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Abstract

The D-dimensional Schrödinger equation for a Coulomb potential
with a coupling constant depending linearly on energy is analytically
solved. The energy spectrum in the asymptotic regime of the slope
parameter is found to be fully determined up to a scale only by its
quantum numbers. The raising and lowering operators for this limiting
model are determined from the recurrence properties of the associated
solutions. It is shown that they satisfy the commutation relations of
an SU(1, 1) algebra and act on wave-functions which are normalized
differently from the case of the usual bound state problem for an en-
ergy independent Coulomb potential.
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1 Introduction

Exactly solvable problems associated to quantum systems have always
attracted much attention due to their simple but elegant algebraic structure.
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This relation between exact solvability and the algebraization of the prob-
lem was observed in the early stages of the quantum physics foundations
by Dirac [1] and Schrödinger [2]. Their findings lead to the introduction
of the factorization method [3, 4], which is based on the simple premise
that if the Schrödinger equation is factorizable, then its solutions can be ob-
tained algebraically in terms of creation and annihilation operators. These
operators usually close into a dynamical algebra [5] aided by an additional
operator which do not change the wave function. Depending on the struc-
ture of the Hamiltonian operator in terms of these operators, the associated
algebra can be a spectrum generating one or a universal covering one, also
called dynamical symmetry [6]. Therefore, exact solvability of a problem is
said to be directly related to the symmetry properties of the modeled sys-
tem. As a matter of fact, the factorization method is closely related to the
super-symmetric quantum mechanics [7] which offers a very useful concept
of shape invariance [8] as a measure to characterize and search for solvable
potentials [9, 10] and which was shown to have an algebraic structure [11].

The number of potentials which lead to an exactly solvable Schrödinger
equation is unfortunately scarce. The Coulomb, Kratzer, Harmonic Os-
cillator, Davidson, Morse, Pöschl-Teller, Scarf, Rosen-Morse, Eckart, In-
finite Square Well and Nathanzon are just a few textbook examples of
one-dimensional and multi-dimensional exactly solvable potentials. In some
cases, such as Coulomb, Harmonic Oscillator or the Infinite Square Well, the
associated eigenvalues depend up to a scale just on the quantum numbers
which are symmetry-defined by the associated dynamical group. In conse-
quence, this provides a unique insight into the structure and dynamics of
the modeled physical system through its underlying dynamical symmetry.
This special analytical characteristic of the exactly solvable models can be
extended to non-solvable problems by following few venues. One way to do
this is by relaxing the condition of having the whole spectrum in a closed
form. Basically, such extensions lead to spectral problems that are analyt-
ically solved only for a part of the entire energy spectrum. Such partially
algebraized models are called quasi-exactly solvable [12, 13, 14, 15]. The
energy dependent variations of the exactly solvable potentials represent an
alternative direction [16, 17].

As the differential Schrödinger equation with an energy dependent (non-
local) potential is solved similarly as in the case of the original local po-
tential, it retains at least a part of the original analytical structure. The
eigenvalues, however, are not determined from a linear correspondence, as in
the usual case, but by solving a higher order polynomial equation [18]. This
aspect, coupled with the modification of the quantum phase space of the
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problem, stemming from its iterative behaviour, hinders the identification
of the dynamical symmetries associated to such problems. Nevertheless,
there are indications that some of symmetry aspects are preserved from the
unperturbed problem, such as for example the super-symmetric factoriza-
tion of the Hamiltonian [19]. However, this is possible to verify only in case
of the linear dependence, which allows the transformation of the non-local
Schrödinger equation into a usual quantum problem [16, 19].

