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Abstract

Our aim in this work is to study the existence of mild solutions of
a functional differential equation with delay and random effects. We
use a random fixed point theorem with stochastic domain to show the
existence of mild random solutions.
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1 Introduction

Functional evolution equations with state-dependent delay appear fre-
quently in mathematical modeling of several real world problems and for
this reason the study of this type of equations has received great attention
in the last few years, see for instance [1, 9, 19, 20]. Functional differential
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equations and inclusions involving state-dependent delay are considered in
[8, 15, 23, 31, 34, 35, 36]. Some models are studied in [24, 25].

Probabilistic functional analysis is an important mathematical discipline
because of its applications to probabilistic models in applied problems. On
the other hand, the nature of a dynamic system in engineering or natural
sciences depends on the accuracy of the information we have concerning the
parameters that describe that system. If the knowledge about a dynamic
system is precise then a deterministic dynamical system arises. Unfortu-
nately in most cases the available data for the description and evaluation of
parameters of a dynamic system are inaccurate, imprecise or confusing. In
other words, evaluation of parameters of a dynamical system is not with-
out uncertainties. When our knowledge about the parameters of a dynamic
system are of statistical nature, that is, the information is probabilistic, the
common approach in mathematical modeling of such systems is the use of
random differential equations or stochastic differential equations. Random
differential equations, as natural extensions of deterministic ones, arise in
many applications Random operator theory is needed for the study of var-
ious classes of random equations [30]. The theory of random fixed point
theorems was initiated by the Prague school of probabilistic in the 1950s.
The interest in this subject enhanced after publication of the survey pa-
per by Bharucha Reid [6]. Random fixed point theory has received much
attention in recent years (see [5, 26, 27, 32]).

On the other hand, the stochastic differential equation with delay is
a special type of stochastic functional differential equations. Delay differ-
ential equations arise in many biological and physical applications, and it
often forces us to consider variable or state-dependent delays. The stochas-
tic functional differential equations with state-dependent delay have many
important applications in mathematical models of real phenomena, and the
study of this type of equations has received much attention in recent years.
Guendouzi and Benzatout [14] studied the existence of mild solutions for
a class of impulsive stochastic differential inclusions with state-dependent
delay. Sakthivel and Ren [29] studied the approximate controllability of
fractional differential equations with state-dependent delay. Benaissa et al.
[3, 4] obtained local existence results of mild solutions for two classes of
functional random evolution equations with delay.

In this work we prove the existence of mild solutions of the following func-
tional evolution differential equation with delay and random effects (random
parameters) of the form:
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y′(t, w) = A(t)y(t, w) + f(t, yρ(t,yt)(·, w), w), a.e. t ∈ J := [0,∞) (1)

y(t, w) = φ(t, w), t ∈ (−∞, 0], (2)

where (Ω,F, P ) is a complete probability space, w ∈ Ω where f : J×B×Ω→
E, φ : (−∞, 0] × Ω → E are given random functions, {A(t)}0≤t<+∞ is a
family of linear closed (not necessarily bounded) operators from E into E
that generate an evolution system of operators {U(t, s)}(t,s)∈J×J for 0 ≤
s ≤ t < +∞, B is the phase space to be specified later, ρ : J × B →
(−∞,+∞), and (E, | · |) is a real Banach space. For any function y defined
on (−∞,+∞) × Ω and any t ∈ J we denote by yt(·, w) the element of B
defined by yt(θ, w) = y(t + θ, w), θ ∈ (−∞, 0]. Here yt(·, w) represents the
history of the state from time −∞, up to the present time t. We assume
that the histories yt(·, w) to some abstract phases B, to be specified later.
To our knowledge, the literature on the global existence of random evolution
equations with delay is very limited, so the present paper can be considered
as a contribution to this issue.

2 Preliminaries

Let E be a Banach space with the norm | · | and BC(J,E) the Banach
space of all bounded and continuous functions y mapping J into E with the
usual supremum norm

‖y‖ = sup
t∈J
|y(t)|.

Let B(E) denote the Banach space of bounded linear operators from E into
E. A measurable function y : J → E is Bochner integrable if and only
if |y| is Lebesgue integrable. (For the Bochner integral properties, see the
classical monograph of Yosida [37]). Let L1(J,E) denote the Banach space
of measurable functions y : J → E which are Bochner integrable normed by

‖y‖L1 =

∫ ∞
0
|y(t)| dt.

By BUC we denote the space of bounded uniformly continuous functions
defined from (−∞, 0) to E.

