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Abstract

The paper treats some concepts of (h, k)-splitting for the general
case of skew-evolution semiflows in Banach spaces. We obtain cha-
racterizations for these notions, as well as connections between them.
As particular case, we emphasize the results for the corresponding
properties of (h, k)-trichotomy.
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1 Introduction

The qualitative theory of the asymptotic behaviors of dynamical systems
is a prolific research area, with an important development in the last years.
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Different types of uniform (nonuniform) asymptotic properties are approached
as: stability, dichotomy and trichotomy (see [6], [8], [11] and the references
therein).

Also, in the last period, we remark a special attention for more general
concepts of dichotomy (trichotomy), called (h, k)-dichotomy (trichotomy),
with h and k growth rates ([10], [12], [16], [21], [23]). This study is motivated
for instance in [4].

A classical and well-studied subject in the field of differential equations
is the theory of skew-evolution, which arise as a solution of the equation

0(t) = A(p(t, s,x))v(t), t>s>0,

where ¢ is an evolution semiflow on a locally compact metric space X and
A(p(t,s,z)) a bounded linear operator on a Banach space V, for each ¢ >
s>0and z € X.

The pair C = (¢, ®), with ® evolution cocycle and ¢ evolution semiflow
is called skew-evolution semiflow (see Section 2 for definitions) and it is
a natural generalization of the notion of skew-product semiflow treated in
[5], [7], [9], [17]-[20]. Important results concerning the qualitative theory of
skew-evolution semiflows are obtained in [14], [23], [24].

The property of exponential splitting was approached for the first time
in [1]-[3], [22] for differential systems and recently in [13], [15] for linear
discrete-time systems, respectively evolution operators.

In this paper we study three general concepts of splitting: strong (h, k)-
splitting, (h, k)-splitting and weak (h, k)-splitting, for the case of skew-
evolution semiflows. Characterizations for these properties are established
and in particular, we illustrate the results in the case of (h, k)-trichotomic
behaviors.

Also, we emphasize the connections between the notions through some
representative examples.

2 Skew-evolution semiflows

Let X be a metric space and V' a Banach space. Let B(V') be the Banach
algebra of all bounded linear operators on V. The norms on V and on B(V)
will be denoted by || - |-

We consider the set

A ={(t,s) € R? with t > 5 > 0},

I represents the identity operator on V and ¥ = X x V.
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Definition 1. A mapping ¢ : A x X — X is called evolution semiflow on
X if
(es1) p(t, t,x) =z, for all (t,z) € Ry x X
(es2) @(t, s, (s, to,x)) = p(t,to, ), for all (,s),(s,tg) € A and z € X.
Example 1. For every metric space X, the mapping

0 AXX = X ot sx)=x
for all (¢,s,2) € A x X is an evolution semiflow on X.

Example 2. We consider C(R, R) the set of all continuous functions z : R —
R, endowed with the topology of uniform convergence on compact subsets
of R. Let X be the closure in C of the set {x;, t > 0}, with z4(u) = z(t +u),
u > 0. Then the mapping ¢ : A x X — X given by ¢(t,s,x) = x5 is an
evolution semiflow on X.

Definition 2. We say that ® : A x X — B(V) is an evolution cocycle over
an evolution semiflow ¢ if the following properties are satisfied:

(ec1) @(t,t,x) =1, for all (t,x) € Ry x X;

(ec2) D(t,s,p(s,to,x))P(s,to,x) = D(t,t0,x), for all (t,s),(s,tg) € A and
r e X.

Definition 3. The mapping C': A x Y — Y, defined by

C(ta s, T, U) - (QO(t, S, I)) (I)(t7 S, .CL')U),
where @ is an evolution cocycle over an evolution semiflow ¢, is called skew-
evolution semiflow on Y.

Example 3. Let U : A — B(V) be an evolution operator on the Banach
space V' (i.e. U(t,t) = I, for every t > 0 and U(t,s)U(s,to) = U(t,to), for
all (t,s), (s,to) € A).

Let X =R,. The mapping ¢ : A x X = X, ¢(t,s,2) =t — s+ x is an
evolution semiflow on X and we consider the evolution cocycle on V

(I)U:AXX—)B(V),

defined by
Oy (t,s,x) =U(t — s+ x,x).

Then Cy = (¢, Py) is a skew-evolution semiflow.
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3 Preliminary results

In what follows, we will introduce the notions of invariance and strong
invariance for a family of projectors relative to a skew-evolution semiflow
and connections between them are given.

