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Abstract

The paper treats some concepts of (h, k)-splitting for the general
case of skew-evolution semiflows in Banach spaces. We obtain cha-
racterizations for these notions, as well as connections between them.
As particular case, we emphasize the results for the corresponding
properties of (h, k)-trichotomy.

MSC: 34D05, 34D09

keywords: Skew-evolution semiflows, (h, k)-splitting, (h, k)-trichotomy

1 Introduction

The qualitative theory of the asymptotic behaviors of dynamical systems
is a prolific research area, with an important development in the last years.
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Different types of uniform (nonuniform) asymptotic properties are approached
as: stability, dichotomy and trichotomy (see [6], [8], [11] and the references
therein).

Also, in the last period, we remark a special attention for more general
concepts of dichotomy (trichotomy), called (h, k)-dichotomy (trichotomy),
with h and k growth rates ([10], [12], [16], [21], [23]). This study is motivated
for instance in [4].

A classical and well-studied subject in the field of differential equations
is the theory of skew-evolution, which arise as a solution of the equation

v̇(t) = A(ϕ(t, s, x))v(t), t ≥ s ≥ 0,

where ϕ is an evolution semiflow on a locally compact metric space X and
A(ϕ(t, s, x)) a bounded linear operator on a Banach space V , for each t ≥
s ≥ 0 and x ∈ X.

The pair C = (ϕ,Φ), with Φ evolution cocycle and ϕ evolution semiflow
is called skew-evolution semiflow (see Section 2 for definitions) and it is
a natural generalization of the notion of skew-product semiflow treated in
[5], [7], [9], [17]-[20]. Important results concerning the qualitative theory of
skew-evolution semiflows are obtained in [14], [23], [24].

The property of exponential splitting was approached for the first time
in [1]-[3], [22] for differential systems and recently in [13], [15] for linear
discrete-time systems, respectively evolution operators.

In this paper we study three general concepts of splitting: strong (h, k)-
splitting, (h, k)-splitting and weak (h, k)-splitting, for the case of skew-
evolution semiflows. Characterizations for these properties are established
and in particular, we illustrate the results in the case of (h, k)-trichotomic
behaviors.

Also, we emphasize the connections between the notions through some
representative examples.

2 Skew-evolution semiflows

Let X be a metric space and V a Banach space. Let B(V ) be the Banach
algebra of all bounded linear operators on V. The norms on V and on B(V )
will be denoted by || · ||.

We consider the set

∆ = {(t, s) ∈ R2 with t ≥ s ≥ 0},

I represents the identity operator on V and Y = X × V.
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Definition 1. A mapping ϕ : ∆ ×X → X is called evolution semiflow on
X if

(es1) ϕ(t, t, x) = x, for all (t, x) ∈ R+ ×X;

(es2) ϕ(t, s, ϕ(s, t0, x)) = ϕ(t, t0, x), for all (t, s), (s, t0) ∈ ∆ and x ∈ X.

Example 1. For every metric space X, the mapping

ϕ : ∆×X → X, ϕ(t, s, x) = x

for all (t, s, x) ∈ ∆×X is an evolution semiflow on X.

Example 2. We consider C(R,R) the set of all continuous functions x : R→
R, endowed with the topology of uniform convergence on compact subsets
of R. Let X be the closure in C of the set {xt, t ≥ 0}, with xt(u) = x(t+u),
u ≥ 0. Then the mapping ϕ : ∆ ×X → X, given by ϕ(t, s, x) = xt−s is an
evolution semiflow on X.

Definition 2. We say that Φ : ∆×X → B(V ) is an evolution cocycle over
an evolution semiflow ϕ if the following properties are satisfied:

(ec1) Φ(t, t, x) = I, for all (t, x) ∈ R+ ×X;

(ec2) Φ(t, s, ϕ(s, t0, x))Φ(s, t0, x) = Φ(t, t0, x), for all (t, s), (s, t0) ∈ ∆ and
x ∈ X.

Definition 3. The mapping C : ∆× Y → Y, defined by

C(t, s, x, v) = (ϕ(t, s, x),Φ(t, s, x)v),

where Φ is an evolution cocycle over an evolution semiflow ϕ, is called skew-
evolution semiflow on Y.

Example 3. Let U : ∆ → B(V ) be an evolution operator on the Banach
space V (i.e. U(t, t) = I, for every t ≥ 0 and U(t, s)U(s, t0) = U(t, t0), for
all (t, s), (s, t0) ∈ ∆ ).

Let X = R+. The mapping ϕ : ∆×X → X, ϕ(t, s, x) = t− s+ x is an
evolution semiflow on X and we consider the evolution cocycle on V

ΦU : ∆×X → B(V ),

defined by
ΦU (t, s, x) = U(t− s+ x, x).

Then CU = (ϕ,ΦU ) is a skew-evolution semiflow.
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3 Preliminary results

In what follows, we will introduce the notions of invariance and strong
invariance for a family of projectors relative to a skew-evolution semiflow
and connections between them are given.

Definition 4. A mapping P : R+ × X → B(V ) is said to be a family of
projectors on V if

P (t, x)P (t, x) = P (t, x), for every (t, x) ∈ R+ ×X.