In this paper, we will employ an axiomatic definition of the phase space
B introduced by Hale and Kato in [17] and follow the terminology used in
[21]. Thus, (B, ‖·‖B) will be a seminormed linear space of functions mapping
(−∞, 0] into E, and satisfying the following axioms :
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(A1) If y : (−∞,+∞) → E, is continuous on J and y0 ∈ B, then for every
t ∈ J the following conditions hold :
(i) yt ∈ B ;
(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;
(iii) There exist two functions L(·),M(·) : [0,∞)→ [0,∞) independent
of y with L continuous and bounded, and M bounded such that :

‖yt‖B ≤ L(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B−valued continuous function for
each t ∈ J .

(A3) The space B is complete.

Denote
K∞ = sup{L(t) : t ∈ J},

and
M∞ = sup{M(t) : t ∈ J}.

Definition 1. A map f : J × B × Ω→ E is said to be Carathéodory if

(i) t→ f(t, y, w) is measurable for all y ∈ B and for all w ∈ Ω.

(ii) y → f(t, y, w) is continuous for almost each t ∈ J and for all w ∈ Ω.

(iii) w → f(t, y, w) is measurable for all y ∈ B, and almost each t ∈ J .

In what follows, we assume that {A(t), t ≥ 0} is a family of closed
densely defined linear unbounded operators on the Banach space E and with
domain D(A(t)) independent of t.

Definition 2. A family of bounded linear operators

{U(t, s)}(t,s)∈∆ : U(t, s) : E → E (t, s) ∈ ∆ := {(t, s) ∈ J×J : 0 ≤ s ≤ t < +∞}

is called en evolution system if the following properties are satisfied:

1. U(t, t) = I where I is the identity operator in E,

2. U(t, s) U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t < +∞,

3. U(t, s) ∈ B(E) the space of bounded linear operators on E, where for
every (s, t) ∈ ∆ and for each y ∈ E, the mapping (t, s)→ U(t, s) y is
continuous.
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More details on evolution systems and their properties are reported in
the books by Ahmed [2], Engel and Nagel [11], Pazy [28] and Vrabie [33].

Lemma 1 (Corduneanu). [7]
Let C ⊂ BC(J,E) be a set satisfying the following conditions:

(i) C is bounded in BC(J,E);

(ii) the functions belonging to C are equicontinuous on any compact interval
of J ;

(iii) for any compact subinterval J̃ of J , and each t ∈ J̃ , the set C(t) :=
{y(t) : y ∈ C} is relatively compact;

(iv) the functions from C are equiconvergent, i.e., given ε > 0, there cor-
responds T (ε) > 0 such that |y(t)− y(+∞)| < ε for any t ≥ T (ε) and
y ∈ C.

Then C is relatively compact in BC(J,E).

Theorem 1. (Schauder fixed point )[13]
Let B be a closed, convex and nonempty subset of a Banach space E. Let
N : B → B be a continuous mapping such that N(B) is a relatively compact
subset of E. Then N has at least one fixed point in B.

Let Y be a separable Banach space with the Borel σ-algebra BY . A
mapping y : Ω −→ Y is said to be a random variable with values in Y if for
each B ∈ BY , y

−1(B) ∈ F. A mapping T : Ω× Y −→ Y is called a random
operator if T (·, y) is measurable for each y ∈ Y and is generally expressed
as T (w, y) = T (w)y; we will use these two expressions alternatively.
Next, we will give a very useful random fixed point theorem with stochastic
domain.

Definition 3. [10] Let C be a mapping from Ω into 2Y . A mapping T :
{(w, y) : w ∈ Ω∧y ∈ C(w)} −→ Y is called ’random operator with stochastic
domain C’ if and only if C is measurable (i.e., for all closed A ⊆ Y, {w ∈
Ω : C(w) ∩ A 6= ∅} ∈ F) and for all open D ⊆ Y and all y ∈ Y, {w ∈
Ω : y ∈ C(w) ∧ T (w, y) ∈ D} ∈ F. T we be called ’continuous’ if every
t(w) is continuous. For a random operator T , a mapping y : Ω −→ Y is
called ’random (stochastic) fixed point of T ’ if and only if for p-almost all
w ∈ Ω, y(w) ∈ C(w) and T (w)y(w) = y(w) and for all open D ⊆ Y, {w ∈
Ω : y(w) ∈ D} ∈ F(’y is measurable’).
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Remark 1. If C(w) ≡ Y , then the definition of random operator with
stochastic domain coincides with the definition of random operator.

