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Abstract

In this paper, we propose an algorithm involving a step-size selected
in such a way that its implementation does not require the computation
or an estimate of the spectral radius. Using our algorithm we proved
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1 Introduction

In this paper, we assume that H; and Hy are real Hilbert spaces with
inner product (.) and norm ||.||. Let D be a nonempty closed and bounded
subset of Hy. Let f,, : D — Hj be uniformly convergence sequence of con-
traction mappings. Then there exists a real numbers p,, € (0,1) such that

1fn(@) = fu@)ll < pullz —yll, Yo,y € D.

A subset C of Hj is called proximinal if, for each x € Hy, there exists ¢ € C
such that
lc = af| = inf{{lz —y| : y € C} = d(,C).

Let C be a closed convex and nonempty subset of H;. It is well known that
in a Hilbert space, closed and convex sets are Proximinal (see for example,
[11, 29]). In the sequel, we denote by C B(H}) the collection of all nonempty,
closed and bounded subsets of Hj.

We say that a mapping 7" : C' — C is nonexpansive if, for all x,y € C,

[Tz =Tyl < |z -yl
The mapping T is said to be firmly nonexpansive if
| Tz — Ty||> < (Tx — Ty,z —y), Va,yeC.
The mapping T : H; — H; is said to be

(i) monotone if
(Te —Ty,z —y) >0, Vr.ye€ Hy;

(ii) « - strongly monotone if there exists a constant o > 0 such that

(Te —Ty,z —y) > a|lz—vyl|, Vr,y € Hy;

(iii) B- inverse strongly monotone, if there exists a constant 8 > 0 such
that
<T.’L’ - Tva - y> 2 BHT:I" - TyH27 V%y € Hy.

The Hausdorff metric H on CB(H;) is defined by

H(A, B) := max{supd(z, B),supd(y, A)}, VA, B € CB(H),
€A yeEB

where d(z, A) := infd(x,y).
yeA
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Definition 1. Let S: H — CB(H) be a multi-valued mapping. An element
p € H is said to be a fized point of S, if p € Sp. The mapping S is said to
be: (i) nonexpansive, if H(Sz, Sy) < ||x —y||, Vz,y € H;

(ii) quasi-nonexpansive, if Fix(S) # 0 and H(Sz, Sy) < ||z — p||, Yz € H,
p € Fix(S).

A Fixed Point Problem (FPP, for short) for multi-valued quasi-nonexpansive
mapping S is to find x € C such that

x € Sz. (1)

The solution set of FPP (1) is denoted by Fix(.S). Fixed point theory for
multi-valued mappings has many useful application in various fields, in par-
ticular, game theory and mathematical economics. Thus, it is natural to
extend the known fixed point results for single-valued mappings to the set-
ting of multi-valued mappings. Several authors have investigated the ap-
proximations of fixed point of multi-valued nonexpansive mappings in the
literature (see, for example,[11, 12, 24, 28, 29, 32, 33, 34]).

A mapping P¢ is said to be the metric projection of H; onto C' if for
every point x € Hj, there exists a unique nearest point in C denoted by
Pcx such that

lo - Poall < 2 —yll, WyeC.

It is well known that Po is a nonexpansive mapping and satisfies
(& —y, Pox — Poy) > ||Pox — Poy|*, Va,y, € Hy. (2)
Moreover, Pox is characterized by the following properties:
(x — Pox,y — Pox) <0, (3)
and
lz = yl* > |lo = Pox|® + |y — Pex|® Vo€ Hi, yeC. (4)

More information on metric projection can also be found in ([10], section 3).
The Variational Inequality Problem ( in short, VIP) is to find x € C

such that
(Bx,y —x) >0, VyeC, (5)

where B : C' — Hj is a nonlinear mapping. The solution set of VIP (5) is
denoted by I.

For solving the VIP in a finite-dimensional Euclidean space R", Kor-
pelevich [13] introduced an iterative method so-called extragradient method.
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Motivated by the idea of Korpelevich extragradient method, Nadezhkina and
Takahashi [21] introduced an iterative method for finding the common ele-
ment of the set Fix(7T) NT" and proved the strong convergence theorem. For
related works, see [15, 16, 22, 23, 25, 30, 31].

A set valued mapping 7 : H; — 291 is called monotone if for all
x,y € Hi, w € Te and v € Ty imply (z — y,u — v) > 0. A monotone
mapping 7 : Hy — 291 is maximal if the graph G(T) of T is not properly
contained in the graph of any other monotone mapping.

It is well known that a monotone mapping 7 is maximal if and only if for
(x,u)x Hy x Hy, (x—y,u—v) > 0, for every (y,v) € G(T) implies u € Tx. Let
B : C — Hj be an inverse strongly monotone mapping and let Nox be the
normal cone to C' at € C, i.e., Nox :={z€ H; : (y—x,2) >0, Vy € C}.
Define

{&ﬁN@,Wea
Tx=
0, Vo ¢ C.

Then 7 is maximal monotone and 0 € Tz if and only if z € T, see [21].
Further, it is easy to see that

z €l <=z = Po(x—ABzx), A>0.

For a bifunction F' : C' x C — R, the Equilibrium Problem (in short,
EP) is to find = € C such that

F(z,y) >0, VyeC. (6)

This was introduced by Blum and Oettli [2]. The solution set of EP (6) is
denoted by EP(F).