Definition 5. A family of projectors P : R+ × X → B(V ) is said to be
invariant for a skew-evolution semiflow C = (ϕ,Φ) if

P (t, ϕ(t, s, x))Φ(t, s, x) = Φ(t, s, x)P (s, x), for all (t, s, x) ∈ ∆×X.

Remark 1. If the evolution cocycle Φ is reversible (i.e. Φ(t, s, ·) is bijective
for all (t, s) ∈ ∆ ) then

P (s, x)Φ(t, s, x)−1 = Φ(t, s, x)−1P (t, ϕ(t, s, x)),

for all (t, s, x) ∈ ∆×X.

Example 4. Let X = R+, U : ∆ → B(V ) be an evolution operator on V
and P̃ : R+ → B(V ) a family of projectors invariant for U (i.e. P̃ (t)U(t, s) =
U(t, s)P̃ (s) for all (t, s) ∈ ∆ ). Then the mapping P : R2

+ → B(V ), given

by P (t, x) = P̃ (t) is a family of projectors invariant for the skew-evolution
semiflow CU , defined in Example 3.

Proposition 1. A family of projectors P is invariant for C = (ϕ,Φ) if and
only if the following relations hold:

(i) Φ(t, s, x)(Ker P (s, x)) ⊂ Ker P (t, ϕ(t, s, x));

(ii) Φ(t, s, x)(Range P (s, x)) ⊂ Range P (t, ϕ(t, s, x)),

for all (t, s, x) ∈ ∆×X.

Proof. It is immediate.

Definition 6. A family of projectors P : R+×X → B(V ) is called strongly
invariant for a skew-evolution semiflow C = (ϕ,Φ) if it is invariant for C
and for all (t, s, x) ∈ ∆×X, the restriction Φ(t, s, x) is an isomorphism from
Range P (s, x) to Range P (t, ϕ(t, s, x)).
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Remark 2. If P : R+×X → B(V ) is invariant for C = (ϕ,Φ) and Φ(t, s, ·)
is reversible for all (t, s) ∈ ∆, then P is also strongly invariant for C.

Indeed, if Φ is reversible, then for all y ∈ Range P (t, ϕ(t, s, x)) exists
v0 ∈ V with y = Φ(t, s, x)v0. Then

y = P (t, ϕ(t, s, x))y = P (t, ϕ(t, s, x))Φ(t, s, x)v0 =

= Φ(t, s, x)P (s, x)v0 = Φ(t, s, x)v

for all (t, s, x) ∈ ∆×X, where v = P (s, x)v0 ∈ Range P (s, x).
Thus Φ is surjective from Range P (s, x) to Range P (t, ϕ(t, s, x)) and

from the reversibility of Φ we obtain that P is strongly invariant for C.

The following example emphasizes that, in general, an invariant family
of projectors for a skew-evolution semiflow is not strongly invariant.

Example 5. Let V = l2(N,R) = {v : N→ R :
+∞∑
j=0
|v(j)|2 < +∞}, endowed

with the norm

||v|| =

+∞∑
j=0

|v(j)|2
1/2

.

Also, we consider X ⊂ C(R+,R+) and ϕ : ∆×X → X, given by ϕ(t, s, x) =
xt−s as in Example 2.

Let Φ : ∆×X → B(V ) be the mapping defined by

Φ(t, s, x)(v) =



(
h(t)
h(s)v0, 0,

(
h(t)
h(s)

)2
v2,

h(t)
h(s)v3, ...

)
e

t∫
0

x(τ)dτ
,

if t > s = 0

(
h(t)
h(s)v0,

(
h(t)
h(s)

)2
v1,
(
h(t)
h(s)

)2
v2,

h(t)
h(s)v3, ...

)
e

t∫
s
x(τ−s)dτ

,

if t ≥ s > 0 or t = s = 0.

where h : R+ → [1,+∞) is an increasing function with lim
t→∞

h(t) = +∞.
Then C = (ϕ,Φ) is a skew-evolution semiflow and P : R2

+ → B(V ), given
by P (t, x) = P0(t), where

P0(t)(v0, v1, v2, ...) =


(v0, 0, v2, v3, 0, ...), if t = 0

(0, 0, v0h(t)−2 + v2, 0, 0, ...), if t > 0
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is a family of invariant projectors for C.
Let us suppose that P is also strongly invariant for C, which implies that

Φ is surjective from Range P (s, x) to Range P (t, ϕ(t, s, x)).
For y = (0, 0,−1

2 , 0, 0,−
1
3 , ...) ∈ Range P0(1) it does not exists v =

(v0, 0, v2, v3, 0, ...) ∈ Range P0(0) with y = Φ(1, 0, x)v, because we obtain

(0, 0,−1

2
, 0, 0,−1

3
, ...) =

(
h(1)

h(0)
v0, 0,

(
h(1)

h(0)

)2

v2,

(
h(1)

h(0)

)2

v3, ...

)
e

1∫
0

x(τ)dτ
,

which is a contradiction.
So P is not strongly invariant for C.

