
∑∞

n=1 |rn+1 − rn| <∞,

(vi) lim
n→∞

(
γn+1

1−βn+1
− γn

1−βn

)
= 0.

Then the sequence {xn} converges strongly to z ∈ Θ, where z = PΘv.

Motivated by the work of Kazmi and Rizvi [14], we introduce an itera-
tive scheme for approximating a common solution of SEP(9) and (10), VIP
(5) and FPP (1) for multi-valued quasi-nonexpansive in real Hilbert space.
Using our proposed algorithm we prove strong convergence theorem for ap-
proximating a common solution of SEP(9) and (10), VIP (5) and FPP (1)
for multi-valued quasi-nonexpansive in real Hilbert. In all our results the
variable step-size is selected in such a way that its implementation does not
involve the computation or an estimate of the spectral radius.
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2 Preliminaries

In this section, we give some definitions, lemmas and results that are
needed in the main results. Also, we make the following assumptions on the
bifunctions F in order to solve the equilibrium problem. [2] Let F : C×C →
R be a bifunction.We assume that F satisfy the following:

(i) F (x, x) = 0, ∀ x ∈ C;

(ii) F is monotone, i.e F (x, y) + F (y, x) ≤ 0,∀ x ∈ C;

(iii) for each x, y, z ∈ C, lim sup
t→0

F (tz + (1− t)x, y) ≤ F (x, y);

(iv) for each x ∈ C, y 7−→ F (x, y) is convex and lower semicontinuous.

Example of a bifunction that satisfies the above assumptions can be found
in [36].

Definition 2. A multi-valued mapping S : H → CB(H) is said to be
demiclosed at the origin if for any sequence {xn} ⊂ H with xn ⇀ x and
d(xn, Sxn)→ 0, n→∞, we have x ∈ Sx.

Definition 3. A single-valued mapping S : H → H is said to be demiclosed
at the origin if for any sequence {xn} ⊂ H with xn ⇀ x and Sxn → 0, n→
∞, we have Sx = 0.

Lemma 1. [9] Let C be a nonempty closed and convex subset of a real
Hilbert space H. Let F : C × C → R be a bifunction satisfying Assumption
2.1. For r > 0 and x ∈ C, we have the following:

(B1) there exist z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0 ∀y ∈ C, (12)

(B2) if we define a resolvent mapping JFr : H → C by

JFr (x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all x ∈ H. Then the following conclusions hold:

(i) for each x ∈ H, JFr (x) 6= ∅,

(ii) JFr is nonempty and single-valued;
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(iii) JFr is firmly nonexpansive, i.e.,

‖JFr x− JFr y‖
2 ≤ 〈JFr x− JFr y, x− y〉, ∀x, y ∈ H;

(iv) F(JFr ) = EP (F );

(v) EP (F ) is closed and convex.

Lemma 2. [26] Let (X, 〈., .〉) be an inner product space, then for all x, y ∈ X
and α, β, γ ∈ [0, 1] with α+ β + γ = 1, we have

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2

− αγ‖x− z‖2 − βγ‖y − z‖2.to

Lemma 3. Let H be a Hilbert space, then

2〈x, y〉 = ||x||2 + ||y||2 − ||x− y||2 = ||x+ y||2 − ||x||2 − ||y||2, ∀ x, y ∈ H.

and

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

Lemma 4. [37] Let {an} be a sequence of non-negative real numbers such
that

an+1 ≤ (1− αn)an + αnσn + δn, n ≥ 0,

where

(i) {αn} ⊂ [0, 1],
∑∞

n=0 αn =∞,

(ii) lim supσn ≤ 0,

(iii) δn ≥ 0,
∑∞

n=0 <∞.

Then an → 0 as n→∞.

3 Main Result

We now state and prove the following theorem
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Theorem 2. Let H1 and H2 be two real Hilbert spaces and C ⊆ H1 and
Q ⊆ H2 be nonempty, closed and convex. Let A : H1 → H2 be a bounded
linear operator and A∗ the adjoint of A. Let fn : H1 → H1 be a sequence of
ρn-contractive mappings with 0 < ρ ≤ ρn ≤ ρ̄ < 1 and {fn(x)} is uniformly
convergent for any x ∈ D, where D is any bounded subset of H1. Let B : C →
H1 be τ -inverse strongly monotone mapping. Assume that F1 : C × C → R
and F2 : Q ×Q → R are two bifunctions satisfying Assumption 2.1 and F2

is upper semicontinuous in the first argument. Let S : H1 → CB(H1) be a
multi-valued quasi-nonexpansive mapping such that S is demiclosed at the
origin, Sp = {p} ∀p ∈ F (S) and Υ := Fix(S) ∩ Ω ∩ Γ 6= ∅. For arbitrary
x1 ∈ H1, define the iterative sequence {un}, {xn} and {yn} by
un = JF1

rn (xn + γnA
∗(JF2

rn − I)Axn),

yn = PC(un − λnBun),

xn+1 = αnfn(xn) + βnxn + δn(σwn + (1− σ)yn), wn ∈ Sxn, n ≥ 1,

(15)

where γn := µn
‖(JF2rn−I)Axn‖

2

‖A∗(JF2rn−I)Axn‖
2 with 0 < a ≤ µn ≤ b < 1,

rn ∈ (0,∞), λn ∈ (0, 2τ), σ, ρ̄, ρ ∈ (0, 1) and {αn}, {βn}, and {δn} are real
sequences in (0, 1) satisfying the following conditions

(i) αn + βn + δn = 1;

(ii) lim
n→∞

αn = 0 and
∑∞

n=0, αn =∞;

(iii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 2τ ;

(iv) βn ≥ ε1 > 0 δn ≥ ε2 > 0.