Definition 4. A mapping P : Ry x X — B(V) is said to be a family of
projectors on V if

P(t,z)P(t,z) = P(t,z), forevery (t,z)€ Ry xX.

Definition 5. A family of projectors P : Ry x X — B(V) is said to be
invariant for a skew-evolution semiflow C' = (¢, ®) if

P(t,p(t,s,x))®(t,s,z) = ®(t,s,z)P(s,z), forall (t,s,2) € A x X.

Remark 1. If the evolution cocycle ® is reversible (i.e. ®(t,s,-) is bijective
for all (¢,s) € A ) then

P(s,z)®(t,s,2) "' = ®(t,s,2) ' P(t, p(t, s,2)),
for all (¢,s,2) € A x X.

Example 4. Let X =Ry, U : A — B(V) be an evolution operator on V'
and P : R, — B(V) a family of projectors invariant for U (i.e. P(t)U(t,s) =
U(t,s)P(s) for all (t,s) € A). Then the mapping P : R2 — B(V), given
by P(t,x) = P(t) is a family of projectors invariant for the skew-evolution
semiflow Cpr, defined in Example 3.

Proposition 1. A family of projectors P is invariant for C' = (¢, ®) if and
only if the following relations hold:

(i) ®(t,s,z)(Ker P(s,x)) C Ker P(t,¢(t,s,x));
(ii) ®(t,s,z)(Range P(s,z)) C Range P(t,¢(t,s,x)),
for all (¢,s,z) € A x X.
Proof. Tt is immediate. O

Definition 6. A family of projectors P : Ry x X — B(V) is called strongly
invariant for a skew-evolution semiflow C' = (¢, ®) if it is invariant for C
and for all (¢,s,z) € A x X, the restriction ®(¢, s,x) is an isomorphism from
Range P(s,z) to Range P(t,p(t,s,x)).
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Remark 2. If P: R, x X — B(V) is invariant for C' = (¢, ®) and ®(t, s, )
is reversible for all (¢,s) € A, then P is also strongly invariant for C.

Indeed, if @ is reversible, then for all y € Range P(t,(t,s,z)) exists
vo € V with y = ®(¢, s, z)vg. Then

y=P(t,o(t,s,x))y = P(t,p(t,s,x))P(t,s, x)vg =

= ®(t,s,x)P(s,x)vg = P(t, s, x)v

for all (¢,s,2) € A x X, where v = P(s,x)vg € Range P(s,x).
Thus @ is surjective from Range P(s,z) to Range P(t,p(t,s,x)) and
from the reversibility of ® we obtain that P is strongly invariant for C.

The following example emphasizes that, in general, an invariant family
of projectors for a skew-evolution semiflow is not strongly invariant.

+oo
Example 5. Let V =?(N,R) = {v: N = R: Y |v(j)|> < 400}, endowed
5=0

with the norm
1/2

+o00
Joll = { D ()P
j=0

Also, we consider X C C(R4,R;) and ¢ : A x X — X given by o(t, s, z) =
T;—s as in Example 2
Let ®: A x X — B(V) be the mapping defined by

t

h(t he)\ 2 h(t) Jx(r)dr
(. ()" o 8. )

ift>s=0

t
h(t h(t) \? . [a(r—s)dr
( ES;’UO? <h((8%> Ul? (hgs%) U27 h(( ))’[)37 ) es ,

ft>s>0o0rt=s=0.

O(t,s,x)(v) =

\

where h : Ry — [1,400) is an increasing function with tlim h(t) = +o0.
—00

Then C = (¢, ®) is a skew-evolution semiflow and P : RZ — B(V), given

by P(t,z) = Py(t), where

(vo, 0,v2,v3,0,...), ift=0

Po(t)(vo,vl,v2,...) =
(0,0,v0h(t) "2 +v2,0,0,...), ift>0
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is a family of invariant projectors for C.

Let us suppose that P is also strongly invariant for C, which implies that
® is surjective from Range P(s,x) to Range P(t,o(t,s,x)).

For y = (0,0,—%,0,0,—%,...) € Range Py(1) it does not exists v =
(vo, 0,v2,v3,0,...) € Range Py(0) with y = ®(1,0, z)v, because we obtain

1 1 (h) RMON2  (h(1))?2 [ alryir
(0,0,—5,0,0,—3,...)— <h(0)v0,0, (h(())) U2,<h(0>> ’L)3,...>€ ,

which is a contradiction.
So P is not strongly invariant for C.