Let b : R+ → [1,+∞) be a nondecreasing function with lim
t→∞

b(t) = +∞.

Definition 7. A family of projectors P : R+×X → B(V ) is called b-bounded
if there exist B ≥ 1 and ε ≥ 0 such that

||P (t, x)|| ≤ Bb(t)ε, for all (t, x) ∈ R+ ×X.

Remark 3. If in Definition 7 we consider b(t) = et for all t ≥ 0, then P is
called exponentially bounded and if b(t) = t + 1 for all t ≥ 0, then we say
that P is polynomially bounded.

Definition 8. Let P1, P2, P3 : R+×X → B(V ) be three families of projectors
on V . We say that P = {P1, P2, P3} is a family of supplementary projectors
if

(s1) P1(t, x) + P2(t, x) + P3(t, x) = I;

(s2) Pi(t, x)Pj(t, x) = 0,

for all (t, x) ∈ R+ ×X, i, j ∈ {1, 2, 3}, i 6= j.

Definition 9. A family of supplementary projectors P = {P1, P2, P3} is
said to be compatible with C = (ϕ,Φ) if

(c1) P1 is invariant for C;

(c2) P2 and P3 are strongly invariant for C.

Proposition 2. If P = {P1, P2, P3} is compatible with C = (ϕ,Φ), then
there exist Ψ2,Ψ3 : ∆×X → B(V ) such that for all (t, s, x) ∈ ∆×X, i = 2, 3,
Ψi is an isomorphism from Range Pi(t, ϕ(t, s, x)) to Range Pi(s, x), with
the properties
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(Ψ1
i ) Φ(t, s, x)Ψi(t, s, x)Pi(t, ϕ(t, s, x)) = Pi(t, ϕ(t, s, x));

(Ψ2
i ) Ψi(t, s, x)Φ(t, s, x)Pi(s, x) = Pi(s, x);

(Ψ3
i ) Ψi(t, s, x)Pi(t, ϕ(t, s, x)) = Pi(s, x)Ψi(t, s, x)Pi(t, ϕ(t, s, x));

(Ψ4
i ) Ψi(t, t0, x)Pi(t, ϕ(t, t0, x)) = Ψi(s, t0, x)Ψi(t, s, ϕ(s, t0, x))Pi(t, ϕ(t, t0, x)),

for all (t, s), (s, t0) ∈ ∆, x ∈ X, i = 2, 3.

Proof. The relations (Ψ1
i ), (Ψ2

i ) are immediate.
(Ψ3

i ) From Pi(t, ϕ(t, s, x))v ∈ Range Pi(t, ϕ(t, s, x)) we obtain

Ψi(t, s, x)Pi(t, ϕ(t, s, x))v ∈ Range Pi(s, x),

which implies that

Ψi(t, s, x)Pi(t, ϕ(t, s, x))v = Pi(s, x)Ψi(t, s, x)Pi(t, ϕ(t, s, x))v,

for all (t, s, x, v) ∈ ∆× Y, i = 2, 3.
(Ψ4

i ) For all (t, s), (s, t0) ∈ ∆, x ∈ X, i = 2, 3 it results that

Ψi(t, t0, x)Pi(t, ϕ(t, t0, x)) = Pi(t0, x)Ψi(t, t0, x)Pi(t, ϕ(t, t0, x)) =

= Ψi(s, t0, x)Φ(s, t0, x)Pi(t0, x)Ψi(t, t0, x)Pi(t, ϕ(t, t0, x)) =

= Ψi(s, t0, x)Pi(s, ϕ(s, t0, x))Φ(s, t0, x)Pi(t0, x)Ψi(t, t0, x)Pi(t, ϕ(t, t0, x)) =

= Ψi(s, t0, x)Ψi(t, s, ϕ(s, t0, x))Φ(t, s, ϕ(s, t0, x))

Pi(s, ϕ(s, t0, x))Φ(s, t0, x)Pi(t0, x)Ψi(t, t0, x)Pi(t, ϕ(t, t0, x)) =

= Ψi(s, t0, x)Ψi(t, s, ϕ(s, t0, x))Φ(t, t0, x)Pi(t0, x)Ψi(t, t0, x)Pi(t, ϕ(t, t0, x)) =

= Ψi(s, t0, x)Ψi(t, s, ϕ(s, t0, x))Φ(t, t0, x)Ψi(t, t0, x)Pi(t, ϕ(t, t0, x)) =

= Ψi(s, t0, x)Ψi(t, s, ϕ(s, t0, x))Pi(t, ϕ(t, t0, x)).
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4 (h, k)-splitting

An increasing function ϕ : R+ → [1,+∞) is said to be a growth rate, if

lim
t→+∞

ϕ(t) = +∞.

Let h, k : R+ → [1,+∞) be two growth rates and P = {P1, P2, P3} a
family of projectors supplementary and invariant for a skew-evolution semi-
flow C = (ϕ,Φ).