Then the sequence {xn} converges strongly to p ∈ Υ where p = PΥf(p).

proof: Let p ∈ Υ := Fix(S) ∩ Ω ∩ Γ, i.e p ∈ Ω, we have p = JF1
rn p

and Ap = JF2
rn Ap. We then obtain

‖un − p‖2 = ‖JF1
rn (xn + γnA

∗(JF2
rn − I)Axn − p‖

2

= ‖JF1
rn (xn + γnA

∗
i (J

F2
rn − I)Axn − JF1

rn (p)‖2

≤ ‖xn + γnA
∗(JF2

rn − I)Axn − p‖
2

= ‖xn − p+ γnA
∗(JF2

rn − I)Axn‖
2

≤ ‖xn − p‖2 + 2γn〈xn − p,A∗(JF2
rn − I)Aixn〉+

γ2
n‖A∗(JF2

rn − I)Axn‖
2
.
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Thus,

‖un − p‖2 = ‖xn − p‖2 + 2γn〈xn − p,A∗(JF2
rn − I)Axn〉

+γ2
n‖A∗(JF2

rn − I)Axn‖
2
. (16)

Since Ap ∈ F (JF2
rn ), we have that

〈xn − p , A∗(JF2
rn − I)Axn〉 = 〈A(xn − p), (JF2

rn − I)Axn〉
= 〈A(xn)−A(p) + (JF2

rn − I)Axn

−(JF2
rn − I)Axn, (J

F2
rn − I)Axn〉

= 〈JF2
rn Axn −Ap− (JF2

rn − I)Axn, (J
F2
rn − I)Axn〉

≤ 〈JF2
rn Axn −Ap, (J

F2
rn − I)Axn〉 − ‖(JF2

rn − I)Axn‖
2

=
1

2

[
‖JF2

rn Axn −Ap‖
2

+ ‖(JF2
rn − I)Axn‖

2 − ‖Axn −Ap‖2
]

−‖(JF2
rn − I)Axn‖

2

=
1

2

[
‖JF2

rn Axn −Ap‖
2 − ‖Axn −Ap‖2

]
− 1

2
(‖JF2

rn − I)Axn‖
2

=
1

2

[
‖JF2

rn Axn −Ap‖
2 − ‖Axn −Ap‖2 − ‖(JF2

rn − I)Axn‖
2
]

≤ 1

2

[
‖Axn −Ap‖2 − ‖Axn −Ap‖2 − ‖(JF2

rn − I)Axn‖
2
]

= −1

2
‖(JF2

rn − I)Axn‖
2
.

Therefore,

〈xn − p,A∗(JF2
rn − I)Axn〉 ≤ −

1

2
‖(JF2

rn − I)Axn‖
2
. (17)

Substituting (17) into (16), we get

‖un − p‖2 ≤ ‖xn − p‖2 − γn‖(JF2
rn − I)Axn‖

2
+ γ2

n‖A∗(JF2
rn − I)Axn‖

2

≤ ‖xn − p‖2

−γ2
n

[
‖(JF2

rn − I)Axn‖
2 − γn‖A∗(JF2

rn − I)Axn‖
2
]
. (18)

Using the definition of γn, we have

‖un − p‖ ≤ ‖xn − p‖. (19)
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Now, we estimate

‖yn − p‖2 = ‖PC(un − λnBun)− PC(p− λnBp)‖2

≤ ‖(un − λnBun)− (p− λnBp)‖2

≤ ‖un − p‖2 − λn(2τ − λn)‖Bun −Bp‖2

≤ ‖un − p‖2

≤ ‖xn − p‖2.

(20)

Let zn := σwn + (1− σ)yn. Then

‖zn − p‖ = ‖σ(wn − p) + (1− σ)(yn − p)‖
≤ σ‖wn − p‖+ (1− σ)‖yn − p‖
≤ σH(PS(xn), PS(p)) + (1− σ)‖xn − p‖
≤ σ‖xn − p‖+ (1− σ)‖xn − p‖
= ‖xn − p‖.

By using (15), we have that

‖xn+1 − p‖ = ‖αnfn(xn) + βnxn + δnzn − p‖
= ‖αn(fn(xn)− fn(p)) + αn(fn(p)− p) + βn(xn − p) + δn(zn − p)‖
≤ αn(‖fn(xn)− fn(p)‖+ ‖fn(p)− p‖) + βn‖xn − p‖+ δn‖zn − p‖
≤ αn(‖fn(xn)− fn(p)‖+ ‖fn(p)− p‖) + (1− αn)‖xn − p‖.

Hence,

‖xn+1− p‖ ≤ αn(‖fn(xn)− fn(p)‖+ ‖fn(p)− p‖) + (1−αn)‖xn− p‖. (21)

By the uniform convergence of {fn(x)} on D, there exists M > 0 such that
‖fn(p)− p‖ ≤M, ∀n ≥ 1. Hence, we have

‖xn+1 − p‖ ≤ αnρn‖xn − p‖+ αn‖fn(p)− p‖+ (1− αn)‖xn − p‖
≤ αnρ̄‖xn − p‖+ αn‖fn(p)− p‖+ (1− αn)‖xn − p‖
= (αnρ̄+ (1− αn)‖xn − p‖+ αn‖fn(p)− p‖
= (1− αn(1− ρ̄))‖xn − p‖+ αn‖fn(p)− p‖

= (1− αn(1− ρ̄))‖xn − p‖+ αn(1− ρ̄)
‖fn(p)− p‖

1− ρ̄

≤ max
{
‖xn − p‖,

M

1− ρ̄

}
≤

...