Combettes and Hirstoaga [9] introduced and studied an iterative method
for finding the best approximation to the solution of the EP (6) and proved
a strong convergence theorem. Subsequently, Takahashi and Takahashi [35]
introduced another iterative scheme for finding the common element of the
set EP(F)NFix(T). Using the idea of Takahashi and Takahashi [35], Plub-
tieng and Punpaeng [27] introduced the general iterative method for find-
ing the common element of the set FP(F) N Fix(T) NT'. Also Liu et al.
[16] introduced and studied an iterative method, an extention of the vis-
cosity approximation method, for finding the common element of the set
N2, Fix(T;) N EP(F) NT, where {T;}5°, is an infinite family of nonexpan-
sive mappings.

Censor et al. [6] introduced and studied some iterative method for the
following Split Variational Problem (in short, SVIP): Find z* € C such that

(f(a*),z—2) >0, V z€C, (7)
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and such that

y* = Az" € Q solves (g(y*),y —y") >0, VyeQ, (8)

where f: Hi — Hj and g : Ho — Hs are nonlinear mapping and A : H; —
Hs is a bounded linear operator. The special case of SVIP (7) and (8)
is split zero problem and split feasibility problem which has already been
studied and used in practice as a model in intensity-modulated radiation
therapy treatment planning, see [7, 8]. Recently, Moudafi [20] introduced
an iterative method, an extension of a method by Censor et al. [6] for the
following split monotone variational inclusion:

Find z* € H; such that 0 € f(a*)+ By(z"),
and such that

y* = Az™ € Hy solves 0 € g(y*) + Ba(y"),

where B; : H; — 2Hi is a set-valued mapping for i = 1,2. Later on Byrne
et al. [4] generalize and extend the work of Censor et al. [6] and Moudafi [20].

Let F1 : C x C — R and Fy : Q X Q — R be nonnilear bifunctions
and A : Hi — Hjy be bounded linear operator, then the Split Equilibrium
Problem (SEP) is to find #* € C such that

Fi(z*,x) >0, VaeC, (9)
and such that
y* = Az* € Q solves Fh(y*,y) >0, Vye€ Q. (10)

When looked upon separately, we observed that (9) is the classical Equilib-
rium Problem (EP) and we denote it’s solution set by EP(F}). The SEP (9)
and (10) constitute a pair of equilibrium problems which we have to solve
so that the image y* = Az* under a given bounded linear operator A, of
the solution the EP (9) in H; is the solution set of EP (10) in another space
H,. The solution set of SEP (9) and (10) is denoted by

QO ={pec EP(F): Ap € EP(Fy)}.

Motivated by the work of Censor et al.[5, 6], Moudafi [20], Byrne et al
[4], Liu et al. [16], Kazmi and Rizvi [14] obtained the following converges
result.
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Theorem 1. Let Hy and Hs be two real Hilbert spaces and C C Hy and
Q C Hy be nonempty, closed and convex subsets of Hi and Hs, respectively.
Let A : Hi — Hs be a bounded linear operator. Let D : C — Hy be a
T-inverse strongly monotone mapping. Assume that Fy : C x C' — R and
o Q xQ — R are two bifunctions satisfying Assumption 2.1 and Fs is
upper semicontinuous in first argument. Let S : C — C' be a nonexpansive
mapping such that © := F(S)NQNT # 0. For a given xg = v € C arbitrarily,
let the iterative sequences {uy}, {zn} and {y,} be generated by

Up = JE (2 + Y A* (2 — 1) Axy);
Yn = PC(Un - )\nDun); (11)
Tn+l = QpU + Bny + ’Ynsyna

where r, C (0,00), A, € (0,27) and y € (0,1/L), L is the spectral radius
of the operator A*A and A* is the adjoint of A and {ay,}, {fn} and {7y}
are sequences in (0, 1) satisfying the following

(i) Qp + Bn+vm =1,
(ii) nlL%Oan =0and ), a, = o0,

(iii) 0 < liminf)A, <limsup), < 27, and lim |\,41 — A\,| =0,
n—oo

n—0o0 n—00

(iv) 0 < liminfs, < limsupg, < 1,
n—oo

n—oo

(V) nli)nolorn > 0, Z;L.Ozl |Tn+1 - rn‘ < 00,

(vi) hm( Tl ):0.

n—oo 1*5n+1 1-Pn
Then the sequence {z,} converges strongly to z € ©, where z = Pguv.

Motivated by the work of Kazmi and Rizvi [14], we introduce an itera-
tive scheme for approximating a common solution of SEP(9) and (10), VIP
(5) and FPP (1) for multi-valued quasi-nonexpansive in real Hilbert space.
Using our proposed algorithm we prove strong convergence theorem for ap-
proximating a common solution of SEP(9) and (10), VIP (5) and FPP (1)
for multi-valued quasi-nonexpansive in real Hilbert. In all our results the
variable step-size is selected in such a way that its implementation does not
involve the computation or an estimate of the spectral radius.