Definition 10. We say that the pair (C,P) admits a (h, k)-splitting if there
exist the real constants N ≥ 1, α < β, γ < δ and ε ≥ 0 such that:

(hks1) h(s)α||Φ(t, s, x)P1(s, x)v|| ≤ Nh(t)αk(s)ε||P1(s, x)v||;

(hks2) h(t)β||P2(s, x)v|| ≤ Nh(s)βk(t)ε||Φ(t, s, x)P2(s, x)v||;

(hks3) h(t)γ ||Φ(t, s, x)P3(s, x)v|| ≤ Nh(s)γk(s)ε||P3(s, x)v||;

(hks4) h(s)δ||P3(s, x)v|| ≤ Nh(t)δk(t)ε||Φ(t, s, x)P3(s, x)v||,

for all (t, s) ∈ ∆, (x, v) ∈ Y.

In the particular case when ε = 0 or k is a constant function, we say
that C has a uniform h-splitting.

The constants N, α, β, γ, δ, ε are called splitting constants.

Remark 4. As particular cases of (h, k)-splitting we have that

(i) if h(t) = k(t) = et for all t ≥ 0, then we recover the notion of nonuni-
form exponential splitting and in particular when the function k is
constant or ε = 0, we obtain the concept of uniform exponential spli-
tting ;

(ii) if h(t) = k(t) = t + 1 for all t ≥ 0, then we obtain the property of
nonuniform polynomial splitting and in particular when ε = 0 or the
function k is constant, we recover the notion of uniform polynomial
splitting ;

(iii) if (C,P) admits a (h, k)-splitting with α < 0 < β, γ < 0 < δ, then
(C,P) is called (h, k)-trichotomic (or (C,P) has a (h, k)-trichotomy).

Remark 5. It is obvious that if (C,P) admits a uniform (h, k)-splitting,
then it also admits a (h, k)-splitting. The converse is not valid, as we show
in the following example.
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Example 6. Let V be a Banach space, X a metric space and h, k : R+ →
[1,+∞) two growth rates.

We consider the positive constants α < β, γ < δ, ε and P = {P1, P2, P3}
a family of projectors with

Pi(t, x)Pi(s, x) = Pi(s, x), for all (t, s, x) ∈ ∆×X, i = 1, 3

and it is supplementary and invariant for a skew-evolution semiflow C =
(ϕ,Φ), where

Φ(t, s, x) =

(
h(t)

h(s)

)α k(s)ε cos
2 s

k(t)ε cos2 t
P1(s, x)+

(
h(t)

h(s)

)β (k(s)

k(t)

)ε
P2(s, x) +

(
h(s)

h(t)

)γ (k(s)

k(t)

)ε
P3(s, x)

and ϕ is an arbitrary evolution semiflow.

It is easy to check that the pair (C,P) admits a (h, k)-splitting, with the
splitting constants α, β, γ, δ and ε.

Assuming that (C,P) admits a uniform (h, k)-splitting it results that
there exists N ≥ 1 such that

h(s)α||Φ(t, s, x)P1(s, x)v|| ≤ Nh(t)α||P1(s, x)v||,

which implies that

k(s)ε cos
2 s

k(t)ε cos2 t
≤ N, for all (t, s) ∈ ∆.

For s = 2nπ, t = 2nπ + π
2 we obtain

k(s)ε ≤ N, for all s ≥ 0,

which is absurd.

Remark 6. The pair (C,P) is (h, k)-trichotomic if and only if there are the
constants N ≥ 1, a, b > 0 and ε ≥ 0 such that

(hkt1) h(t)a||Φ(t, s, x)P1(s, x)v|| ≤ Nh(s)ak(s)ε||P1(s, x)v||;

(hkt2) h(t)a||P2(s, x)v|| ≤ Nh(s)ak(t)ε||Φ(t, s, x)P2(s, x)v||;

(hkt3) h(s)b||Φ(t, s, x)P3(s, x)v|| ≤ Nh(t)bk(s)ε||P3(s, x)v||;
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(hkt4) h(s)b||P3(s, x)v|| ≤ Nh(t)bk(t)ε||Φ(t, s, x)P3(s, x)v||,

for all (t, s) ∈ ∆, (x, v) ∈ Y.

Indeed, for the necessity it is sufficient to put a = min{−α, β}, b =
min{−γ, δ}. The converse is obvious.

Remark 7. If a pair (C,P) has a (h, k)-trichotomy, then it has a (h, k)-
splitting. The converse implication is not true, as the following example
shows.

Example 7. We consider V a Banach space, X a metric space and the
growth rates h, k : R+ → [1,+∞).

Let c1 < c2, c3 < c4 be positive constants and P = {P1, P2, P3} a family
of projectors with the property

Pi(t, x)Pi(s, x) = Pi(s, x), for all (t, s, x) ∈ ∆×X, i = 1, 3

and it is supplementary and invariant for a skew-evolution semiflow C =
(ϕ,Φ), where

Φ(t, s, x) =

(
h(t)

h(s)

)c1
P1(s, x) +

(
h(t)

h(s)

)c2
P2(s, x) +

(
h(s)

h(t)

)c3
P3(s, x)

and ϕ is an arbitrary evolution semiflow.
It is simple to verify that (C,P) has a (h, k)-splitting with the splitting

constants c1, c2, c3, c4.
If we suppose that (C,P) has a (h, k)-trichotomy it results from Remark

6 that there exist N ≥ 1, a > 0, ε ≥ 0 with

h(t)a||Φ(t, s, x)P1(s, x)v|| ≤ Nh(s)ak(s)ε||P1(s, x)v||, for all (t, s, x) ∈ ∆×X,

which implies

h(t)c1+a ≤ Nh(s)c1+ak(s)ε, for all (t, s) ∈ ∆.