≤ max
{
‖x1 − p‖,

M

1− ρ̄

}
.
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Therefore, {xn} is bounded.
By (15) and (19), we have that

‖xn+1 − p‖2 = ‖αnfn(xn) + βnxn + δnzn − p‖2

= ‖βn(xn − p) + δn(zn − p) + αn(fn(xn)− fn(p)) + αn(fn(p)− p)‖2

≤ ‖βn(xn − p) + δn(zn − p) + αn(fn(xn)− fn(p))‖2

+2αn〈fn(p)− p, xn+1 − p〉
≤ ‖βn(xn − p) + δn(zn − p)‖2 + α2

n‖(fn(xn)− fn(p))‖2

+2αn〈βn(xn − p) + δn(zn − p), fn(xn)− fn(p)〉+ 2αn〈fn(p)− p, xn+1 − p〉
= βn(βn + δn)‖xn − p‖2 + δn(βn + δn)‖zn − p‖2 − βnδn‖xn − zn‖2

+α2
n‖(fn(xn)− fn(p))‖2 + 2αn〈βn(xn − p) + δn(zn − p), fn(xn)− fn(p)〉

+2αn〈fn(p)− p, xn+1 − p〉
≤ (βn + δn)2‖xn − p‖2 − βnδn‖xn − zn‖2

+α2
n‖fn(xn)− fn(p)‖2 + 2αn〈βn(xn − p) + δn(zn − p), fn(xn)− fn(p)〉

+2αn〈fn(p)− p, xn+1 − p〉
= (1− αn)2‖xn − p‖2 − βnδn‖xn − zn‖2

+α2
n‖fn(xn)− fn(p)‖2 + 2αn〈βn(xn − p) + δn(zn − p), fn(xn)− fn(p)〉
+2αn〈fn(p)− p, xn+1 − p〉

≤ (1− αn)2‖xn − p‖2 − βnδn‖xn − zn‖2

+α2
nρ

2
n‖xn − p‖

2 + 2αn〈fn(p)− p, xn+1 − p〉+ 2αn‖βn(xn − p)
+δn(zn − p)‖‖fn(xn)− fn(p)‖
≤ (1− αn)2‖xn − p‖2 − βnδn‖xn − zn‖2

+α2
nρ

2
n‖xn − p‖

2 + 2αn〈fn(p)− p, xn+1 − p〉
+2ρ̄αn(1− αn)‖xn − p‖2. (22)

We divide the rest of the proof into two cases.
Case 1. Suppose that there exists n0 ∈ N such that {‖xn − p‖}∞n=n0

is
nonincreasing. Then {‖xn − p‖} converges and ‖xn − p‖ − ‖xn+1 − p‖ → 0
as n→∞. By (15), we obtain

‖xn+1 − p‖2 ≤ α2
n‖fn(xn)− p‖2 + βn‖xn − p‖2 + δn‖zn − p‖2

≤ αn‖fn(xn)− p‖2 + βn‖xn − p‖2 + δn(σ‖xn − p‖2 + (1− σ)‖yn − p‖2)

≤ αn‖fn(xn)− p‖2 + (βn + σδn)‖xn − p‖2 + (1− σ)‖un − p‖2.

This implies that

−‖un − p‖2 ≤
1

(1− σ)δn

[
αn‖fn(xn)− p‖2+(βn+σδn)‖xn − p‖2−‖xn+1 − p‖2

]
.
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From (17) and (18), we have that

γn

[
‖(JF2

rn − I)Axn‖
2 − γn‖A∗(JF2

rn − I)Axn‖
2
]
≤ ‖xn − p‖2 − ‖un − p‖2

≤ ‖xn − p‖2 −
1

(1− σ)δn
‖xn+1 − p‖2 +

αn
(1− σ)δn

‖fn(xn)− p‖2+

βn + σδn
(1− σ)δn

‖xn − p‖2

=
1− αn

(1− σ)δn
‖xn − p‖2 −

1− αn
(1− σ)δn

‖xn+1 − p‖2 +
αn

(1− σ)δn
‖fn(xn)− p‖2

=
1

(1− σ)δn

[
‖xn − p‖2 − ‖xn+1 − p‖2

]
+

αn
(1− σ)δn

[
‖fn(xn)− p‖2 − ‖xn − p‖2

]
.

Since αn → 0 as n→∞ by condition (i), we have that

γn

[
‖(JF2

rn − I)Axn‖
2 − γn‖A∗(JF2

rn − I)Axn‖
2
]
→ 0 as n→∞,

which by definition of γn implies that

µn(1− µn)‖(JF2
rn − I)Axn‖

4

‖A∗(JF2
rn − I)Axn‖

2 → 0 as n→∞.

Since 0 < a ≤ µn ≤ b < 1 and ‖A∗(JF2
rn − I)Axn‖ is bounded, we have that

‖(JF2
rn − I)Axn‖ → 0 as n→∞. (23)

Now,

‖A∗(JF2
rn − I)Axn‖ = ‖A‖‖(JF2

rn − I)Axn‖ → 0 as n→∞. (24)

By (22), we have that

βnδn‖xn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnM1,

for some M1 > 0 and this implies that

‖xn − zn‖ → 0, n→∞.

Hence,

‖xn+1 − xn‖ = ‖αnfn(xn) + βnxn + δnzn − (αnxn + βnxn + δnxn)‖
≤ αn‖fn(xn)− xn‖+ αn‖xn − zn‖ → 0, n→∞.
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Similarly,

‖xn+1 − zn‖ ≤ ‖xn+1 − xn‖+ ‖xn − zn‖ → 0, n→∞.