In this paper, one will study the bound states of the energy dependent
Coulomb potential in D dimensions. The peculiarities of the wave equation
with energy-dependent potentials are discussed in the next section. The
usual problem of the energy independent Coulomb potential with bound
states succinctly presented in Sec.3, is known to satisfy the SU(1, 1) algebra
[20, 21]. The scope of this study is to identify if and in what conditions the
non-local problem can be described in terms of the same algebra. To achieve
this, one presents in Sec.4 the analytical structure of the eigensystem corre-
sponding to a Coulomb potential whose coupling constant depends linearly
on the energy of the system. An interesting saturation of the resulted exci-
tation energy spectrum is observed when the slope of the energy dependence
is increased [22]. This result is analytically recovered in Sec.5 by means of
the asymptotic expansion [23] in terms of the slope describing the energy de-
pendence. It is shown that in this regime, the energy spectrum as well as the
wave functions become fully scaled in terms of the so called slope parame-
ter. As a consequence, the energy spectrum in this large slope regime is once
again completely determined up to a scale only by the associated quantum
numbers. This result suggests the presence of a dynamical symmetry, which
is sought here by means of the method of Ref.[24]. Basically, one deduces
the ladder operators from the analytical expression of the wave functions
and then checks the commutation relations they obey in order to establish
their underlying algebra. However, this procedure must be performed in the
Hilbert space of the ordinary quantum mechanics. The general procedure
of reformulation of a problem for an energy dependent potential as an ordi-
nary Schrödinger equation is explained in Sec.2. Its application to the large
slope regime of the energy dependent Coulomb potential and the consequent
identification of the associated ladder operators is dully explained in Sec.6,
where one also discuses their group theoretical consequences. Finally, one
closes with a few comments in the last Section.
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2 Basic aspects of energy dependent potentials

General considerations regarding the modification of the usual rules of
quantum mechanics when considering energy dependent potentials were dis-
cussed by several authors [16, 25]. By far, the most important implication
is the modification of the scalar product as

〈Ψ|Φ〉 =

∫
Ψ∗(~r)

[
1− ∂V (E,~r)

∂E

]
Φ(~r)d~r. (2.1)

This amendment is essential for the conservation of the norm and assures
that the continuity equation is satisfied [16, 25, 26, 27, 28]. The correction
term emerges as an additional contribution to the continuity equation for
the standard definition of the scalar product. One can immediately see that
for the linear case, the integration metric is state independent. This special
feature is very important, because only in this situation the wave-functions
(4.5) can form a complete set of eigenstates [16]. Moreover, only for a linear
energy dependence, the problem can be reformulated in the usual quantum
mechanics with a standard scalar product [16, 19]. In what follows one
will sketch the general procedure which is similar to the Darboux transform
[29, 30, 31].

Considering the linear dependence on energy of a general one-dimensional
potential to be of the form V (E, x) = V0(x) + EV1(x), one can write down
the associated Hamiltonian operator as

Hd = H0 + V1(x)Hd =
1

1− V1(x)
H0, HdΦ(x) = EΦ(x), (2.2)

where H0 is the Hamiltonian of the unperturbed problem for the local po-
tential V0(x) and Φ(x) is the eigenfunction of the deformed Hamiltonian
Hd. The time dependent Schrödinger equation for Hd can be rewritten in
the following form

i
∂

∂t
[1− V1(x)] Φ(x, t) = H0Φ(x, t), (2.3)

where Φ(x, t) = e−iEtΦ(x) is the time dependent wave function. Making
the change of function Φ̃ =

√
1− V1(x)Φ, the above equation acquires the

usual Schrödinger form

i
∂

∂t
Φ̃(x, t) =

1√
1− V1(x)

H0
1√

1− V1(x)
Φ̃(x, t) (2.4)
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for a new Hamiltonian

H̃d =
√

1− V1(x)Hd
1√

1− V1(x)
=

1√
1− V1(x)

H0
1√

1− V1(x)
, (2.5)

whose eigenvalue problem reads

H̃dΦ̃(x, t) = EΦ̃(x, t). (2.6)