Considering s = 0 we obtain

h(t)c1+a ≤ Nh(0)c1+ak(0)ε, for all t ≥ 0,

which is a contradiction.
Hence, (C,P) is not (h, k)-trichotomic.

A characterization for the property of (h, k)-splitting is given by
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Theorem 1. Let P = {P1, P2, P3} be a family of compatible projectors with
a skew-evolution semiflow C = (ϕ,Φ). Then (C,P) admits a (h, k)-splitting
if and only if there exist the real constants N ≥ 1, α < β, γ < δ and ε ≥ 0
such that

(hks1) h(s)α||Φ(t, s, x)P1(s, x)v|| ≤ Nh(t)αk(s)ε||P1(s, x)v||;

(hks′2) h(t)β||Ψ2(t, s, x)P2(t, ϕ(t, s, x))v|| ≤ Nh(s)βk(t)ε||P2(t, ϕ(t, s, x))v||;

(hks3) h(t)γ ||Φ(t, s, x)P3(s, x)v|| ≤ Nh(s)γk(s)ε||P3(s, x)v||;

(hks′4) h(s)δ||Ψ3(t, s, x)P3(t, ϕ(t, s, x))v|| ≤ Nh(t)δk(t)ε||P3(t, ϕ(t, s, x))v||,

for all (t, s) ∈ ∆, (x, v) ∈ Y.

Proof. It is sufficient to prove (hks2)⇔ (hks′2) and (hks4)⇔ (hks′4).
If (hks2) from Definition 10 holds, then

h(t)β||Ψ2(t, s, x)P2(t, ϕ(t, s, x))v|| =

= h(t)β||P2(s, x)Ψ2(t, s, x)P2(t, ϕ(t, s, x))v|| ≤

≤ Nh(s)βk(t)ε||Φ(t, s, x)P2(s, x)Ψ2(t, s, x)P2(t, ϕ(t, s, x))v|| =

= Nh(s)βk(t)ε||P2(t, ϕ(t, s, x))Φ(t, s, x)Ψ2(t, s, x)P2(t, ϕ(t, s, x))v|| =

= Nh(s)βk(t)ε||P2(t, ϕ(t, s, x))v||,

for all (t, s) ∈ ∆, (x, v) ∈ Y, which imply (hks′2).
Now we prove (hks′2)⇒ (hks2). We have

h(t)β||P2(s, x)v|| = h(t)β||Ψ2(t, s, x)Φ(t, s, x)P2(s, x)v|| =

= h(t)β||Ψ2(t, s, x)P2(t, ϕ(t, s, x))Φ(t, s, x)P2(s, x))v|| ≤

≤ Nh(s)βk(t)ε||P2(t, ϕ(t, s, x))Φ(t, s, x)P2(s, x)v|| =

= Nh(s)βk(t)ε||Φ(t, s, x)P2(s, x)v||

for all (t, s) ∈ ∆ and (x, v) ∈ Y.
Similarly, it results that (hks4)⇔ (hks′4).

Corollary 1. Let P = {P1, P2, P3} be a family of compatible projectors with
a skew-evolution semiflow C = (ϕ,Φ). Then (C,P) is (h, k)-trichotomic if
and only if there are some constants N ≥ 1, a, b > 0 and ε ≥ 0 such that

(hkt1) h(t)a||Φ(t, s, x)P1(s, x)v|| ≤ Nh(s)ak(s)ε||P1(s, x)v||;
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(hkt′2) h(t)a||Ψ2(t, s, x)P2(t, ϕ(t, s, x))v|| ≤ Nh(s)ak(t)ε||P2(t, ϕ(t, s, x))v||;

(hkt3) h(s)b||Φ(t, s, x)P3(s, x)v|| ≤ Nh(t)bk(s)ε||P3(s, x)v||;

(hkt′4) h(s)b||Ψ3(t, s, x)P3(t, ϕ(t, s, x))v|| ≤ Nh(t)bk(t)ε||P3(t, ϕ(t, s, x))v||

for all (t, s) ∈ ∆, (x, v) ∈ Y.

Proof. It is obvious from Theorem 1 and Remark 6.