From (15) and the fact that JF1
rn is firmly nonexpansive, we have that

‖un − p‖2 = ‖JF1
rn (xn + γnA

∗(JF2
rn − I)Axn)− p‖2

= ‖JF1
rn (xn + γnA

∗(JF2
rn − I)Axn)− JF1

rn (p)‖2

= 〈un − p, xn + γnA
∗(JF2

rn − I)Axn − p〉

≤ 1

2
[‖un − p‖2 + ‖xn + γnA

∗(JF2
rn − I)Axn − p‖

2

−‖un − p− (xn + γnA
∗(JF2

rn − I)Axn − p)‖
2
]

≤ 1

2
[‖un − p‖2 + ‖xn − p+ γnA

∗(JF2
rn − I)Axn‖

2

−‖un − xn + γnA
∗(JF2

rn − I)Axn‖
2
]

≤ 1

2
[‖un − p‖2 + ‖xn − p+ γnA

∗(JF2
rn − I)Axn‖

2

−[‖un − xn‖2 + γn‖A∗(JF2
rn − I)Axn‖

2 − 2〈un − xn, γnA∗(JF2
rn − I)Axn〉]]

=
1

2
[‖un − xn‖2 + ‖xn − p+ γnA

∗(JF2
rn − I)Axn‖

2 − ‖un − xn‖2

−γn‖A∗(JF2
rn − I)Axn‖

2
+ 2〈un − xn, γnA∗(JF2

rn − I)Axn〉]

=
1

2
[‖un − xn‖2 + ‖xn − p‖2 + γn‖A∗(JF2

rn − I)Axn‖
2

+2〈xn − p, γnA∗(JF2
rn − I)Axn〉 − ‖un − xn‖2 − γn‖A∗(JF2

rn − I)Axn‖
2

+2〈un − xn, γnA∗(JF2
rn − I)Axn〉]

≤ 1

2
[‖xn − p‖2 + ‖xn − p‖2 − ‖un − xn‖2 + 2〈xn − p, γnA∗(JF2

rn − I)Axn〉

+2〈un − xn, γnA∗(JF2
rn − I)Axn〉]

≤ ‖xn − p‖2 −
1

2
‖un − xn‖2 + 〈un − p, γnA∗(JF2

rn − I)Axn〉

≤ ‖xn − p‖2 −
1

2
‖un − xn‖2 + γn‖un − p‖‖A∗(JF2

rn − I)Axn‖.

That is

‖un − p‖2 ≤ ‖xn − p‖2 −
1

2
‖un − xn‖2 + γn‖un − p‖‖A∗(JF2

rn − I)Axn‖.(25)
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Hence,

1

2
‖un − xn‖2 ≤ ‖xn − p‖2 − ‖un − p‖2 + γn‖un − p‖‖A∗(JF2

rn − I)Axn‖

≤ ‖xn − p‖2 −
1

(1− σ)δn
‖xn+1 − p‖2 +

αn
(1− σ)δn

‖fn(xn)− p‖2 +

βn + σδn
(1− σ)δn

‖xn − p‖2 + γn‖un − p‖‖A∗(JF2
rn − I)Axn‖

=
1− αn

(1− σ)δn
‖xn − p‖2 −

1− αn
(1− σ)δn

‖xn+1 − p‖2 +
αn

(1− σ)δn
‖fn(xn)− p‖2

+γn‖un − p‖‖A∗(JF2
rn − I)Axn‖

=
1

(1− σ)δn

[
‖xn − p‖2 − ‖xn+1 − p‖2

]
+

+
αn

(1− σ)δn

[
‖fn(xn)− p‖2 − ‖xn − p‖2

]
+ γn‖un − p‖‖A∗(JF2

rn − I)Axn‖,

and this implies that

‖un − xn‖ → 0, n→∞,

and

‖zn − un‖ ≤ ‖un − xn‖+ ‖xn − zn‖ → 0, n→∞.

Next, we have

‖xn+1 − p‖2 ≤ αn‖fn(xn)− p‖2 + βn‖xn − p‖2 + δn‖zn − p‖2

≤ αn‖fn(xn)− p‖2 + βn‖xn − p‖2 + δn(σ‖xn − p‖2 + (1− σ)‖yn − p‖2)

= αn‖fn(xn)− p‖2 + (βn + σδn)‖xn − p‖2 + (1− σ)δn‖yn − p‖2

≤ αn‖fn(xn)− p‖2 + (βn + σδn)‖xn − p‖2 +

(1− σ)δn[‖un − p− λn(Bun −Bp)‖2]

≤ αn‖fn(xn)− p‖2 + (βn + σδn)‖xn − p‖2

+(1− σ)δn

[
‖un − p‖2 − 2λn〈un − p,Bun −Bp〉+ λ2

n‖Bun −Bp‖
2
]

≤ αn‖fn(xn)− p‖2 + (βn + σδn)‖xn − p‖2 + (1− σ)δn‖xn − p‖2

−(1− σ)2δnλnτ‖Bun −Bp‖2 + (1− σ)δnλ
2
n‖Bun −Bp‖

2

≤ αn‖fn(xn)− p‖2 + (βn + σδn)‖xn − p‖2 + (1− σ)δn‖xn − p‖2

+(1− σ)δnλn(λn − 2τ)‖Bun −Bp‖2,
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and so

λn(2τ − λn)‖Bun −Bp‖2 ≤ ‖xn − p‖2 −
1

(1− σ)δn
‖xn+1 − p‖2

+
αn

(1− σ)δn
‖fn(xn)− p‖2 +

βn + σδn
(1− σ)δn

‖xn − p‖2

=
1− αn

(1− σ)δn
‖xn − p‖2 −

1− αn
(1− σ)δn

‖xn+1 − p‖2

+
αn

(1− σ)δn
‖fn(xn)− p‖2

=
1

(1− σ)δn

[
‖xn − p‖2 − ‖xn+1 − p‖2

]
+

αn
(1− σ)δn

[
‖fn(xn)− p‖2 − ‖xn − p‖2

]
.