Let b: Ry — [1,4+00) be a nondecreasing function with tlim b(t) = +o0.
—00

Definition 7. A family of projectors P : Ry x X — B(V) is called b-bounded
if there exist B > 1 and ¢ > 0 such that

||P(t,x)|| < Bb(t), forall (t,z)e Ry x X.

Remark 3. If in Definition 7 we consider b(t) = e for all t > 0, then P is
called exponentially bounded and if b(t) = ¢t + 1 for all ¢ > 0, then we say
that P is polynomially bounded.

Definition 8. Let P;, P5, P3 : Ry x X — B(V) be three families of projectors
on V. We say that P = { Py, P», P3} is a family of supplementary projectors
if

(s1) Pi(t,z) + Pa(t, ) + Ps(t,z) = I;
(s2) Pi(t,x)P;(t,xz) =0,
for all (t,z) e Ry x X, i,7 € {1,2,3}, i # J.

Definition 9. A family of supplementary projectors P = {Py, P», P3} is
said to be compatible with C = (¢, ®) if

(c1) Py is invariant for C;
(c2) P, and Ps are strongly invariant for C.

Proposition 2. If P = {Py, P», P3} is compatible with C = (¢, ®), then
there exist Wo, W3 : AxXX — B(V) such that for all (t,s,x) € AxX,i=2,3,
U, is an isomorphism from Range P;(t,(t,s,z)) to Range Pi(s,x), with
the properties
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(Uh) ®(t,s,2)U;(t, s,2)Pi(t, ¢(t, s,7)) = Pi(t, ¢(t, s,7));

(U2) U,(t,s,7)®(t,s,2)P;(s,z) = Pi(s,r);

(7)) ilt, s, 2)Pi(t, o(t, s,2)) = Pi(s,2)¥(t, s, 2) (L, o(t, 5, 2));

(WF) Wilt,to, x) Pilt, ot to, x)) = Wi(s, to, x) Wi(t, s, (s, to, 2)) Pi(t, (t, to, x)),
for all (t,5), (s,t0) € A, € X, i = 2,3,

Proof. The relations (¥}), (U?) are immediate.
(U3) From P;(t, ¢(t,s,z))v € Range P;(t, ¢(t, s, z)) we obtain

\Ijz(t7 S, $)B(t, gD(t, S, $))’U € Ra‘nge Pi(s7 l’),
which implies that
U, (t,s,z)Pi(t, o(t, s,x))v = Pi(s,x)¥,(t, s, x)Pi(t, p(t,s,z))v,

for all (¢,s,z,v) € AXY, i=2,3.
(‘I/;l) For all (t,s),(s,t90) € A, x € X, i = 2,3 it results that

W, (t, tg, x) Pi(t, p(t, to, x)) = Pi(to, x)W;(t, to, x)Pi(t, p(t, to, x)) =
= W,(s,tg, x)P(s,to, z)P;(to, x)W;(t, to, ) Pi(t, p(t, to, x)) =
= U, (s,to, x) Pi(s, (s, to, x))P(s, to, z)P;(to, x)W;(t, to, x) Pi(t, p(t, to, x)) =
= U,;(s,t0, 2)W;(t, s, 0(s, to, z))P(t, s, (s, to, z))
Pi(s, (s, to, x))P(s,to, z)P;(to, ) W;(t, to, ) Pi(t, p(t, to, x)) =
= U, (s,to, 2)V;(t, s, (s, to, z))P(t, to, x) Pi(to, z)V;(t, to, z) P;(t, o(t, to,x)) =
= W,(s,to, x)V;(t, s, p(s,to,x))P(t, to, z)V,(t, to, x) Pi(t, p(t, to, z)) =

= W;(s,t0, ) Vi(t, s, (s, t0, x)) Pi(t, ¢(t, to, T)).
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4 (h,k)-splitting
An increasing function ¢ : Ry — [1,400) is said to be a growth rate, if

t—li-ﬁ-moo (,0(75) = T0o.
Let h,k : Ry — [1,+00) be two growth rates and P = {P, P, Ps} a
family of projectors supplementary and invariant for a skew-evolution semi-
flow C' = (p, ®).