Split variational, equilibrium and fixed point Problem 229

2 Preliminaries

In this section, we give some definitions, lemmas and results that are
needed in the main results. Also, we make the following assumptions on the
bifunctions F' in order to solve the equilibrium problem. [2] Let F': CxC —
R be a bifunction.We assume that F' satisfy the following:

(i) F(z,z) =0, VzeC;
(ii) F' is monotone, i.e F(z,y)+ F(y,z) <0,V x € C;

(iii) for each x,y,z € C, limsupF(tz + (1 — t)z,y) < F(x,y);
t—0

(iv) for each z € C, y — F(x,y) is convex and lower semicontinuous.

Example of a bifunction that satisfies the above assumptions can be found
in [36].

Definition 2. A multi-valued mapping S : H — CB(H) is said to be
demiclosed at the origin if for any sequence {x,} C H with z, — x and
d(xpn, Styn) — 0, n — oo, we have x € Sz.

Definition 3. A single-valued mapping S : H — H is said to be demiclosed
at the origin if for any sequence {x,} C H with x,, — = and Sz, — 0, n —
00, we have Sx = 0.

Lemma 1. [9] Let C be a nonempty closed and convex subset of a real
Hilbert space H. Let F : C x C — R be a bifunction satisfying Assumption
2.1. Forr >0 and x € C, we have the following:

(B1) there exist z € C such that

1
F(z,y)+;<y—z,z—x>20VyEC’, (12)

(B2) if we define a resolvent mapping JI : H — C by
1
Jf(l‘) :{ZECF(Z,y)+;<y—Z,Z—LU> Zoavyec}
for allx € H. Then the following conclusions hold:

(i) for each x € H, JF(x) # 0,

(ii) JE is nonempty and single-valued;
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(iii) JE is firmly nonexpansive, i.e.,

1TEe = JEy|® < (JFe — JFy, 2 —vy), Yo,y € H;

(i) F(IF) = EP(F),
(v) EP(F) is closed and convex.

Lemma 2. [26] Let (X, (.,.)) be an inner product space, then for all x,y € X
and a, 3,7 € [0,1] with a + 8+~ =1, we have

2 2 2 2 2
lax + By + 72" = allz]” + Bllyll” + [z — aBllz -yl
2 2
ayllz = z[|" = Brlly — z[|"to

Lemma 3. Let H be a Hilbert space, then
2(z,y) = ||| + llyl® = llz = yl1> = [la + yl” = |=]]* = [lyl]*, ¥V a,ye H.

and
|z +ylI” < ||=l* + 2(y, 2 +y), Va,ye H.

Lemma 4. [37] Let {a,} be a sequence of non-negative real numbers such
that
an+1 < (1 - an)an + anon + 67],’ n >0,

where
(i) {an} C [0,1], 37070 an = oo,
(i) limsup o, <0,

(iii) 6, >0, 320, < oco.

Then a, — 0 as n — oo.

3 Main Result

We now state and prove the following theorem
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Theorem 2. Let Hy and Hs be two real Hilbert spaces and C' C Hi and
Q C Hy be nonempty, closed and convex. Let A : Hi — Hs be a bounded
linear operator and A* the adjoint of A. Let f,, : Hy — Hp be a sequence of
pn-contractive mappings with 0 < p < p, < p <1 and {fn(x)} is uniformly
convergent for any x € D, where D is any bounded subset of Hy. Let B : C' —
H, be T-inverse strongly monotone mapping. Assume that Fy : C x C = R
and Fy : Q x Q — R are two bifunctions satisfying Assumption 2.1 and Fo
is upper semicontinuous in the first argument. Let S : Hy — CB(Hy) be a
multi-valued quasi-nonexpansive mapping such that S is demiclosed at the
origin, Sp = {p} Vp € F(S) and Y := Fir(S)NQNT # 0. For arbitrary
x1 € Hy, define the iterative sequence {u,}, {zn} and {y,} by

Un = Jfr} (xn + ’YnA*(Jf:LQ - I)Axn)a
Yn = Po(un — A\ Buy,),
In+1 = O‘nfn(:zn) + Bnxn + 6n(0'wn + (1 - U)yn)7 Wy € STy, n > 1,
(15)
F

2
[(Jr2 =) Az | :
|A*(Jff—I)Aa:nH2 with 0 <a<p, <b<1,

€ (0,00), Ay € (0,27), 0,p,p € (0,1) and {an}, {Bn}, and {0,} are real
sequences in (0,1) satisfying the following conditions

where Yp 1= lin

(Z) an+ﬁn+5n:1§
(i1) nli_)n;oozn =0 and )y 2, 0p = 00;

(i4i) 0 < liminf), < limsup), < 27;
n—oo

n—s00
(iv) Bp>€ >0 6, > e > 0.
Then the sequence {x,} converges strongly to p € T where p = Py f(p).
proof: Letp € T := Fix(S)NQNT, i.e p € Q, we have p = Jf;lp
and Ap = J,fL?Ap. We then obtain
lun = plI* = 195 @n + A" (2 = DAz, —p|
”Jvil (zn + ’YnA:(Jf;Q — I Az, — qul (p)|

2
|

* 2
< an + 1A (2 — 1) Az, — p||
* 2
= |lxn —p+1mA (J,ff — 1) Az, ||
< an = pl® 4 29 (zn — p, AT (T2 — 1) Ay, +

. 2
Yl A (T2 = 1) Az
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Thus,

lun =2l = ll&n = plI* + 290 (a0 — p, A*(J)2 = 1) Axy)
T2 = 1) A (16)
Since Ap € F(JE?), we have that
(o —p , A2 —1)Ax,) = (A(z, — p), (JF2 = 1) Azy,)