Note that H̃d has the same eigenvalue as Hd, acting however in a distinct
Hilbert space, more specifically one with an ordinary scalar product as-
sociated to it [16]. Using one of the above definitions, one can write the
differential form of H̃d:

H̃d =
1

1− V1(x)

{
− d2

dx2
+ V0(x)− V ′1(x)

1− V1(x)

d

dx

−2V ′′1 (x) [1− V1(x)] + 3 [V ′1(x)]2

4 [1− V1(x)]2

}
. (2.7)

3 D-dimensional wave equation for a Coulomb po-
tential with bound states

For a particle moving in a spherically symmetric potential in D dimen-
sions, the radial equation has the form[

− d2

dr2
− D − 1

r

d

dr
+
l(l +D − 2)

r2
+ V (r)− Enl

]
Ψnl(r) = 0, (3.1)

where l is the angular momentum. Making the change of function Φnl(r) =
r(D−1)/2Ψnl(r) and using the notation λ = l+ (D − 3)/2, one can write the
above equation in a Schrödinger canonical form as[

− d2

dr2
+
λ(λ+ 1)

r2
+ V (r)− Enλ

]
Φnλ(r) = 0, (3.2)

which is also independent on the dimension of the problem. One will solve
now this equation for the Coulomb potential V (r) = −1/r as in Ref.[32], and
consider only the bound states with Enλ = −s2. Defining the new variable
x = 2sr, one can rewrite Eq.(3.2) as:[

d2

dx2
− λ(λ+ 1)

x2
+

1

2sx
− 1

4

]
Φnλ(x) = 0. (3.3)
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This equation is similar to the Whittaker differential equation [33]:[
d2

dx2
−
µ2 − 1

4

x2
+
k

x
− 1

4

]
Mkµ(x) = 0. (3.4)

Therefore, bearing in mind the correspondences

k =
1

2s
, µ = λ+

1

2
, (3.5)

the solutions of Eq.(3.2) are just the Whittaker functions Mkµ [34] which
can be expressed in terms of hypergeometric functions of the first kind

1F1(a, b;x) [35] as:

Mkµ(x) = xµ+
1
2 e−

x
2 1F1

(
µ+

1

2
− k, 2µ+ 1;x

)
. (3.6)

Unfortunately, this function diverges at x→∞. In order to assure regularity
at infinity, the hypergeometric function must be replaced with an associated
Laguerre polynomial by means of the relation:

1F1(−n; 2µ+ 1;x) =
n! (2µ)!

(2µ+ n)!
L2µ
n (x). (3.7)

This can be achieved only if the first argument of the hypergeometric func-
tion is a negative integer:

µ+
1

2
− k = λ+ 1− 1

2s
= −n. (3.8)

This condition together with the fact that s2 = −Enλ provides an equation
for determining the energy Enλ, whose solution is

Enλ = − 1

4(n+ λ+ 1)2
. (3.9)

The corresponding dimensionally reduced wave function is then expressed
in terms of x = 2snλr as:

Φnλ(x) = Nnλxλ+1e−
x
2L2λ+1

n (x), (3.10)

where

snλ =
√
−Enλ =

1

2(n+ λ+ 1)
. (3.11)
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The normalization Nnλ constant is determined from the condition∫ ∞
0
|Φnλ(r)|2 dr = 1. (3.12)

Using the properties of the associated Laguerre polynomials, one can easily
obtain its analytical expression

Nnλ =

√
n!

(n+ 2λ+ 1)!(n+ λ+ 1)
. (3.13)

The ladder operators for this system are [21]:

K̂± = ±x d
dx

+K0 +
x

2
, (3.14)

where

K̂0 = −x d
2

dx2
+
λ(λ+ 1)

x
+
x

4
. (3.15)

Together, these operators form an SU(1, 1) algebra. It is important to
mention that the operators (3.14) are understood as ladder operators not for
the eigenfunctions (3.10) but for their tilted (squeezed) variations [20, 36]
which have the same functional form as (3.10) but are normalized as:∫ ∞

0

[
ΦS
nλ(r)

]2 1

r
dr = 1. (3.16)

The associated norms are then given as:

N S
nλ =

√
n!