Definition 10. We say that the pair (C, P) admits a (h, k)-splitting if there
exist the real constants N > 1, a < 8, v < § and € > 0 such that:

(hks1) h(s)*||(t, s, 2) P (s, x)v|| < Nh(t)k(s)|| Pi (s, 2)v]|;
(hks2) h(t)°||Pa(s, 2)v|| < Nh(s) k()| @(t, 5, 2) Pa(s, x)v]];
(hks3) h(t)7[|®(t, s, 2) Ps(s, x)vl| < Nh(s) k(s)[| (s, )ol;
(hkss) h(s)°||Ps(s, 2)v]| < Nh(t)°k(t)]|®(t, 5, 2) P3(s, )],

for all (¢,s) € A, (z,v) €Y.

In the particular case when ¢ = 0 or k is a constant function, we say
that C has a uniform h-splitting.
The constants N, «, 3, v, 0, € are called splitting constants.

Remark 4. As particular cases of (h, k)-splitting we have that

(i) if h(t) = k(t) = €' for all t > 0, then we recover the notion of nonuni-
form exponential splitting and in particular when the function k is
constant or € = 0, we obtain the concept of uniform exponential spli-
tting;

(i) if h(t) = k(t) = t + 1 for all ¢ > 0, then we obtain the property of
nonuniform polynomial splitting and in particular when € = 0 or the

function k is constant, we recover the notion of uniform polynomial
splitting;

(iii) if (C,P) admits a (h, k)-splitting with « < 0 < 8, v < 0 < 4, then
(C,P) is called (h, k)-trichotomic (or (C,P) has a (h, k)-trichotomy).

Remark 5. It is obvious that if (C,P) admits a uniform (h, k)-splitting,
then it also admits a (h, k)-splitting. The converse is not valid, as we show
in the following example.
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Example 6. Let V' be a Banach space, X a metric space and h,k : Ry —
[1,400) two growth rates.

We consider the positive constants a < 8, v < d, ¢ and P = { Py, P2, P3}
a family of projectors with

Pi(t,z)Pi(s,x) = Pi(s,z), forall (t,s,z)e AxX, i=1,3

and it is supplementary and invariant for a skew-evolution semiflow C' =
(¢, @), where

h(t) >"‘ k(s)" e SPI(WL,)JF

k (t)a cos? t

and ¢ is an arbitrary evolution semiflow.

It is easy to check that the pair (C,P) admits a (h, k)-splitting, with the
splitting constants «, 3, v, 0 and e.

Assuming that (C,P) admits a uniform (h, k)-splitting it results that
there exists N > 1 such that

h(s)*[[®(t, s, 2) Pr(s, x)ol| < Nh()*[|P1(s, z)vll,

which implies that

k(s)e cos? s

WSN, for all (t,S)GA
For s = 2nm, t = 2nm + § we obtain
k(s)* < N, foralls>0,

which is absurd.

Remark 6. The pair (C,P) is (h, k)-trichotomic if and only if there are the
constants N > 1, a,b > 0 and £ > 0 such that

(hktr) h(6)|[@(t, s, 2)Pi(s,)ol| < Nh(s) k()| Pi(s, 2ol ;
(hktz) h(6)"||Po(s, 2)ol| < Nh(s)*k(t)7]|B(t, s,) Pa(s, 2ol ;

(hkts) h(s)’[|(t, s,2) Ps(s,)v|| < Nh(t)*k(s)°[| Ps(s, z)vll;
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(hkts) h(s)"||Ps(s, x)v|| < Nh(t)’k(t)]|®(t, 5, 2) P3(s, 2)]],
for all (t,s) € A, (z,v) € Y.

Indeed, for the necessity it is sufficient to put ¢ = min{—«, 5}, b =
min{—-,d}. The converse is obvious.

Remark 7. If a pair (C,P) has a (h, k)-trichotomy, then it has a (h,k)-
splitting. The converse implication is not true, as the following example
shows.

Example 7. We consider V' a Banach space, X a metric space and the
growth rates h, k: Ry — [1,+00).

Let ¢1 < ¢2, c3 < ¢4 be positive constants and P = { Py, P2, P3} a family
of projectors with the property

Pi(t,z)Pi(s,x) = Pi(s,z), forall (¢t,s,z)e AxX,i=1,3

and it is supplementary and invariant for a skew-evolution semiflow C' =
(p, @), where

(1, 5,2) = (ZEZ))) Pi(s,) + (Zg) Po(s,x) + (ZE‘;)) Py(s,2)

and @ is an arbitrary evolution semiflow.