Since αn → 0 and 0 < lim
n→∞

λn = λ < 2τ, we have that

lim
n→∞

‖Bun −Bp‖ = 0. (26)

Since PC is firmly nonexpansive and (I −λnB) is nonexpansive by (15), we
have

‖yn − p‖2 = ‖PC(un − λnBun)− PC(p− λnBp)‖2

≤ 〈yn − p, un − λnBun − (p− λnBp)〉

=
1

2
(‖yn − p‖2 + ‖(I − λnB)un − (I − λnB)p‖2 −

‖yn − un + λn(Bun −Bp)‖2)

≤ 1

2
(‖yn − p‖2 + ‖un − p‖2 − ‖yn − un + λn(Bun −Bp)‖2)

=
1

2
(‖yn − p‖2 + ‖un − p‖2 − ‖yn − un‖2 − λ2

n‖Bun −Bp‖
2

−2λn〈yn − un, Bun −Bp〉)

≤ 1

2
(‖yn − p‖2 + ‖un − p‖2 − ‖yn − un‖2 − λ2

n‖Bun −Bp‖
2

+2λn‖yn − un‖‖Bun −Bp‖),

and so

‖yn − p‖2 ≤ ‖un − p‖2 − ‖yn − un‖2 − λ2
n‖Bun −Bp‖

2

+ 2λn‖yn − un‖‖Bun −Bp‖
≤ ‖xn − p‖2 − ‖yn − un‖2 + 2λn‖yn − un‖‖Bun −Bp‖.

(27)
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From (15) and (27), we have

‖xn+1 − p‖2 ≤ αn‖fn(xn)− p‖2 + (βn + σδn)‖xn − p‖2 + (1− σ)δn‖yn − p‖2

≤ αn‖fn(xn)− p‖2 + (βn + σδn)‖xn − p‖2

+ (1− σ)δn[‖xn − p‖2 − ‖yn − un‖2 + 2λn‖yn − un‖‖Bun −Bp‖]
≤ αn‖fn(xn)− p‖2 + (βn + σδn)‖xn − p‖2

+ (1− σ)δn‖xn − p‖2 − (1− σ)δn‖yn − un‖2+

2(1− σ)δnλn‖yn − un‖‖Bun −Bp‖.

Therefore, we have

‖yn − un‖2 ≤
1

(1− σ)δn

[
‖xn − p‖2 − ‖xn+1 − p‖2

]
+

αn
(1− σ)δn

[
‖fn(xn)− p‖2

− ‖xn − p‖2
]

+ 2λn(‖yn‖+ ‖un‖)‖Bun −Bp‖.

Since lim
n→∞

αn = 0 and both {yn} and {un} are bounded by (26), we have

lim
n→∞

‖yn − un‖ = 0. (28)

From zn = σwn + (1− σ)yn, we get

‖wn − yn‖ =
1

σ
[‖zn − un‖+ ‖yn − un‖]→ 0, n→∞.

So,

‖wn − xn‖ ≤ ‖wn − yn‖+ ‖yn − un‖+ ‖un − xn‖ → 0, n→∞.

Therefore,
d(xn, Sxn) ≤ ‖xn − wn‖ → 0, n→∞. (29)

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that
xnj ⇀ x∗ ∈ H1 and

lim sup
n→∞

〈f(p)− p, xn − p〉 = lim sup
j→∞

〈f(p)− p, xnj − p〉.

By demiclosedness principle for multi-valued map S at zero and (29), we
have that x∗ ∈ F (S).

Next, we show that x∗ ∈ EP (F1). Since un = JF1
rn xn, we have

F1(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

It follows from monotonicity of F1 that 1
rn
〈y− un, un− xn〉 ≥ F1(y, un) and
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hence
〈
y − uni ,

uni−xni
rn

〉
≥ F1(y, uni). Since ‖un − xn‖ → 0, d(xn, Sxn) ≤

‖xn − wn‖ → 0, n → ∞, we get uni ⇀ x∗ and
uni−xni

rn
→ 0. It follows by

Assumption 2.1(iv) that 0 ≥ F1(y, x∗), ∀x∗ ∈ C. For 0 < t ≤ 1 and y ∈ C,
let yt = ty+(1−t)x∗. Since y ∈ C, x∗ ∈ C, we get yt ∈ C and F1(y1, x

∗) ≤ 0.
So from Assumption 2.1(i) and (iv), we have

0 = F1(yt, yt) ≤ tF (yt, y) + (1− t)F1(yt, x
∗) ≤ tF1(yt, y).

Therefore ) ≤ F1(yt, y). From Assumption 2.1(iii), we have 0 ≤ F1(x∗, y).
Hence x∗ ∈ EP (F1).

Next, we show that Ax∗ ∈ EP (F2). Since ‖un − xn‖ → 0, un ⇀ x∗ as
n→∞ and {xn} is bounded, there exists a subsequence {xnk} of {xk} such
that xnk ⇀ x∗ and since A is a bounded linear operator so that Axnk ⇀ Ax∗.

Now setting vnk = Axnk−JF2
rn Axnk . It follows from (23) that lim

k→∞
vnk = 0

and Axnk − vnk = JF2
rnk
Axnk .

Therefore from Lemma 2.4, we have

F2(Axnk−vnk , z)+
1

rnk
〈z−(Axnk−vnk), (Axnk−vnk)−Axnk〉 ≥ 0, ∀z ∈ Q.

Since F2 is upper semicontinuous in the first argument, taking limsup of the
above inequality as k →∞ and using condition (iv), we obtain

F2(Ax∗, z) ≥ 0, ∀z ∈ Q,

which means that Ax∗ ∈ EP (F2) and hence x∗ ∈ Ω.
Finally, by using the argument as in the proof of Theorem 3.1 of [21], we

can show that x∗ ∈ Γ. Meanwhile, since {fn(xn)} is uniformly convergent
on D, we have

lim sup
n→∞

〈fn(p)− p, xn − p〉 = lim sup
j→∞

〈fnj (p)− p, xnj − p〉

= 〈f(p)− p, x∗ − p〉 ≥ 0.