(n+ 2λ+ 1)!
. (3.17)

These tilted functions are called Coulomb Sturmians [37] due to their close
relationship with Sturm-Liouville theory and are heavily employed now in
atomic and molecular physics [38]. Another aspect worth mentioning is
the fact that operators (3.14) depend implicitly on energy of the system
through the coordinate x = 2snλr. That is they transform a function of
variable depending on n and corresponding to an energy Enλ into a function
of variable with n± 1 having an energy En±1λ.
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4 Coulomb potential with a coupling constant lin-
early dependent on energy

The solutions of the Eq.(3.2) for a Coulomb potential with a coupling
constant linearly dependent on energy:

V (E′nλ; r) = −
1 + aE′nλ

r
, (4.1)

are found by following closely the steps from the previous section. There
are however some particularities which come from the redefinition of the
parameter k, which in the present case is identified as:

k′ =
1 + as′2

2s′
, (4.2)

with s′ defined through s′2 = −E′nλ. Plugging this expression in the condi-
tion (3.8), one obtains a new quadratic equation for determining the energy:

E′nλ = −
(1 + aE′nλ)2

4(n+ λ+ 1)2
. (4.3)

The physically meaning solution of the above equation presents itself as

E′nλ =
1

a2

[
−2ε2nλ − a+ 2εnλ

√
ε2nλ + a

]
, (4.4)

where εnλ = n + λ + 1. In what concerns the associated dimensionally
suppressed wave function, it is given similarly as (3.10)

ΦE
nλ(x) = NE

nλx
λ+1e−

x
2L2λ+1

n (x), (4.5)

where x = 2rs′nλ while superscript ”E” indicates that this wave-function
corresponds to an energy dependent potential. s′nλ is extracted from Eq.(4.3)
and has the simple expression

s′nλ =
√
−E′nλ =

1 + aE′nλ
2εnλ

. (4.6)

The normalization constant NE
nλ is determined this time from the following

condition: ∫ ∞
0

∣∣ΦE
nλ(r)

∣∣2 (1 +
a

r

)
dr = 1, (4.7)
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where one employed the modified scalar product (2.1) particularized for
the potential (4.1). Relying once again on the properties of the associated
Laguerre polynomials, one can easily obtain the new norm:

NE
nλ =

√
n!s′nλ

(n+ 2λ+ 1)!(n+ λ+ 1 + as′nλ)

=

√
n!

(n+ 2λ+ 1)!

√√√√√
√
ε2nλ + a− εnλ

a
√
ε2nλ + a

. (4.8)

From the last expression one can deduce that the norm is real for a >
0, but also for negative values of a provided |a| > ε2nλ. Nevertheless, a
coherent quantum theory demands a positive definite density of probability
distribution, which in our case is defined as:

ρEnλ =
∣∣ΨE

nλ(r)
∣∣2 (1 +

a

r

)
rD−1 =

∣∣ΦE
nλ(r)

∣∣2 (1 +
a

r

)
. (4.9)

This is condition is fulfilled for all states only for a > 0.

5 Large slope regime

From the dependence of the energy function (4.4) on the slope parameter
a for different combinations of the quantum numbers εnλ = n + λ + 1, one
can observe that the whole spectrum normalized to the ground state energy
presents a saturation at very high values of a [22]. This can be easily verified
by considering the asymptotic expansion of the energy (4.4) as function of
a,

Easnλ = −1

a
+ 2

εnλ
a3/2

. (5.1)

This amounts to the neglecting of terms ak with k ≥ 2. From this result
one can see that the excitation energy in respect to the ground state energy
becomes a quantity which depends solely on the quantum numbers n and λ
by means of εnλ when expressed in units of a−3/2. This scaling property is
also reflected in the wave-functions which become

Φas
nλ(y) = N as

nλy
λ+1e−

y
2L2λ+1

n (y) , (5.2)

where the new variable is y = 2r/
√
a on account of

s′as =
1√
a
. (5.3)
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The above expression is obtained by using Eq.(5.1) in the last expression of
Eq.(4.6).