= (A(zq) = Alp) + (J7? = I) Ay
—(JF2 = 1) Ay, (JF2 — 1) Azy,)

= (I Az, — Ap— (JE = I) Az, (J2 — 1) Ax,)
< (P Aw, = Ap, (I = D)Azy) — | (I = DAz,
= % :HJE?A% — Ap|® + |(JF2 = I) Aw, || — || Az, — Apﬂ
~1F = DA
- % 1175 Awn = Ap||* = || Az — Ap|’| - %(nJTi? D) Aw,|’
= 5 [ Az — Ap)® — [ Aza — Ap|® — (I — 1) Az
= % | A, — Apll® = | Az, — Ap|* = [|(J2 = D) Ao
- —%H(J,ff DAz
Therefore,
(00— p, A = 1) A} < 2 (T2 — 1) Az an

Substituting (17) into (16), we get

2 N 2
< lwn = pl” = Wll(F2 = DAy ||” + 12| A* (52 — T) Ay ||
< zn —pl?
2 N 2
Yo |12 = DAz " = 3l A* (52 = DAz, . (18)

lun = pl?

Using the definition of vn, we have

[un —pl| < [lan —pl|. (19)
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Now, we estimate
lyn = pII* = || Po(un — AnBun) — Po(p — AuBp) |
< |[(un = AuBun) = (p = A Bp)|*
< lun — pH2 — An(27 = Ap) || Bun, — Bp”2 (20)
< Jlun = plf?
<l —pll*.
Let zy, := owy, + (1 — 0)yyn. Then
l2n = Pl = llo(wn = p) + (1 = o) (yn — D)
< oflwn = pll + (1 = o)y — pll
< oH(Ps(zn), Ps(p)) + (1 = o)||lzn — pll
< ollzn —pll+ (1 = o)llzn — pll
= [lzn — pl|-
By using (15), we have that
[Znt+1 = pll = llan fa(Tn) + Bnn + n2n — pl|
= llan(fa(zn) = fa(p)) + an(fu(p) — ) + Bul@n — p) + 6n(zn — ||
< an([[fu(zn) = fa@) + | fn(p) = pll) + Bullzn — pll + 6nllzn — pll
< an([lfalzn) = fa@) + [[falp) = pl) + (1 — an)|lzn — pl|.

Hence,

[#n41 = pll < an(l[falzn) = fa@) + | fu(p) = pll) + (1 — an)l|zn —pl|. (21)
By the uniform convergence of {fn(x)} on D, there exists M > 0 such that
lfn(p) — p|| < M, ¥Yn > 1. Hence, we have

[2nt1 = pll < anppllen —pll + anllfa(p) — Pl + (1 — an)llzn —p
< anpllen = pll + anll fu(p) = pll + (1 = an)llzn — p||
= (anp + (1 = an)lzn — pl| + anll fu(p) — 1|
= (1 = an(l = p))llzn — pll + anl fu(p) — pll

| fn(p) jpll

= (1= an(l = pllea = pll +an(l = p) =

M
< max { len — ] 7=
<:

M
< maX{H% =l iﬁ}
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Therefore, {x,} is bounded.
By (15) and (19), we have that

||$n+1 - p”2 = ||anfn($n) + Bny + Onzn —p||2
= 1Bu(@n = ) + 6n(2n — P) + An(fulwn) = fu(p)) + an(falp) — p)|
< H/Bn(mn _p) + 6n(2n _p) + an(fn(xn) - fn(p))H2

+2an(fn(p) = P, Tnt1 — p)

< ||Bn(@n —p) + 0n(2n — p)”2 + a?z”(fn(xN) - fn(p))H2

+200 (B (T — p) + 0n(20 — P)s fr(@n) — fu(p)) + 200 (fn(p) — Py Tny1 — p)

= Bn(Bn + 0n)l|zn _pH2 + 0n(Bn + 0n) |20 — pH2 — Brdnllzn — ZnH2

+0‘721”(fn(33n) - fn(p))H2 + 200 (B (Tn — p) + 0n(2n — p)s fr(zn) — fu(p))

+20n(fu(p) — P, Tn+1 — p)

< (Bn+ 5n)2|‘$n —p||2 — BrnllTn — ZnH2

+aZ || fu(@n) = Fa(P)? + 200 (Ba(@n — D) + 0n (20 — p), fal@n) — fa(p))

+20n(fn(p) = P, Tnt1 — p)

=(1- O‘n)2||$n - pH2 — Bndnl|lTsn — Zn||2

+aZ || fu(@n) = Fa(P)|? + 200 (Ba(@n = p) + 0n(20 = P), falwn) — fa(p))

+20n(fn(p) = P, Tnt1 — p)

< (1= an)?[[2n = pl* = Budnllzn — 20

+04$LP721”337L _pH2 + 200 (fn(p) — Py Tnt1 — p) + 200 Bn(zn — p)

+0n(zn = D)l fu(zn) — fu(p)ll

<(1- an)2|’$n _pH2 — Budnllzn — Zn”g

+appnllen = pl* + 200 (fu(p) — P, Tnt1 — p)