It is simple to verify that (C,P) has a (h, k)-splitting with the splitting
constants ¢y, c2,c3,c4.

If we suppose that (C,P) has a (h, k)-trichotomy it results from Remark
6 that there exist N > 1,a > 0, > 0 with

h(t)*||®(t, s, )P (s,x)v]| < Nh(s)*k(s)°||Pi(s, z)v]||, for all (¢,s,x) € AxX,
which implies
h(t)*T* < Nh(s)*tk(s)¢, forall (t,5) € A.
Considering s = 0 we obtain
h(t)*t® < Nh(0)*T9Ek(0)%, for all ¢ >0,

which is a contradiction.
Hence, (C,P) is not (h, k)-trichotomic.

A characterization for the property of (h, k)-splitting is given by
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Theorem 1. Let P = { Py, P», P3} be a family of compatible projectors with
a skew-evolution semiflow C = (@, ®). Then (C,P) admits a (h,k)-splitting
if and only if there exist the real constants N > 1, a < f, vy<d ande >0
such that

(hks1) h(s)?||®(E, s, 2)Pr(s, x)v]| < Nh(t)*k(s)*|[P1(s, 2)ol|;
(Rksh) h(t)?[[Pa(t, s,2) Pa(t, ot s, 2) vl < Nh(s) k()] Pa(t, (¢, 5, 2))v]];
(hksz) h(t)7||®(t, s, ) Ps(s, x)vl| < Nh(s) k(s)[| Ps(s, )vll;
(hksy) h(s)’[Ps(t, s,2)Ps(t, (. s,2))v|| < Nh() k()| P3(t, o(t, 5, 2))oll,

for all (t,s) € A, (z,v) €Y.

Proof. Tt is sufficient to prove (hkse) < (hksh) and (hksy) < (hks)).
If (hksy) from Definition 10 holds, then

h(t)BH\IIZ(ta va)PQ(t’ 90(75’ 8’$))UH =

= h(t)7||Pa(s,2)Ua(t, s, 2) Pa(t, ot 5,2) o] | <
< Nh(s)Pk(t)E||®(t, s, 2) Po(s, ) Ua(t, s, ) Pa(t, o(t, s, x))v|| =
= Nh(s)Pk(t)¥||Pa(t, @(t, s, 2))B(t, 5, 2) s (L, s, 2) Pa(t, o(t, s, x))v|| =
= Nh(s) k()| Pa(t, (. 5, 2)oll,
for all (¢,s) € A, (z,v) € Y, which imply (hksh).
Now we prove (hksh) = (hksz). We have
h(t)?||Pa(s, 2)ol| = h(t)°[|Ca(t, 5,2)(t, s, 2) Pa(s, x)o|| =

= h(t)ﬁH\IIQ(t,s,a:)Pg(t,go(t,s,x))@(t,s,w)Pg(s,x))UH <
< Nh(s) k(t)°||Pa(t, p(t, 5, x)) Dt
= Nh(s)Pk(t)?||®(t, s, z)Pa(s, x)v||

for all (¢,s) € A and (z,v) € Y.
Similarly, it results that (hkss) < (hks)). O

8, 2) Pa(s, )] | =

Corollary 1. Let P = {P1, P», P3} be a family of compatible projectors with
a skew-evolution semiflow C = (¢, ®). Then (C,P) is (h,k)-trichotomic if
and only if there are some constants N > 1, a,b >0 and € > 0 such that

(hktr) h(£)|[@(t, s, 2)Pi(s,)ol| < Nh(s) k()| Py (s, 2)oll;
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(hkty) h(t)*||Wa(t, s, 2) Pa(t, (L, 5, x))v]| < Nh(s) k()| | Pa(t, (t, s, 2))v]];
(hhkts) h(s)"l|0(t, 5, 2) Pa(s, x)oll < Nh(H)k(s)e | P(s, 2ol
(hkth) h(s)!1[Ws(t, s,2) Pa(t, (t, s,2))ol| < NA(E) (]| Ps(t, ok, s,2))o]
for all (t,s) € A, (z,v) €Y.
Proof. 1t is obvious from Theorem 1 and Remark 6. O

Proposition 3. Let P = {Py, P>, Ps} be a compatible family of projectors
with a skew-evolution semiflow C = (¢, ®). The pair (C,P) has a (h,k)-
splitting if and only if there exist the real constants N > 1, a < 3, v < d
and € > 0 such that