The norm Nas
nλ can be calculated either by making an asymptotic expan-

sion of the expression (4.8) relative to a or from the condition:∫ ∞
0
|Φas
nλ(r)|2

(a
r

)
dr = 1. (5.4)

Here, consistent with the large a regime, one also made the approximation

1 +
a

r
≈ a

r
(5.5)

for the correction term of the modified scalar product. Both procedures offer
the same result for the norm in the asymptotic regime:

N as
nλ =

√
n!

a(n+ λ+ 1)!
. (5.6)

The normalization of the wave-functions for this large a limit is very similar
to that of the Coulomb Sturmians in Eq.(3.16). Note however that the
scaled variable of the asymptotic wave-function no longer depends on the
energy of the system as was happening in the cases of simple and energy
dependent Coulomb potentials.

6 Symmetry properties of the asymptotic limit

The fact that the excitation spectrum is dependent only on quantum
numbers up to a scaling factor, suggests the presence of a dynamical sym-
metry associated to the modeled system. In order to find the symmetry
group governing the Schrödinger equations in this particular limit, one must
find the associated ladder operators. To do this one must first rewrite the
problem in the usual quantum mechanical space with non-distorted inte-
gration metric. Fortunately this is possible just for Schrödinger problems
with potentials exhibiting a linear energy dependence. For the central po-
tential considered in this study, one must extend the procedure presented in
Sec.2 to the multidimensional case. Alternatively, one can use directly the
one-dimensional example by making the correspondences:

V0(r) =
λ(λ+ 1)

r2
− 1

r
, V1(r) = −a

r
, (6.1)
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and considering the radial variable r instead of x. The equivalent Hamilto-
nian is then defined as

H̃d =
r

r + a

[
− d2

dr2
− a

r(r + a)

d

dr
+
λ(λ+ 1)

r2
+

a(4r + a)

4r2(r + a)2
− 1

r

]
. (6.2)

Before performing an asymptotic expansion of this differential operator in
terms of a, it is better to rewrite its corresponding stationary Schrödinger
equation in the following form:[

− d2

dr2
− a

r(r + a)

d

dr
+
λ(λ+ 1)

r2

+
a(4r + a)

4r2(r + a)2
−

1 + aE′nλ
r

− E′nλ
]

Φ̃E
nλ(r) = 0 (6.3)

and then use the Eq.(4.6) to achieve the final differential equation ready for
the asymptotic approximation:[

− d2

dr2
− a

r(r + a)

d

dr
+
λ(λ+ 1)

r2

+
a(4r + a)

4r2(r + a)2
−

2s′nλεnλ
r

+
(
s′nλ
)2]

Φ̃E
nλ(r) = 0. (6.4)

Using the results from the previous section, the equation for the high a
regime is readily found[

− d2

dr2
− 1

r

d

dr
+
λ(λ+ 1) + 1

4

r2
− 2sasεnλ

r
+ s2as

]
Φ̃as
nλ(r) = 0, (6.5)

where sasnλ is given by Eq.(5.3) while

Φ̃as
nλ(r) =

√
a

r
Φas
nλ(r), (6.6)

with Φas
nλ defined by Eq.(5.2). Making the change of variable y = 2sasr one

obtains the eigenvalue equation for εnλ:[
−y d

2

dy2
− d

dy
+
λ(λ+ 1) + 1

4

y
+
y

4

]
Φ̃as
nλ(y) = εnλΦ̃as

nλ(y), (6.7)

with the same eigenfunction (6.6) rewritten in terms of y as

Φ̃as
nλ(y) = Ñ as

nλy
λ+ 1

2 e−
y
2L2λ+1

n (y) . (6.8)



216 R. Budaca

The norm of this function is calculated using the ordinarily defined scalar
product and has the following expression:

Ñas
nλ =

√
2n!√

a(n+ 2λ+ 1)!
. (6.9)

It can be easily checked that Eq.(6.7) can be brought to a form resem-
bling the Laguerre differential equation, from where one can deduce from
this treatment, which is independent from that of the last section that, its
eigenvalue is indeed εnλ = n+ λ+ 1.