Proposition 3. Let P = {P1, P2, P3} be a compatible family of projectors
with a skew-evolution semiflow C = (ϕ,Φ). The pair (C,P) has a (h, k)-
splitting if and only if there exist the real constants N ≥ 1, α < β, γ < δ
and ε ≥ 0 such that

(hks′1) h(s)α||Φ(t, t0, x)P1(t0, x)v|| ≤ Nh(t)αk(s)ε||Φ(s, t0, x)P1(t0, x)v||;

(hks′′2) h(s)β||Ψ2(t, t0, x)P2(t, ϕ(t, t0, x))v|| ≤

≤ Nh(t0)
βk(s)ε||Ψ2(t, s, ϕ(s, t0, x))P2(t, ϕ(t, t0, x))v||;

(hks′3) h(t)γ ||Φ(t, t0, x)P3(t0, x)v|| ≤ Nh(s)γk(s)ε||Φ(s, t0, x)P3(t0, x)v||;

(hks′′4) h(t0)
δ||Ψ3(t, t0, x)P3(t, ϕ(t, t0, x))v|| ≤

≤ Nh(s)δk(s)ε||Ψ3(t, s, ϕ(s, t0, x))P3(t, ϕ(t, t0, x))v||,

for all (t, s), (s, t0) ∈ ∆, (x, v) ∈ Y.

Proof. Necessity. We will use the relations from Proposition 2 and Theorem
1.
(hks′1) h(s)α||Φ(t, t0, x)P1(t0, x)v|| =

= h(s)α||Φ(t, s, ϕ(s, t0, x))P1(s, ϕ(s, t0, x))Φ(s, t0, x)P1(t0, x)v|| ≤

≤ Nh(t)αk(s)ε||Φ(s, t0, x)P1(t0, x)v||;
(hks′′2) h(s)β||Ψ2(t, t0, x)P2(t, ϕ(t, t0, x))v|| =

= h(s)β||Ψ2(s, t0, x)P2(s, ϕ(s, t0, x))Ψ2(t, s, ϕ(s, t0, x))P2(t, ϕ(t, t0, x))v|| ≤

≤ Nh(t0)
βk(s)ε||P2(s, ϕ(s, t0, x))Ψ2(t, s, ϕ(s, t0, x))P2(t, ϕ(t, t0, x))v|| =
= Nh(t0)

βk(s)ε||Ψ2(t, s, ϕ(s, t0, x))P2(t, ϕ(t, t0, x))v||,
for all (t, s), (s, t0) ∈ ∆, (x, v) ∈ Y.
Using a similar technique, we obtain that (hks′3) and (hks′′4) are satisfied.

Sufficiency. For s = t in (hks′′2) and (hks′′4), respectively for s = t0 in
(hks′1) and (hks′3) it results the inequalities from Theorem 1.
We conclude that (C,P) admits a (h, k)-splitting.
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Corollary 2. Let P = {P1, P2, P3} be a compatible family of projectors with
C = (ϕ,Φ). Then (C,P) admits a (h, k)-trichotomy if and only if there exist
the constants N ≥ 1, a, b > 0 and ε ≥ 0 with

(hkt′1) h(t)a||Φ(t, t0, x)P1(t0, x)v|| ≤ Nh(s)ak(s)ε||Φ(s, t0, x)P1(t0, x)v||;

(hkt′′2) h(s)a||Ψ2(t, t0, x)P2(t, ϕ(t, t0, x))v|| ≤

≤ Nh(t0)
ak(s)ε||Ψ2(t, s, ϕ(s, t0, x))P2(t, ϕ(t, t0, x))v||;

(hkt′3) h(s)b||Φ(t, t0, x)P3(t0, x)v|| ≤ Nh(t)bk(s)ε||Φ(s, t0, x)P3(t0, x)v||;

(hkt′′4) h(t0)
b||Ψ3(t, t0, x)P3(t, ϕ(t, t0, x))v|| ≤

≤ Nh(s)bk(s)ε||Ψ3(t, s, ϕ(s, t0, x))P3(t, ϕ(t, t0, x))v||,

for all (t, s), (s, t0) ∈ ∆, (x, v) ∈ Y.

Proof. It is immediate from Proposition 3 and Remark 6.

5 Strong (h, k)-splitting

In what follows, we consider h, k : R+ → [1,+∞) two growth rates and
P = {P1, P2, P3} a compatible family of projectors with a skew-evolution
semiflow C = (ϕ,Φ).

Definition 11. We say that the pair (C,P) has a strong (h, k)-splitting if
there exist the real constants N ≥ 1, α < β, γ < δ and ε ≥ 0 such that

(shks1) h(s)α||Φ(t, s, x)P1(s, x)v|| ≤ Nh(t)αk(s)ε||v||;

(shks2) h(t)β||Ψ2(t, s, x)P2(t, ϕ(t, s, x))v|| ≤ Nh(s)βk(t)ε||v||;

(shks3) h(t)γ ||Φ(t, s, x)P3(s, x)v|| ≤ Nh(s)γk(s)ε||v||;

(shks4) h(s)δ||Ψ3(t, s, x)P3(t, ϕ(t, s, x))v|| ≤ Nh(t)δk(t)ε||v||,

for all (t, s) ∈ ∆ and (x, v) ∈ Y.

In particular, if α < 0 < β, γ < 0 < δ, then (C,P) is called strongly
(h, k)-trichotomic.