By (22), we get

‖xn+1 − p‖2 ≤ (1− 2αn(1− ρ̄(1− αn)))‖xn − p‖2 − βnδn‖xn − zn‖2

+ α2
n(1 + ρ̄2)‖xn − p‖2 + 2αn〈fn(p)− p, xn+1 − p〉

≤ (1− 2αn(1− ρ̄))‖xn − p‖2 − βnδn‖xn − zn‖2

+ αn

[
αn(1 + ρ̄2)‖xn − p‖2 + 2〈fn(p)− p, xn+1 − p〉

]
.

(30)
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Using Lemma 2.7 we have that xn → p as n→∞.

Case 2. Assume that{‖xn−p‖} is not a monotonically decreasing sequence.
Set Γn = ‖xn − p‖2 and Let τ : N → N be a mapping for all n ≥ n0 ( for
some n0 large enough) by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.

Clearly, τ is non decreasing sequence such that τ(n)→∞ as n→∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀n ≥ n0.

This implies that ‖xτ(n)−p‖ ≤ ‖xτ(n)+1−p‖, ∀n ≥ n0. Thus lim
n→∞

‖xτ(n)−p‖
exists. In a similar way as in case 1, we can show that

‖A∗(JF2
rτ(n)
− I)Axτ(n)‖ → 0, n→∞. (31)

Similarly,

‖xτ(n) − wτ(n)‖ → 0, n→∞, (32)

so that

d(xτ(n), Sxτ(n)) ≤ ‖xτ(n) − wτ(n)‖ → 0, n→∞,

and

‖xτ(n)+1 − xτ(n)‖ → 0, n→∞. (33)

We can also show that

‖uτ(n) − xτ(n)‖ → 0, n→∞,

‖wτ(n) − yτ(n)‖ → 0, n→∞,

and

‖(JF2
rτ(n)
− I)Axτ(n)‖ → 0, n→∞.

From the fact that {xτ(n)} is bounded, we have that there exists a subsequence
of {xτ(n)}, denoted as {xτ(n)}, that converges weakly to x∗ ∈ H1. Since
‖uτ(n) − xτ(n)‖ → 0, it follows that uτ(n) ⇀ x∗ ∈ H1. As in Case 1, we can
show that x∗ ∈ Υ and

lim sup
n→∞

〈fτ(n)(p)− p, xτ(n)+1 − p〉 ≥ 0.
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By (22), we get

‖xτ(n)+1 − p‖2 ≤ (1− 2ατ(n)(1− ρ̄(1− ατ(n))))‖xτ(n) − p‖2 − βnδn‖xn − zn‖2

+ α2
τ(n)(1 + ρ̄2)‖xτ(n) − p‖2 + 2ατ(n)〈fτ(n)(p)− p, xτ(n)+1 − p〉

≤ (1− 2ατ(n)(1− ρ̄))‖xτ(n) − p‖2 + α2
τ(n)(1 + ρ̄2)‖xτ(n) − p‖2

+ 2ατ(n)〈fτ(n)(p)− p, xτ(n)+1 − p〉.
(34)

Which implies that (noting that Γτ(n) ≤ Γτ(n)+1 and ατ(n) > 0)

2(1− ρ̄)‖xτ(n) − p‖2 ≤ ατ(n)(1 + ρ̄2)‖xτ(n) − p‖2

+2〈fτ(n)(p)− p, xτ(n)+1 − p〉. (35)

This implies that

lim sup
n→∞

‖xτ(n) − p‖ ≤ 0.

Thus

lim
n→∞

‖xτ(n) − p‖ = 0. (36)

Therefore,

‖xτ(n)+1 − p‖ ≤ ‖xτ(n) − p‖+ ‖xτ(n)+1 − xτ(n)‖ → 0, n→∞.

Furthermore, for n ≥ n0, it is easy to see that Γτ(n) ≤ Γτ(n)+1 if n 6= τ(n)
( that is, τ(n) < n), because Γj ≤ Γj+1 for τ(n) + 1 ≤ j ≤ n. As a
consequence, we obtain for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+} = Γτ(n)+1.

Hence lim Γn = 0, that is, {xn} converges to x̄. This completes the proof.

If S is a single-valued quasi-nonexpansive mapping. We obtain the fol-
lowing result.

Corollary 1. Let H1 and H2 be two real Hilbert spaces and C ⊆ H1 and
Q ⊆ H2 be nonempty, closed and convex. Let A : H1 → H2 be a bounded
linear operator and A∗ the adjoint of A. Let fn : H1 → H1 be a sequence of
ρn-contractive mappings with 0 < ρ ≤ ρn ≤ ρ̄ < 1 and {fn(x)} is uniformly
convergent for any x ∈ D, where D is any bounded subset of H1. Let B : C →
H1 be τ -inverse strongly monotone mapping. Assume that F1 : C × C → R
and F2 : Q ×Q → R are two bifunctions satisfying Assumption 2.1 and F2
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is upper semicontinuous in the first argument. Let S : H1 → H1 be a quasi-
nonexpansive mapping such that I − S is demiclosed at the origin, Sp = p
∀p ∈ Fix (S) and Υ := Fix (S) ∩ Ω ∩ Γ 6= ∅. For arbitrary x1 ∈ H1, define
the iterative sequence {un}, {xn} and {yn} by

un = JF1
rn (xn + γnA

∗(JF2
rn − I)Axn),

yn = PC(un − λnBun),

xn+1 = αnfn(xn) + βnxn + δn(σSxn + (1− σ)yn), n ≥ 1,

(37)

where γn := µn
‖(JF2rn−I)Axn‖

2

‖A∗(JF2rn−I)Axn‖
2 with 0 < a ≤ µn ≤ b < 1,

rn ∈ (0,∞), λn ∈ (0, 2τ), σ, ρ̄, ρ ∈ (0, 1) and {αn}, {βn}, and {δn} are real
sequences in (0, 1) satisfying the following conditions

(i) αn + βn + δn = 1;

(ii) lim
n→∞

αn = 0 and
∑∞

n=0, αn =∞,

(iii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 2τ,

(iv) βn ≥ ε1 > 0 δn ≥ ε2 > 0.