The next step is to study the symmetry properties of this wave-function.
For this, one needs to obtain the ladder operators which transforms the state
with n into a state with n± 1 and the same λ. These can be found through
different ways, such as the factorization method [21] or by using the prop-
erties of the associated Laguerre polynomials [24]. The second procedure is
the option chosen for this task. Using the identity

d

dy
Lαn(y) =

1

y

[
nLαn(y)− (n+ α)Lαn−1(y)

]
, (6.10)

one can write down the following transformation:[
−y d

dy
− y

2
+ εnλ −

1

2

]
Φ̃as
nλ(y) =

Ñas
nλ

Ñas
n−1λ

(n+ 2λ+ 1)Φ̃as
n−1λ(y). (6.11)

This transformation defines the lowering operator

Ĵ− = −y d
dy
− y

2
+ εnλ −

1

2
(6.12)

satisfying Ĵ−Φ̃as
nλ(y) = j−Φ̃as

n−1λ(y) with j− =
√
n(n+ 2λ+ 1).

Alternatively, using the relation

d

dy
Lαn(y) =

1

y

[
(x− n− α− 1)Lαn(y) + (n+ 1)Lαn+1(y)

]
, (6.13)

one obtains in a similar way the operator

Ĵ+ = y
d

dy
− y

2
+ εnλ +

1

2
, (6.14)

whose action on the wave-function Φ̃as
nλ(y) is

Ĵ+Φ̃as
nλ(y) = j+Φ̃as

n+1λ(y) =
√

(n+ 1)(n+ 2λ+ 2)Φ̃as
n+1λ(y). (6.15)
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Now, we can calculate the action of the commutator between these ladder
operators:[

Ĵ−, Ĵ+

]
Φ̃as
nλ(y) = 2(n+ λ+ 1)Φ̃as

nλ(y) = 2εnλΦ̃as
nλ(y). (6.16)

Knowing from Eq.(6.7) the operator corresponding to the eigenvalue εnλ,
one can define the third operator as

Ĵ0 = −y d
2

dy2
− d

dy
+
λ(λ+ 1) + 1

4

y
+
y

4
, (6.17)

which satisfies Ĵ0Φ̃
as
nλ(y) = j0Φ̃

as
nλ(y) with j0 = εnλ = (n+λ+1). With this,

the operators Ĵ± will acquire the full differential representation:

Ĵ± = ±y d
dy
− y

2
+ Ĵ0 ±

1

2

= −y d
2

dy2
− (1∓ y)

d

dy
+
λ(λ+ 1) + 1

4

y
− y

4
± 1

2
. (6.18)

It is easy now to verify that the Ĵ± and Ĵ0 operators satisfy the commutation
relations: [

Ĵ−, Ĵ+

]
= 2Ĵ0,

[
Ĵ0, Ĵ±

]
= ±Ĵ± (6.19)

specific to the SU(1, 1) symmetry group. The associated Casimir operator
of this group is

ĈSU(1,1) = Ĵ0(Ĵ0 − 1)− Ĵ+Ĵ−
= Ĵ0(Ĵ0 + 1)− Ĵ−Ĵ+. (6.20)