(hks1) h(s)*[|®(t,t0, ) P1(to, x)v]| < Nh(t)*k(s)||®(s, o, z) P1(to, z)v][;
(hks3) h(s)?|1Wa(t, to, @) Pa(t, ot to, ))v]| <
< Nh(to) k(s)°|[Wa(t, s, (s, to, 2)) Pa(t, (t, to, z))oll;
(hksz) h(t)7[|®(t, to, ©) P3(to, z)v|| < Nh(s)"k(s)*||D(s, to, ) P3(to, )v][;
(hks}) h(to)||Ws(t, to, z) Ps(t, (t, to, 2))v]| <
< Nh(s)°k(s)°||¥s(t, s, ¢(s, to, 2)) P3(t, (¢, to, ) )l],
for all (t,s),(s,to) € A, (x,v) €Y.
Proof. Necessity. We will use the relations from Proposition 2 and Theorem
1.
(hks)  h(s)*lID(t, o, )Py (to, 2)o]| =
= h(s)||®(t, s, v(s,to, x))P1(s, p(s,to, x))P(s,to, z)Pi(to, x)v|| <
< Nh(t)“k(s)%||®(s, to, x) P (to, x)v]|;
(hksy) — h(s)?||Wa(t, to, x) Pa(t, o(t, to, x) vl =
= h(s)P||Wa(s, to, 2) Pa(s, (s, to, ) Wa(t, s, (s, to, ) Pa(t, o(t, to, ) )v|| <
< Nh(to) k()| Pa(s, (s, to, ) Wa(t, 5, (s, to, ) Pa(t, (1, to, x))v]| =
= Nh(to) k(s)°|[Wa(t, 5, (s, to, ©)) Pa(t, o (t, to, 2))v]]

for all (¢,s), (s,t0) € A, (z,v) €Y.

Using a similar technique, we obtain that (hks) and (hks)) are satisfied.
Sufficiency. For s =t in (hksy) and (hks}), respectively for s = ty in

(hks}) and (hksj) it results the inequalities from Theorem 1.

We conclude that (C,P) admits a (h, k)-splitting. O
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Corollary 2. Let P = { Py, P», P3} be a compatible family of projectors with
C = (p,®). Then (C,P) admits a (h, k)-trichotomy if and only if there exist
the constants N > 1, a,b > 0 and ¢ > 0 with

(hkty) h(t)*[|(t, to, ) Pr(to, w)v]| < Nh(s)*k(s)*||®(s, 0, z) Pr(to, )0][;
(hkty) h(s)*|[Wa(t, to, z) Pa(t, @(t, to, x))v|| <
< Nh(to)*k(s)*[[W2(t, s, (s, to, ) Pa(t, (¢, to, ) J|[;
(hkts) h(s)’[|®(t, to, ) P3(to, x)v|| < Nh(t)’k(s)%||@(s, to, ©) Ps(to, )]
(hkt]) h(to)’[[Ps(t, to, 2) Ps(t, o(t, to, x))v]| <
< Nh(s)’k(s)°]|T5(t, 5, (s, to, 2)) Ps(t, (t, to, )],
for all (t,s),(s,to) € A, (z,v) €Y.

Proof. Tt is immediate from Proposition 3 and Remark 6. O

5 Strong (h, k)-splitting

In what follows, we consider h,k : Ry — [1,4+00) two growth rates and
P = {P1, P, P3s} a compatible family of projectors with a skew-evolution
semiflow C' = (¢, @).

Definition 11. We say that the pair (C,P) has a strong (h, k)-splitting if
there exist the real constants N > 1, o < 8, v < d and € > 0 such that

(shksi) h(s)*[|®(t, s, 2)P1(s, z)v|| < Nh(t)*k(s)"[[o]];
(shks2) h(t)°|[Wa(t,s, z) Pa(t, o(t, s, 2))vl| < Nh(s) k()" [vll;
(shkss) h(t)Y]|®(t, s, ) Ps(s, z)o|| < Nh(s)7k(s)||v][;
(shksa) h(s)°[|Ws(t,s,z) P3(t, o(t, s,2))vl| < Nh(t) k(t)]]v]],

for all (¢,s) € A and (z,v) € Y.

In particular, if « < 0 < 8, v < 0 < §, then (C,P) is called strongly
(h, k)-trichotomic.