Remark 8. The pair (C,P) has a strong (h, k)-splitting if and only if there
are the real constants N ≥ 1, α < β, γ < δ and ε ≥ 0 such that

(shks′1) h(s)α||Φ(t, s, x)P1(s, x)|| ≤ Nh(t)αk(s)ε;
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(shks′2) h(t)β||Ψ2(t, s, x)P2(t, ϕ(t, s, x))|| ≤ Nh(s)βk(t)ε;

(shks′3) h(t)γ ||Φ(t, s, x)P3(s, x)|| ≤ Nh(s)γk(s)ε;

(shks′4) h(s)δ||Ψ3(t, s, x)P3(t, ϕ(t, s, x))|| ≤ Nh(t)δk(t)ε,

for all (t, s, x) ∈ ∆×X.

Remark 9. If (C,P) admits a strong (h, k)-splitting, then P is k-bounded.

Remark 10. The pair (C,P) is strongly (h, k)-trichotomic if and only if
there exist N ≥ 1, a, b > 0 and ε ≥ 0 with:

(shkt1) h(t)a||Φ(t, s, x)P1(s, x)v|| ≤ Nh(s)ak(s)ε||v||;

(shkt2) h(t)a||Ψ2(t, s, x)P2(t, ϕ(t, s, x))v|| ≤ Nh(s)ak(t)ε||v||;

(shkt3) h(s)b||Φ(t, s, x)P3(s, x)v|| ≤ Nh(t)bk(s)ε||v||;

(shkt4) h(s)b||Ψ3(t, s, x)P3(t, ϕ(t, s, x))v|| ≤ Nh(t)bk(t)ε||v||,

for all (t, s) ∈ ∆, (x, v) ∈ Y.

Remark 11. If (C,P) has a strong (h, k)-splitting, then it also admits a
(h, k)-splitting. In general the converse implication is not accomplished, as
it results from the following example.

Example 8. Let V = l∞(N,R) be the Banach space of all bounded real-
valued sequences, endowed with the norm

||v|| = sup
n∈N
|vn|, v = (v0, v1, ..., vn, ...) ∈ V

and X a metric space.
We consider h, k : R+ → [1,+∞) growth rates and the family of pro-

jectors P = {P1, P2, P3}, Pi(t, x) = P̃i(t) for all (t, x) ∈ R+ × X, i = 1, 3,
where

P̃1(t)(v0, v1, ...) = (v0 + (ek(t) − 1)v1, 0, v2 + (ek(t) − 1)v3, 0, ...),

P̃2(t)(v0, v1, ...) = ((1− ek(t))v1, 0, (1− ek(t))v3, 0, ...),

P̃3(t)(v0, v1, ...) = (0, v1, 0, v3, ...).

Let α < β, γ < δ be real constants and the evolution cocycle is defined by

Φ(t, s, x) =

(
h(t)

h(s)

)α
P̃1(s) +

(
h(t)

h(s)

)β
P̃2(t) +

(
h(s)

h(t)

)γ
P̃3(s),
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for all (t, s, x) ∈ ∆×X.
It is immediate that Φ is an evolution cocycle over all evolution semiflows

ϕ and after some computations we obtain that (C,P) has a (h, k)-splitting.

If we suppose that (C,P) admits a strong (h, k)-splitting, it results from
Remark 9 that P is k-bounded, which is a contradiction.

Theorem 2. The pair (C,P) has a strong (h, k)-splitting if and only if it
admits a (h, k)-splitting and P is k-bounded.

Proof. Necessity. As (C,P) has a strong (h, k)-splitting, we deduce that it
admits a (h, k)-splitting.
By Remark 9, it results that P is k-bounded.

Sufficiency. As P is k-bounded, there exist B ≥ 1, ε ≥ 0 with

||Pi(t, x)|| ≤ Bk(t)ε,

for all (t, x) ∈ R+ ×X, i ∈ {1, 2, 3}.
According to Theorem 1 we deduce

h(s)α||Φ(t, s, x)P1(s, x)v|| ≤ Nh(t)αk(s)ε||P1(s, x)v|| ≤

≤ BNh(t)αk(s)2ε||v|| = Ñh(t)αk(s)ε̃||v||,

where Ñ = BN, ε̃ = 2ε;

h(t)β||Ψ2(t, s, x)P2(t, ϕ(t, s, x))v|| ≤ Nh(s)βk(t)ε||P2(t, ϕ(t, s, x))v|| ≤

≤ Ñh(s)βk(t)ε̃||v||;

h(t)γ ||Φ(t, s, x)P3(s, x)v|| ≤ Nh(s)γk(s)ε||P3(s, x)v|| ≤

≤ Ñh(s)γk(s)ε̃||v||;

h(s)δ||Ψ3(t, s, x)P3(t, ϕ(t, s, x))v|| ≤ Nh(t)δk(t)ε||P3(t, ϕ(t, s, x))v|| ≤

≤ Ñh(t)δk(t)ε̃||v||,

for all (t, s) ∈ ∆, (x, v) ∈ Y.
It results that (C,P) has a strong (h, k)-splitting.

Corollary 3. The pair (C,P) has a strong (h, k)-trichotomy if and only if
it has a (h, k)-trichotomy and P is k-bounded.