Its eigenvalue problem reads

ĈSU(1,1)Ψn,λ = J(J − 1)Ψn,λ, (6.21)

where J > 0 denotes the Bargmann index of the SU(1, 1) symmetry group.
Making use of the expressions for j± and j0, one can identify J = λ + 1.
Coming back to the angular momentum quantum number, one will have
J = l + (D − 1)/2. This last bit sets the allowed values of the Bargmann
index to integer and half integer numbers. Since the group SU(1, 1) is
a non-compact one, all its unitary irreducible representations are infinite
dimensional. Therefore, the basis states are indexed by an additional non-
negative integer M defined such that the eigenvalue equations:

ĈSU(1,1)|J,M〉 = J(J − 1)|J,M〉, Ĵ0|J,M〉 = (J +M)|J,M〉, (6.22)
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are simultaneously satisfied. This condition obviously imply M = n.

Finally, based on the expression (5.1) of the eigenvalue in the asymptotic
regime of a, one can write down an effective Hamiltonian for it as

ˆ̃Heff =
1

a

(
2√
a
Ĵ0 − 1

)
. (6.23)

In an expanded form, this expression has the following differential realiza-
tion:

H̃eff =
2

a3/2

[
−y d

2

dy2
− d

dy
+
λ(λ+ 1) + 1

4

y
+
y

4
−
√
a

2

]

=
1

a

[
−r d

2

dr2
− d

dr
+
λ(λ+ 1) + 1

4

r
+
r

a
− 1

]
. (6.24)

Note that this operator differs from an operator obtained by performing the
a � r approximation on Eq.(6.2). This discrepancy comes from the fact
that the asymptotic expansion in a must be performed on several levels,
taking also into account the a-dependence from the action of the differen-
tial operators on the wave-functions. As the effective Hamiltonian of the
asymptotically steep energy dependent Coulomb potential is proportional
to a non-central element (not to the Casimir) of the SU(1, 1) algebra, it is
said that this is the spectrum generating algebra for the considered problem
[6].

7 Conclusions

The analytical structure of the Schrödinger equation for a Coulomb po-
tential with bound states and a coupling which depends linearly on the total
energy of the system, was investigated in order to ascertain the remnants of
the symmetry properties governing the unperturbed problem. For the sake
of generality, the study is performed for D dimensions. The non-local prob-
lem preserves some of the analytical structure of the local one. There are
however some very important changes such as the modification of the scalar
product and the fact that the eigenvalue is obtained from a higher order poly-
nomial equation. These aspects, as well as other implications define a new
Hilbert space associated to a non-local quantum theory. The linear depen-
dence on energy of the potential adopted in this study provides a favorable
environment to study the algebraic composition of the problem. This is due
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to the fact that the non-local Schrödinger equation in this case can be rewrit-
ten in the usual quantum theory, and one can then apply well established
group theoretical methods. Nevertheless, although the nonlocal problem is
exactly solvable, it cannot be effectively factorized and consequently alge-
braized. The reason is the highly nonlinear dependence on energy of the
reformulated Hamiltonian and its solutions. This obstacle vanishes if one
considers very steep energy dependence by means of an asymptotic expan-
sion relative to the slope parameter. After rewriting this problem into the
ordinary quantum mechanical picture, one identified the raising and lower-
ing operators for the transformed wave functions corresponding to the large
slope regime of the energy dependence. This was done based on the proper-
ties of the associated Laguerre polynomials defining the eigenfunctions. It
is then shown that these ladder operators, together with another operator
which does not change the transformed wave-functions, satisfy the SU(1, 1)
symmetry commutation relations. Moreover, the effective Hamiltonian of
the asymptotic case is proportional with the complementary operator, such
that one can conclude that the SU(1, 1) is the spectrum generating alge-
bra for the bound states of the Coulomb potential with an asymptotically
steep linear dependence on energy. The distinguishing aspect of the present
realization of the SU(1, 1) dynamical symmetry, is that contrary to the un-
perturbed situation, the same algebra closes on wave-functions which are
correctly normalized and not Sturmian contractions.
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