Remark 8. The pair (C,P) has a strong (h, k)-splitting if and only if there
are the real constants N > 1, a < 3, v < ¢ and € > 0 such that

(shks)) h(s)*||®(t,s,z)Pi(s,x)|| < Nh(t)*k(s)%;



(shksh)

(shks))
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h(t)?||Wa(t, s, x) Pa(t, o(t, s, 2))l| < Nh(s) k(t)%;
(shksh) h(t)Y]|®(t,s,z)P3(s,x)|| < Nh(s)Vk(s)%;
h(s)’||[Ws(t, s, 2) P3(t, o(t, s, 2))[] < Nh(t)k(2)°,
for all (¢,s,z) € A x X.
Remark 9. If (C,P) admits a strong (h, k)-splitting, then P is k-bounded.

Remark 10. The pair (C,P) is strongly (h, k)-trichotomic if and only if
there exist N > 1, a,b > 0 and € > 0 with:

)| @(t, 5, 2) Pr(s, x)ol| < Nh(s)*k(s)[[vll;
oL, s, 2)Pa(t, p(t; s, 2))v]| < Nh(s)k(t)[[o]];

Shktl)
Shktg

5)*1|®(t, s, 2) P3(s, z)vl| < Nh(t)"k(s)°|[vll;

h(
(
(s)
(s)

) h
shkts) h
shkta) B(s)P1[Ws(t, 5,2) Po(t, ok, ,2)0l] < Nh(t)PR(L)F o],
for all (¢,s) € A, (z,v) €Y.

S

Remark 11. If (C,P) has a strong (h, k)-splitting, then it also admits a
(h, k)-splitting. In general the converse implication is not accomplished, as
it results from the following example.

Example 8. Let V' = [*°(N,R) be the Banach space of all bounded real-
valued sequences, endowed with the norm

l|v]| = sup |vnl, v = (V0, V1, sy Upy..) EV
neN

and X a metric space.
We consider h,k : Ry — [1,400) growth rates and the family of pro-
jectors P = { Py, P2, Ps}, P;(t,x) = P;(t) for all (t,z) € Ry x X, i = 1,3,

where
P1(t)(vo, v1,...) = (vo + (€*® = 1)w1,0,v9 + (¥ — 1)03,0,...),
Py(t)(vo,v1,...) = (1 — FD)uy, 0, (1 — " ®)us, 0, ...),

Ps(t)(vg, v1,...) = (0,v1,0,03, ...).
Let o < 8, v < d be real constants and the evolution cocycle is defined by

O(t,s,2) = <Z((3)a131(3) + (ZEg)BF’Q(t) + (Z%)yﬁg(s),
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for all (¢,s,z) € A x X.
It is immediate that ® is an evolution cocycle over all evolution semiflows
¢ and after some computations we obtain that (C,P) has a (h, k)-splitting.
If we suppose that (C,P) admits a strong (h, k)-splitting, it results from
Remark 9 that P is k-bounded, which is a contradiction.

Theorem 2. The pair (C,P) has a strong (h,k)-splitting if and only if it
admits a (h, k)-splitting and P is k-bounded.

Proof. Necessity. As (C,P) has a strong (h, k)-splitting, we deduce that it
admits a (h, k)-splitting.
By Remark 9, it results that P is k-bounded.

Sufficiency. As P is k-bounded, there exist B > 1, £ > 0 with

1Bi(t, )| < BE(t)%,

for all (t,z) e Ry x X, i € {1,2,3}.
According to Theorem 1 we deduce

h(s)*[|®(t, s, 2) Pr(s, z)o|| < Nh(t)*k(s)"|| P1(s, z)v]| <

< BNh(t)*k(s)%||v]| = Nh(t)*k(s)||v],
where N = BN, & = 2¢;

h(t)/8| ’\Ifg(t, S, w)PQ(t7 So(t7 S, a:))vH < Nh(s)ﬂk(tf‘ ‘PQ(tv So(t7 S, x))UH <

< Nh(s) k(t)°|Joll;
h(t)7||®(t, 5, z)P3(s, z)v|| < Nh(s) k(s)*||P3(s, z)v]| <

< Nh(s) k(s)"||v]];

h(s)’||Ws(t, 5,2) Pa(t, ot 5,2))v|| < Nh() k() ||P3(t, o (t, 5,2))ol| <
< Nh(t) k(t)*Jv]],

for all (¢,s) € A, (z,v) €Y.
It results that (C,P) has a strong (h, k)-splitting. O

Corollary 3. The pair (C,P) has a strong (h, k)-trichotomy if and only if
it has a (h, k)-trichotomy and P is k-bounded.