+2pan(1 = ag) |z — p|*. (22)
We divide the rest of the proof into two cases.
Case 1. Suppose that there exists ng € N such that {||z, — p||}$f:n0 18
nonincreasing. Then {||z, — p||} converges and ||z, — p|| — ||zny1 —pl| = 0
as n — co. By (15), we obtain

zns1 = plI* < @l f(@n) = plI* + Bullen — plI* + 6nll2n — pl*

< nll ) = Pl + Balln — pI + Su(llzn — plI2 + (1 = ) lyn — pI2)
< an|| ful@n) — pH2 + (Bn + 00n)||n — pH2 + (1 = o)luy —PHQ~

This implies that

~llun = plI” < [onllfnen) =PI+ (Batoda)lln — plP=nsr ol

(1—0)dn
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From (17) and (18), we have that

2 N 2
Yo | (52 = D) Az ||” — Yl A*(JF2 = T) Az | ] < Jlwn = pl1* = [lun = plI?

1
SHJ?n—pHQ—menH PH +(1 ) | fr(p) — p”2+
MH&%— ||2
(1_0)5n
_ﬂn _ |,2_ﬂ|‘ 12+ —9 ) fa(n) — plI?
I R R P R (1 015, Mn(an) =
1
= g5, lon = ol =z =9I+
Qp
e oy Mnten) = ol = llen = pl1°)

Since o, — 0 as n — oo by condition (i), we have that

Tn [H(JF2 - I)AwnH2 _'VnHA*(Jr{? - I)Afvnnﬂ —0 as n— oo,

Tn
which by definition of v, implies that

4
pn(1 = 1) | (JE2 = T) Ay |
1A= (JF2 = T) Az, ||

—0 as n— oo.

Since 0 < a < pp < b <1 and |A*(JE2 — I)Axy|| is bounded, we have that
||(Jf:f —DAz,|| -0 as n— oo. (23)

Now,

HA*(J,QQ — DAz, || = HAHH(JEL2 —DNAz,|| -0 as n— . (24)
By (22), we have that

Brdnl|zn — Zn||2 < |y _pH2 — [|Zns1 _pH2 + ap My,
for some My > 0 and this implies that
|z, — zn|| = 0, n — oco.

Hence,

‘|J"n+1 - J:HH = ||anfn($n) + BnTn + On2n — (anxn + Bnxy + 5n$n)||
< apl|fu(@n) = Zoll + anllzn — 20| = 0,n — .
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Similarly,
|Znt1 = 2ol < lTnt1 — 2all + |20 — 20|l = 0, — oo.

From (15) and the fact that Jf;l is firmly nonexpansive, we have that

* 2
un — pl|> = | JE (20 + 40 A*(JE2 — 1) Az,) — p||
— [TE (2 + AT (I = D) Awy) — JE ()|
= (Up, — P, Tn + %A*(Jff — I)Azx, —p)

* 2
< Slllun = pl* + ll2n + 1 A (72 = D) Azn = p|

]

1 2
< i[Hun —p||2 + [|zn _p+’7nA*(J£LQ — 1) Az, ||

. 2
up —p— (2 + W AT — 1) Az, — p)|

. 2
—[Jtn — zp + A (J::? — 1Az,

1 . 2
< Slllun —pl? + |20 — p+ A (JE2 — ) Azy|

—[lun — zall® + Yl A*(J22 — 1) Awy||* = 2(uy — Ty A (JF2 = 1) Azy)]]
_ 1
)
| AT (TE = D) Awn|* + 2t — 2, Y A* (T2 — T) Azy)]
B 1
D)
+2{an — P AT = D) Aw) — |l — 2a]® = yull A* (I = 1) Ay
+2(up, — T, Y A* (2 — ) Az,)]

2
[llun — an2 + l|zn —p + ’YnA*(Jr%:? — DAz | — |lun — anZ

. 2
ln = zall® + 2 = plI* + 7l A* (52 = 1) Azs|

1 *
< §[Hxn —pl* + 20 = plI* = lun — zall?® + 2(zn — p, WA (JL2 — ) Azy)
+2(uy, — mn,'ynA*(JSf — I)Ax,)]

1
< |lzn _pH2 - iuun - anZ + (un _p77nA*(J£;2 —I)Axy)

1 *
<l —pl* - 2 lun = nl® + Y llun — pIIIA*(JF2 = I) Azy .
That is

1
lun = plI* < llzn = plI* — S llun — zal® + nllun — AT (IS — 1) Az (25)
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Hence,

1 *
5 llun = zal® < llzn —pl* = llun —pl* + %Hun = pll|A* (2 = I) Az

1
< |lzn — p|* — m”iﬁnﬂ plI?+ (1 ) | f(zn) — p||* +

,Bn +0’(5n .
= o35, Iam =PI+l = pIIAT(J2 = DAz
_l-an _ 2 = 1;“" 9
nllun — pll||A*(JF2 — I) Az, ||
1

= U= o), [Hxn —pl* = l|zn —p|!2] -

Qp .
+m {an(xn) —p”2 — ||zn _pHﬂ + Yollun — p|||| A (Jf:f — DAz,

and this implies that

|lun, — zn|| = 0,n — o0,

and

lzn — unll < ||un — Znl| + |20 — 20| = 0,7 — 0.

Next, we have

|Znt1 = pI* < anllfa(@n) = plI* + Ballzn — plI* + 8nll2a — pII?