Then the sequence {xn} converges strongly to p ∈ Υ where p = PΥf(p).

4 Applications

4.1 Split Monotone Inclusion Problem.

Let G : H1 → 2H1 be a multivalued mapping. The multi-valued mapping
G is said to be monotone if for each x, y ∈ H1 any u ∈ G(x), v ∈ G(y), we
have that

〈u− v, x− y〉 ≥ 0.

A monotone multi-valued mapping G is said to be a maximal monotone
mapping if the Graph(G) = {(x, u) ∈ H1 × H1, u ∈ Gx} is not properly
contained in the graph of any other monotone mapping on H1, see [1]. To
every maximal monotone multi-valued mapping G, there is an associated
mapping JGλ : H1 → H1, is called the resolvent of G, defined by

JGλ (x) := (I + λG)−1(x), ∀x ∈ H1,

for some λ > 0, where I is the identity mapping on H1. The resolvent
mapping JGλ is single valued and firmly nonexpansive (hence nonexpansive)
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( see for example, [3, 17, 18] for more details).
Let H1 and H2 be real Hilbert spaces. Let G1 : H1 → 2H1 and G2 : H2 → 2H2

be maximal monotone mappings. Let A : H1 → H2 be a bounded linear
mapping. The split monotone inclusion problem (see, for example, [19]) is
to find x∗ ∈ H1 such that

0 ∈ G1(x∗), x∗ ∈ Sx∗ (38)

and
0 ∈ G2(Ax∗), (39)

where S : H1 → CB(H1) is a multi-valued quasi-nonexpansive mapping. We
shall denote by 0, the solution set of (38) - (39). That is,

0 = {x∗ ∈ H1 : 0 ∈ G1(x∗) and G2(Ax∗)}.

Putting F1 = G1 and F2 = G2 in Theorem 3.1, we obtain the following result

Corollary 2. Let H1 and H2 be two real Hilbert spaces and C ⊆ H1 and
Q ⊆ H2 be nonempty, closed and convex. Let A : H1 → H2 be a bounded
linear operator and A∗ the adjoint of A. Let fn : H1 → H1 be a sequence
of ρn-contractive mappings with 0 < ρ ≤ ρn ≤ ρ̄ < 1 and {fn(x)} is uni-
formly convergent for any x ∈ D, where D is any bounded subset of H1.
Let B : C → H1 be τ -inverse strongly monotone mapping. Assume that
G1 : H1 → 2H1 and G2 : H2 → 2H2 are maximal monotone mappings.
Let S : H1 → CB(H1) be a multi-valued quasi-nonexpansive mapping such
that S is demiclosed at the origin, Sp = {p} ∀p ∈ F (S) and Υ := Fix
(S) ∩ 0 ∩ Γ 6= ∅. For arbitrary x1 ∈ H1, define the iterative sequence {un},
{xn} and {yn} by

un = JG1
λ (xn + γnA

∗(JG2
λ − I)Axn),

yn = PC(un − λnBun),

xn+1 = αnfn(xn) + βn + δn(σwn + (1− σ)yn), wn ∈ Sxn, n ≥ 1,

(40)

where γn := µn
‖(JG2

λ −I)Axn‖
2

‖A∗(JG2
λ −I)Axn‖

2 with 0 < a ≤ µn ≤ b < 1,

λn ∈ (0, 2τ), σ, ρ̄, ρ ∈ (0, 1) and {αn}, {βn}, and {δn} are real sequences in
(0, 1) satisfying the following conditions

(i) αn + βn + δn = 1;

(ii) lim
n→∞

αn = 0 and
∑∞

n=0, αn =∞,
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(iii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 2τ,

(iv) βn ≥ ε1 > 0 δn ≥ ε2 > 0.

Then the sequence {xn} converges strongly to p ∈ Υ where p = PΥf(p).

Remark 1. Our result extends and compliments some recent results in the
following ways:

1. Our result improves and extend the result of Kazmi and Rizvi [14],
from single-valued nonexpansive to multi-valued quasi-nonexpansive
mappings.

2. In contrast with other related methods, our algorithm does not require
any estimate of some spectral radius. In all our results in this paper,
our iterative scheme is proposed with a way of selecting the step-size
γn such that its implementation does not need any prior information
about the spectral radius of the operator A∗A. The constant step-size
γ in the result of Kazmi and Rizvi [14], for example, depends on the
spectral radius of the operator A∗A and we know that computing the
spectral radius of this operator A∗A can be difficult to find at times.
Therefore, our result improve and extend the result of Kazmi and Rizvi
[14].
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[3] H. Brezis, Opérateur maximaux monotones. Mathematics Studies, 5,
1973.



246 C.C. Okeke and O.T. Mewomo

[4] C. Byrne, Y. Censor, A. Gibali, S. Reich, Weakly and Strong con-
vergence of algorithms for the split common null point problem,
http://arxiv.org/abs/1108.5953.

[5] Y. Censor, A. Segal, The split common fixed point for directed opera-
tors, J. Convex Anal. 16 (2009), 587-600.

[6] Y. Censor, A. Gibali, S. Reich, Algorithms for the split
variational inequality problem, Numerical Algorithms, in press.
http://dx.doi.org/10.1007/s11075-011-9490-5.

[7] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach
for inversion problems in intensity modulated radiation therapy, Phys.
Med. Biol., 51 (2006), 2353-2365.

[8] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman pro-
jections in space, Numer. Algorithms, 8 (1994), 221-239.