Proof. 1t is a particular case of Theorem 2. O
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6 Weak (h, k)-splitting

Let h,k : Ry — [1,400) be two growth rates and P = {P;, P», Ps} a
compatible family of projectors with a skew-evolution semiflow C' = (¢, D).

Definition 12. The pair (C,P) admits a weak (h, k)-splitting if there exist
the real constants N > 1, a < 3,7 < ¢ and ¢ > 0 such that

(whksy) h(s)*||®(E, s, 2)Pr(s, x)[| < Nh(t)*k(s)*||Pr(s, 2)[;
(whks2) h(t)°||Wa(t,s,2) Pa(t, @(t, s,2))|| < Nh(s) k(t)°||Pa(t, o(t, 5, 2)]];
(whksz) h(t)7||®(t, s, 2) Ps(s, x)[| < Nh(s) k(s)°[|P3(s, z)][;
(whksa) h(s)’[|Us(t,s,2) Ps(t,(t, s, 2))|| < NA) k()] Ps(t, o(t, 5, 7)),

for all (¢,s,z) € A x X.

In particular, if « < 0 < 8, v < 0 <, then we say that (C,P) admits
a weak (h, k)-trichotomy.

Remark 12. If the pair (C,P) admits a (h, k)-splitting, then it admits also
a weak (h, k)-splitting.

Remark 13. The pair (C,P) admits a weak (h, k)-trichotomy if and only
if there exist N > 1, a,b > 0 and € > 0 such that

(whkty) h(t)*||®(t, s,2)P1(s, )| < Nh(s)*k(s)*|[Pr(s, 2)]];
(whktz) h(t)*|[Ca(t, s, 2) Pa(t, (t, s, 2))|| < Nh(s)"k(t)*[|Pa(t, (2, 5, 2))][;
(whkts) h(s)°||®(t, s,2)Ps(s, z)vl] < Nh(t)’k(s)"||P3(s, )][;
(whkts) h(s)°||Ts(t, s, 2) Ps(t, @(t, s, 2))vl] < Nh(t)’k(t)°||Ps(t, o(t, 5, 2))]],

for all (¢,s,z) € A x X.
The main result of this section is given by

Theorem 3. Let P = { Py, Py, P3} be a family of projectors k-bounded, com-
patible with a skew-evolution semiflow C = (p, ®). The following statements
are equivalent:

(i) (C,P) admits a strong (h, k)-splitting;

(i) (C,P) admits a (h,k)-splitting;
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(i1i) (C,P) admits a weak (h, k)-splitting.
Proof. The implications (i) = (i1) = (¢i7) are obvious.

We show (iii) = (i). As P is k-bounded, there exist B > 1 and € > 0
such that

|P(t,2)|] < Bk(t)® forall (t,z) € Ry x X, i=1,2,3.

Thus,
h(s)*||®(t, s, 2) P1(s, z)v]| < Nh(t)*k(s)"[|[P1(s, z)v|| <

< BNh(t)*k(s)*||vll;

h(t)?||Wa(t, s, 2) Pa(t, o(t, s,))vl| < Nh(s) k()| Pa(t, o(t, s, 2))v]| <
< BNA(s) k(t)*||vll;

h(t)7[|®(t, s,2)P3(s, z)v]| < Nh(s) k(s)||Ps(s, z)v]| <

< BNh(s)"k(s)*|[v]];

h(s)’||Ws(t, 5,2) P(t, ot 5,2))v|| < Nh() k(6)°||P3(t, (¢, 5,2))ol| <
< BNA(t) k(t)**Jv]]

for all (t,5) € A, (z,v) € Y.

We conclude that (C,P) has a strong (h, k)-splitting.
O

Corollary 4. Let P = {Py, Py, P3} be a family of projectors k-bounded,
compatible with a skew-evolution semiflow C = (¢, ®). The following state-
ments are equivalent:

(i) (C,P) admits a strong (h, k)-trichotomy;

(i) (C,P) admits a (h,k)-trichotomy;

(i1i) (C,P) admits a weak (h,k)-trichotomy.

Proof. 1t is a particular case of Theorem 3. 0
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