< anllfu(@n) = pII* + Ballzn = plI* + (o llzn — pl* + (1 = 0)lyn — pII)
= ol fa(@n) =PI + (Bu + 00n) |20 — p|I* + (1 — 0)6nllyn — pl?

< ol fu(@n) = plI* + (B + 06) | 2n — plI* +

(1- U)‘Sn[”un —pP—- /\n(Bun - BP)HQ]

< anllfu(@n) = plI* + (Ba + 060)llzn — p|?

+(1—0)on [Hun — p|” = 2X\n (un — p, Buy — Bp) + A2 || Bu,, — Bp|)?

< anllfal@n) = pI* + (Bn + 06p) |20 — pII> + (1 = 0)dnl2n — plI?

—(1 = 0)20, 7| Buy, — Bp||* + (1 — 0)6,A2 || Bu,, — Bp||?

< anl| fa(@n) — I + (Bn + 00n) ||z — > + (1 = 0)dn]|zn — p|?
+(1 = 0)dpAn (A — 27)|| Buy, — BpHQ,
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and so

1

M2 = M) [ Bun = Byl < lfen =l = (sl =l
n

Qn 2 B+ 0dp 2
. 1—a, T 1—-ay 2
(079 2
b o) =

1
= T=op5 len =l = llzwss = pI°]

e agg [MnGen) = ol =z = o]

Since o, — 0 and 0 < lim A, = A < 27, we have that

n—o0

lim ||Bu,, — Bp|| = 0. (26)
n—o0

Since Po is firmly nonexpansive and (I — A\, B) is nonezpansive by (15), we
have

lyn = pII* = [|Po(un = Ay Bug) = Po(p = AuBp)|?

< (Yn — Py un — AnBun — (p — A Bp))

= 2w =PI + 7 = AaB)un — (I = \uB)p|* -

Iy = tn + An(Bun — Bp)|*)

< 5 Ulgn = oI+ i =PI =l — tn + An(Butn — Bp) )

= %(Ilyn =l + l[un = plI* = lyn — unll* = X3 || Buy, — Bpl|?

=2 (Yn, — Up, Bu, — Bp))

< %(Ilyn =l + l[un = plI* = lyn — unll* = X3 || Buy, — Bpl|?

20 [lyn — unll|| Bun — Bpl]),

and so
lyn = plI* < llun = pII* = llyn — uall* = A2 || Bun — Bpl|?

+ 2Xnllyn — unl|| Bun — Bp| (27)
< lzn = pI* = llyn = wnll* + 2Anllyn — unl|l| Bun — Bpl.
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From (15) and (27), we have

[Zn41 — p|| < ap| fa(zn) — pH2 + (Bn + 06n)[lzn _pH2 + (1= 0)dnllyn — p||2
< ol fu(zn) — pH2 + (Bn + 00n) ||z _pH2
+ (1= )oulllzn — plI2 = Il — wnl + 2Anllgn — ualll Bu — Bpll
< anl| fa(zn) — pH2 + (Bn + 06n)||2n _pH2
+ (1 —0)dnllzn _pH2 — (1= 0)0nllyn — un||2+
2(1 = 0)0nAnllyn — un|| | Bun — Bpl.
Therefore, we have
2 1 2 2 Qn 2
_ < _ _ _ _
lm = wnll® < =55 lom = 2l = lomss = #l*) + 7225 [ nCea) = 9]
— o = pII?] + 27 llyn | + llun )| Bun - Byl
Since li_>m apn, =0 and both {y,} and {u,} are bounded by (26), we have

lim ||y, — uy| = 0. (28)

n—oo

From z, = ow, + (1 — o)y, we get

1
|wn — ynll = E[Hzn — Up|| + [|Yn — unl|] = 0, n — oo.
So,
|wn = znll < |lwn = ynll + [yn — wnll + lun — znl = 0, n — oo.

Therefore,
d(zp, Sxy) < ||Xn —wp| — 0, n — oo. (29)

Since {xn} is bounded, there exists a subsequence {xn;} of {w,} such that
Tp; = 2" € Hy and

limsup(f(p) — p,zn — p) = limsup(f(p) — p, Tn; — p).

n—00 Jj—00

By demiclosedness principle for multi-valued map S at zero and (29), we
have that x* € F(S).
Next, we show that z* € EP(Fy). Since uy, = Jf;lxn, we have
Fy (tn,y) + 2y = tn, iy — ) >0, Yy € C.
It follows from monotonicity of Fy that %(y — Up, Up — Tp) > Fi(y,uy) and



240 C.C. Okeke and O.T. Mewomo

hence <y — Up,, u""_z"i> > F1(y, up,). Since ||un, — xn|| = 0, d(p, Szy) <

Tn

|zn, — wy| — 0, n — oo, we get uy, = x* and u";% — 0. It follows by
Assumption 2.1(iv) that 0 > Fy(y,z*), Va* € C. For 0 <t <1 andy € C,
letyy = ty+(1—t)x*. Sincey € C, z* € C, we get y; € C and Fy(y1,2*) < 0.