[9] C. Poom, O.U. Nawitcha, Algorithms of convex solutions of generalized
mixed equilibrium problems and a system of quasi-variational inclusions
for the difference nonlinear operators in Banach spaces, Fixed Point
Theory and Applications, (2011), doi 10.1155.

[10] K. Goebel, S. Reich, Uniform convexity, Hyperbolic Geometry and Non-
expansive Mappings, Marcel Dekker, New York, (1984).

[11] J. S. Jung, Strong convergence theorems for multivalued nonexpansive
nonself-mappings in Banach spaces, Nonlinear Analysis Theory, Meth-
ods and Applications, 66(11) (2007), 2345-2354.

[12] S. H. Khan, I, Yildirim, Fixed points of multivalued nonexpansive map-
pings in Banach spaces, Fixed Point Theory and Applications, (1)
(2012), 1-9.

[13] G. M. Korpelevich, The extragrdient method for finding saddle points
and other problems, Matecon 12(1976) 747-756.

[14] K. R. Kazmi, S. H. Rizvi, Iterative approximation of a common solution
of a split equilibrium problem, a variational inequality problem and a
fixed point problem, Journal of the Egyptian Mathematical society, 21
(2013), 44-51.



Split variational, equilibrium and fixed point Problem 247

[15] W. Kumam, C. Jaiboon, A new hybrid iterative method for mixed equi-
librium problems and variational inequality problems for relaxed co-
ercive mappings with application to optimization problems,Nonlinear
Anal. Hybrid Syst. 3 (2009), 510-530.

[16] Q. Liu, W. Y. Zeng, N. j. Huang, An iterative method for generalized
equilibrium problem and fixed point problems and variational inequality
problems, Fixed Point Theory and Applications, 20 (2009), 531308.

[17] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke
Mathematical Journal, 29 (3), (1962), 341-346.

[18] G. J. Minty, On the monotonicity of the gradient of a convex function,
Pacific J. Math,14(1) (1964), 243-247.

[19] A. Moudafi, The split common fixed point problem for demicontractive
mappings, Inverse Problem 26 (2010), 055007, 6pp.

[20] A. Moudafi, Split monotone variational inclusion, J. Optim. Theory
Appl., 150 (2011), 275-283.

[21] N. Nadezhkina, W. Takahashi, Strong convergence theorem by hy-
brid method for nonexpansive and Lipschitz continuous monotone map-
pings,SIAM J. Optim, 16 (2006), 1230-1241.

[22] F. U. Ogbuisi and O. T. Mewomo, Iterative solution of split variational
inclusion problem in real Banach space, Afrika Matematika, 28 (1-2),
(2017), 295-309.

[23] C. C. Okeke, A. U. Bello, C. Izuchukwu, O. T. Mewomo, Split equality
for monotone inclusion problem and fixed point problem in real Banach
spaces, Aust. J. Math. Anal. Appl., 2017 (to appear).

[24] B. Panyanak, Mann and Ishikawa iterative processes for multivalued
mappings in Banach spaces. Computers and Mathematics with Appli-
cations, 54 (6), (2007), 872-877.

[25] F. U. Ogbuisi, O. T. Mewomo, On split generalized mixed equilibrium
problems and fixed point problems with no prior knowledge of operator
norm, J. Fixed Point Theory Appl., 19 (3), (2017), 2109-2128. .

[26] M. O. Osilike, D. I. Igbokwe, Weak and strong convergence theorems
for fixed points of pseudocontractions and solutions of monotone type
operator equations, Comput. Math. Appl., 40 (2000), 559-567.



248 C.C. Okeke and O.T. Mewomo

[27] S. Plubtieng, R. Punpaeng, A general iterative method for equilibrium
problems and fixed point problems in Hilbert space, J. Math. Anal.
Appl., 336 (2007), 455-469.

[28] K. P .R. Sastry and G. V. R. Babu, Convergence of Ishikawa iterates
for a multivalued mapping with a fixed point.Czechoslovak Mathematical
Journal, 55 (4), (2005), 817-826.

[29] N. Shahzad, H. Zegaye, On mann and Ishikawa iterates for a multi-
valued maps in Banach spaces, Nonlinear Analysis Theory, Methods
and Applications, 71(3) (2009), 838-844.

[30] Y. Shehu, F.U. Ogbuisi, O.T. Mewomo, Further investigation into ap-
proximation of a common solution of fixed point problems and split
feasibility problems, Acta Math. Sci. Series B Engl. Ed 36(3),(2016),
913-930.

[31] Y. Shehu, O. T. Mewomo, Further investigation into split common
fixed point problem for demicontractive operators, Acta Math. Sinica
(English sseries), 32 (11),(2016), 1357-1376 .

[32] Y. Shehu, Convergence theorems for finite family of multivalued maps
in uniformly convex Banach spaces. ISRN Mathematical Analysis,
2011.

[33] Y. Shehu, Iterative approximation for split equality fixed point problem
for family of multi-valued mappings, Revista de la Real Academia of de
Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 109(2),
(2015), 627-643.

[34] Y. Song, Y. J. Cho, Some notes on Ishikawa iteration for multivalued
mappings, Bull. Korean Math. Soc, 48(3), (2011), 575-584.

[35] S. Takahashi, W. Takahashi, Viscosity approximation method for equi-
librium problems and fixed point problems in Hilbert space, J. Math.
Anal. Appl., 331 (2007), 506-515.

[36] U. Witthayarata, Y-J. Chob, P. Kumama, Approximation algorithm
for xed points of nonlinear operators and solutions of mixed equilib-
rium problems and variational inclusion problems with applications, J.
Nonlinear Sci. Appl., 5 (2012), 475494.

[37] H. K. Xu, Iterative algorithm for nonlinear operators, J. London Math.
Soc. 66(2) (2002), 240-256.