Proof. It is a particular case of Theorem 2.
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6 Weak (h, k)-splitting

Let h, k : R+ → [1,+∞) be two growth rates and P = {P1, P2, P3} a
compatible family of projectors with a skew-evolution semiflow C = (ϕ,Φ).

Definition 12. The pair (C,P) admits a weak (h, k)-splitting if there exist
the real constants N ≥ 1, α < β, γ < δ and ε ≥ 0 such that

(whks1) h(s)α||Φ(t, s, x)P1(s, x)|| ≤ Nh(t)αk(s)ε||P1(s, x)||;

(whks2) h(t)β||Ψ2(t, s, x)P2(t, ϕ(t, s, x))|| ≤ Nh(s)βk(t)ε||P2(t, ϕ(t, s, x))||;

(whks3) h(t)γ ||Φ(t, s, x)P3(s, x)|| ≤ Nh(s)γk(s)ε||P3(s, x)||;

(whks4) h(s)δ||Ψ3(t, s, x)P3(t, ϕ(t, s, x))|| ≤ Nh(t)δk(t)ε||P3(t, ϕ(t, s, x))||,

for all (t, s, x) ∈ ∆×X.

In particular, if α < 0 < β, γ < 0 < δ, then we say that (C,P) admits
a weak (h, k)-trichotomy.

Remark 12. If the pair (C,P) admits a (h, k)-splitting, then it admits also
a weak (h, k)-splitting.

Remark 13. The pair (C,P) admits a weak (h, k)-trichotomy if and only
if there exist N ≥ 1, a, b > 0 and ε ≥ 0 such that

(whkt1) h(t)a||Φ(t, s, x)P1(s, x)|| ≤ Nh(s)ak(s)ε||P1(s, x)||;

(whkt2) h(t)a||Ψ2(t, s, x)P2(t, ϕ(t, s, x))|| ≤ Nh(s)ak(t)ε||P2(t, ϕ(t, s, x))||;

(whkt3) h(s)b||Φ(t, s, x)P3(s, x)v|| ≤ Nh(t)bk(s)ε||P3(s, x)||;

(whkt4) h(s)b||Ψ3(t, s, x)P3(t, ϕ(t, s, x))v|| ≤ Nh(t)bk(t)ε||P3(t, ϕ(t, s, x))||,

for all (t, s, x) ∈ ∆×X.

The main result of this section is given by

Theorem 3. Let P = {P1, P2, P3} be a family of projectors k-bounded, com-
patible with a skew-evolution semiflow C = (ϕ,Φ). The following statements
are equivalent:

(i) (C,P) admits a strong (h, k)-splitting;

(ii) (C,P) admits a (h, k)-splitting;
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(iii) (C,P) admits a weak (h, k)-splitting.

Proof. The implications (i)⇒ (ii)⇒ (iii) are obvious.

We show (iii) ⇒ (i). As P is k-bounded, there exist B ≥ 1 and ε ≥ 0
such that

||Pi(t, x)|| ≤ Bk(t)ε for all (t, x) ∈ R+ ×X, i = 1, 2, 3.

Thus,

h(s)α||Φ(t, s, x)P1(s, x)v|| ≤ Nh(t)αk(s)ε||P1(s, x)v|| ≤

≤ BNh(t)αk(s)2ε||v||;

h(t)β||Ψ2(t, s, x)P2(t, ϕ(t, s, x))v|| ≤ Nh(s)βk(t)ε||P2(t, ϕ(t, s, x))v|| ≤

≤ BNh(s)βk(t)2ε||v||;

h(t)γ ||Φ(t, s, x)P3(s, x)v|| ≤ Nh(s)γk(s)ε||P3(s, x)v|| ≤

≤ BNh(s)γk(s)2ε||v||;

h(s)δ||Ψ3(t, s, x)P3(t, ϕ(t, s, x))v|| ≤ Nh(t)δk(t)ε||P3(t, ϕ(t, s, x))v|| ≤

≤ BNh(t)δk(t)2ε||v||

for all (t, s) ∈ ∆, (x, v) ∈ Y.
We conclude that (C,P) has a strong (h, k)-splitting.

Corollary 4. Let P = {P1, P2, P3} be a family of projectors k-bounded,
compatible with a skew-evolution semiflow C = (ϕ,Φ). The following state-
ments are equivalent:

(i) (C,P) admits a strong (h, k)-trichotomy;

(ii) (C,P) admits a (h, k)-trichotomy;

(iii) (C,P) admits a weak (h, k)-trichotomy.

Proof. It is a particular case of Theorem 3.
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Timişoara, Math.-Inf., LIII, 2, (2015), 133-150.

[22] S. Siegmund, Dichotomy spectrum for nonautonomous differential equa-
tions, J. of Dynamics and Diff. Equ. 14 (2002), 243-258.

[23] C. Stoica, M. Megan, On (h, k)-trichotomy for skew-evolution semiflows
in Banach spaces, Stud. Univ. Babes-Bolyai Math 56 (4), (2011), 147-
156.

[24] T. Yue, X. Song, D. Li, On weak exponential expansiveness of skew-
evolution semiflows in Banach spaces, J. of Inequalities and Applica-
tions 165 (2014), 1–11.