So from Assumption 2.1(i) and (iv), we have

0= Fi(ye,yt) <tF(ye,y) + (1 =) Fi(ye, %) < tF1(ys,y)-

Therefore ) < Fi(yt,y). From Assumption 2.1(iii), we have 0 < Fy(z*,y).
Hence x* € EP(F}).
Next, we show that Az* € EP(Fy). Since |u, — x| — 0, u, — z* as
n — 0o and {x,} is bounded, there exists a subsequence {xy, } of {xy} such
that x,,, — x* and since A is a bounded linear operator so that Ax,, — Az*.
Now setting vy, = Aaznk—Jffonk. It follows from (23) that kh—g)lovnk =0

and Axy, — vp, = Jgf Az, .
Therefore from Lemma 2.4, we have

1
Fy(Azy, —vy,, z)+r—<z—(Axnk —Un,), (AZp, — U, ) —Azp,) >0, Vz Q.
ng

Since Fy is upper semicontinuous in the first argument, taking limsup of the
above inequality as k — oo and using condition (iv), we obtain

Fy(Az*,2) >0, VzeQ,

which means that Az* € EP(Fy) and hence x* € Q.

Finally, by using the argument as in the proof of Theorem 3.1 of [21], we
can show that x* € T'. Meanwhile, since {fn(xn)} is uniformly convergent
on D, we have

lim sup(fn(p) — p, 2n — p) = limsup(fy,(p) — p, Tn; — p)

n—00 j—o0

=(f(p) =p,z" —p) > 0.
By (22), we get
[#n41 — sz < (1 =200 (1 = p(1 = an)))llon — pH2 — Bndnllzn — Zn”Q
+ (14 2|20 = pl* + 200 {£a(p) = P, Tns1 — 1)
< (1= 2an(1 = p)|lwn = plI* = Budullzn — 2n”

+ an an(+ 2)len = pII* + 2(fu(p) = prnss )]

(30)
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Using Lemma 2.7 we have that x,, — p as n — oo.
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Case 2. Assume that{||z, —pl|} is not a monotonically decreasing sequence.
Set Ty = ||zn —p||* and Let 7 : N — N be a mapping for all n > ng ( for

some ng large enough) by

T(n) :=max{k e N: k <n,I'y <Tpi1}.

Clearly, T is non decreasing sequence such that 7(n) — oo as n — oo and

0< I“r(n) < FT(n)Jrla Vn > ng.

This implies that Hx‘r(n) _pH < ”x‘r(n)—i-l _puv Vn > ng. Thus nh_{gonT(n) _p”

exists. In a similar way as in case 1, we can show that

| A*(JE2 — DAz (]| =0, n— oo.

T7(n)

Similarly,
|Z7(n) — eyl = 0, n — o0,
so that
d(Z7(n)s STr(n)) < | Tr(n) — Wrm)ll = 0, 1 — o0,
and

”m‘r(n)Jrl - w'r(n)H — 0, n—oo.

We can also show that
HuT(n) - x’r(n)” — 0, n— o0,

|wr(n) = Yr@myll = 0, n = oo,

and
|(JE2  — DAz | =0, n— oo

T7(n)

(31)

(33)

From the fact that {x,(,)} is bounded, we have that there exists a subsequence
of {xr(n)}, denoted as {x,)}, that converges weakly to z* € Hiy. Since
urny — Tzl = 0, it follows that u,,y — z* € Hy. As in Case 1, we can

show that x* € T and

lim Sup<f7'(n) (p) P Tr(n)+1 T p> 2 0.

n—oo
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By (22), we get

|27 ()1 — PII° < (1= 20700y (1 = (1 = aru)) |2 () — DI° = Bubnllzn — 20
+ a2y (14 2722y — PI? + 207 (m) (Fr(n) (P) = P> Br (41 — D)
< (1= 2070y (1 = P)) @y =PI + @2y (1 + )2y — 2l
+ 207 () (fr(n) (P) — P, Tr(n)41 — P)-

(34)
Which implies that (noting that L) < o)1 and aqzgyy > 0)
2(1 = )| %rmy — 2P < oy + 222y — 2
+2<f7'(n) (p) D Tr(n)+1 — p)' (35)
This implies that
hmsupHxT(n) _pH <0.
n—oo
Thus
Tim [l — pll = 0. (36)
Therefore,

”xT(n)—Fl _pH < HIT(TL) _pH + HIT(n)—O—l — ;pT(n)” — 0, n—oo.

Furthermore, for n > no, it is easy to see that I'r,y < T4 if n # 7(n)
( that is, 7(n) < n), because I'; < T'j4q for 7(n) +1 < j < n. As a
consequence, we obtain for all n > ng,

o<r, < maX{FT(n), Fr(n)-l—} - FT(n)+1'

Hence imT',, = 0, that is, {x,} converges to T. This completes the proof.
If S is a single-valued quasi-nonerpansive mapping. We obtain the fol-
lowing result.

Corollary 1. Let Hy and Ho be two real Hilbert spaces and C C Hy and
Q C Hy be nonempty, closed and convex. Let A : Hi — Hs be a bounded
linear operator and A* the adjoint of A. Let f,, : Hi — Hy be a sequence of
pn-contractive mappings with 0 < p < p, < p <1 and {fn(x)} is uniformly
convergent for any x € D, where D is any bounded subset of Hy. Let B : C' —
Hy be T-inverse strongly monotone mapping. Assume that F} : C x C = R
and F5 : Q x Q — R are two bifunctions satisfying Assumption 2.1 and Fs
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18 upper semicontinuous in the first argument. Let S : Hy — Hy be a quasi-
nonexpansive mapping such that I — S is demiclosed at the origin, Sp = p
Vp € Fiz (S) and Y := Fiz (S)NQNT # 0. For arbitrary x1 € Hy, define
the iterative sequence {un}, {xn} and {yn} by

Uy = J,f} (xn + VnA*(Jff —I)Ax,),
Yn = PC’(“n - )\nBun>7 (37)
Tntl = Oénfn(xn) + ﬁnxn + 5n(Uan + (1 - J)yn)7 n=>1,

Fy 2
||J4‘1(irnF2 I)‘;‘Z"H H2 with 0 <a < pu, <b<1,
*(Jryy —1)Azy

7 € (0,00), Ay € (0,27), 0,p,p € (0,1) and {an}, {Bn}, and {6,} are real
sequences in (0,1) satisfying the following conditions

where Vn = ln

(i) an + B+ 0n = 1;
(i1) nlLrgloan =0 and )7, 0 = 00,

(#i) 0 < liminf),, <limsup), < 27,
n—oo

n—00
(i?)) ,Bn261>0 5n262>0.

Then the sequence {x,} converges strongly to p € Y where p = Py f(p).

4 Applications

4.1 Split Monotone Inclusion Problem.

Let G : Hy — 281 be o multivalued mapping. The multi-valued mapping
G is said to be monotone if for each x,y € Hy any u € G(x),v € G(y), we
have that
(u—wv,x—y)>0.

A monotone multi-valued mapping G is said to be a mazximal monotone
mapping if the Graph(G) = {(z,u) € Hy x Hi,u € Gz} is not properly
contained in the graph of any other monotone mapping on Hy, see [1]. To
every maximal monotone multi-valued mapping G, there is an associated
mapping Jf : Hi — Hy, is called the resolvent of G, defined by

JC(2) == (I +\G)"Yz), Vae H,

for some A > 0, where I is the identity mapping on Hi. The resolvent
mapping J/g is single valued and firmly nonezpansive (hence nonexpansive)
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( see for example, [3, 17, 18] for more details).

Let Hy and Hs be real Hilbert spaces. Let Gy : Hy — 271 and Go : Hy — 2H2
be maximal monotone mappings. Let A : Hy — Hy be a bounded linear
mapping. The split monotone inclusion problem (see, for example, [19]) is
to find x* € Hy such that

0€ Gy(z"), a"eSz* (38)

and
0 € Go(Ax™), (39)

where S : Hi — CB(H1) is a multi-valued quasi-nonexpansive mapping. We
shall denote by U, the solution set of (38) - (39). That is,

U={z"€ H :0€Gi(z") and Ga(Az")}.
Putting I = G1 and Fy = G4 in Theorem 3.1, we obtain the following result

Corollary 2. Let Hy and Ho be two real Hilbert spaces and C C Hy and
Q C Hy be nonempty, closed and convex. Let A : Hi — Hsy be a bounded
linear operator and A* the adjoint of A. Let f, : Hi — Hp be a sequence
of pn-contractive mappings with 0 < p < p, < p < 1 and {fn(x)} is uni-
formly convergent for any x € D, where D is any bounded subset of Hj.
Let B : C — Hp be T-inverse strongly monotone mapping. Assume that
Gi : Hi — 2/ and Gy : Hy — 282 are mazimal monotone mappings.
Let S : Hi — CB(Hy) be a multi-valued quasi-nonexpansive mapping such
that S is demiclosed at the origin, Sp = {p} ¥p € F(S) and Y := Fix
(SYNUBNT # 0. For arbitrary 1 € Hy, define the iterative sequence {u,},
{zn} and {yn} by

Uy = J (@0 + 1 A* (I — 1) Azy),
Yn = PC(un - )\nBun)y
Tnt1l = Qnfn(Tn) + Bn + In(ow, + (1 — 0)yn), wn € Sy, n>1,
(40)

I(IS2 1) Azy |
1A= (JF2—1) A |
An € (0,27), 0,p,p € (0,1) and {a,}, {Bn}, and {6,} are real sequences in
(0,1) satisfying the following conditions

where Yp, = in 7 with 0 < a < p, <b <1,

(i) O‘n+5n+5n:1;

(ii) nli_)rroloan =0 and Y 7,y = 00,
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(i4i) 0 < liminf)\, < limsupl, < 27,
n—oo

n—oo

(’L”U) By =€ >0 0, >e >0.
Then the sequence {xy,} converges strongly to p € Y where p = Py f(p).

Remark 1. Our result extends and compliments some recent results in the
following ways:

1. Our result improves and extend the result of Kazmi and Rizvi [14],
from single-valued monexpansive to multi-valued quasi-nonexpansive
mappings.

2. In contrast with other related methods, our algorithm does not require
any estimate of some spectral radius. In all our results in this paper,
our iterative scheme is proposed with a way of selecting the step-size
Yn Such that its implementation does not need any prior information
about the spectral radius of the operator A*A. The constant step-size
v in the result of Kazmi and Rizvi [14], for example, depends on the
spectral radius of the operator A*A and we know that computing the
spectral radius of this operator A*A can be difficult to find at times.
Therefore, our result improve and extend the result of Kazmi and Rizvi

[14].
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