Lemma 2. [10] Let C : Ω −→ 2Y be measurable with C(w) closed, convex
and solid (i.e., int C(w) 6= ∅) for all w ∈ Ω. We assume that there exists
measurable y0 : Ω −→ Y with y0 ∈ int C(w) for all w ∈ Ω. Let T be a
continuous random operator with stochastic domain C such that for every
w ∈ Ω, {y ∈ C(w) : T (w)y = y} 6= ∅. Then T has a stochastic fixed point.

Let y be a mapping of J ×Ω into X. y is said to be a stochastic process
if for each t ∈ J, y(t, ·) is measurable.

3 Existence of mild solutions

Now we give our main existence result for problem (1)-(2). Before start-
ing and proving this result, we give the definition of the mild random solu-
tion.

Definition 4. A stochastic process y : J × Ω → E is said to be random
mild solution of problem (1)-(2) if y(t, w) = φ(t, w), t ∈ (−∞, 0] and the
restriction of y(·, w) to the interval J is continuous and satisfies the following
integral equation:

y(t, w) = U(t, 0)φ(0, w) +

∫ t

0
U(t, s)f(s, yρ(s,ys)(·, w), w)ds, t ∈ J. (3)

Set

R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}.

We always assume that ρ : J × B → (−∞,∞) is continuous. Additionally,
we introduce following hypothesis:

(Hφ) The function t→ φt is continuous from R(ρ−) into B and there exists
a continuous and bounded function Lφ : R(ρ−)→ (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

Remark 2. The condition (Hφ), is frequently verified by functions contin-
uous and bounded. For more details, see for instance [21].
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Lemma 3. ([18], Lemma 2.4) If y : (−∞, T ] → E is a function such that
y0 = φ, then

‖ys‖B ≤ (MT +Lφ)‖φ‖B+KT sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−)∪J,

where Lφ = sup
t∈R(ρ−)

Lφ(t).

We will need to introduce the following hypothesis which are be assumed
there after:

(H1) There exists a constant M ≥ 1 and α > 0 such that

‖U(t, s)‖B(E) ≤Me−α(t−s) for every (s, t) ∈ ∆.

(H2) The function f : J × B × Ω→ E is Carathéodory.

(H3) There exist functions ψ : J ×Ω→ [0,∞) and p : J ×Ω→ [0,∞) such
that for each w ∈ Ω, ψ(·, w) is a continuous nondecreasing function
and p(·, w) integrable with:

|f(t, u, w)| ≤ p(t, w) ψ(‖u‖B, w) for a.e. t ∈ J and each u ∈ B,

(H4) For each (t, s) ∈ ∆ we have

lim
t→+∞

∫ t

0
e−α(t−s)p(s, w)ds = 0.

(H5) There exists a random function R : Ω −→ (0,∞) such that:

M‖φ‖B +M ψ
(

(M + Lφ)‖φ‖B +KR(w), w
)
‖p‖L1 ≤ R(w),

(H6) For each w ∈ Ω, φ(·, w) is continuous and for each t, φ(t, ·) is measur-
able.

Theorem 2. Suppose that hypotheses (Hφ) and (H1)− (H6) are valid, then
the random with delay problem (1)-(2) has at least one mild random solution
on (−∞,∞).
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Proof. Let Y be the space defined by

Y = {y : (−∞,+∞)→ E such that y|J ∈ BC(J,E) and y0 ∈ B},

we denote by y|J the restriction of y to J , endowed with the uniform con-
vergence topology and N : Ω × Y → Y be the random operator defined
by:

(N(w)y)(t) =


φ(t, w), if t ∈ (−∞, 0]

U(t, 0)φ(0, w) +

∫ t

0
U(t, s)

f(s, yρ(s,ys)(·, w), w)ds, if t ∈ J.

(4)

Then we show that the mapping defined by (4) is a random operator.
To do this, we need to prove that for any y ∈ Y , N(·)(y) : Ω −→ Y is a
random variable. Then we prove that N(·)(y) : Ω −→ Y is measurable as a
mapping f(t, y, ·), t ∈ J, y ∈ Y is measurable by assumption (H2) and (H6).

Let D : Ω −→ 2Y be defined by:

D(w) = {y ∈ Y : ‖y‖ ≤ R(w)}.

D(w) is bounded, closed, convex and solid for all w ∈ Ω. Then D is mea-
surable by lemma 17 in [16].

Let w ∈ Ω be fixed, If y ∈ D(w), from Lemma 3 follows that

‖yρ(t,yt)‖B ≤ (M + Lφ)‖φ‖B +KR(w),

and for each y ∈ D(w), by (H3) and (H5), we have for each t ∈ J

|(N(w)y)(t)| ≤ M‖U(t, 0)‖B(E)‖φ‖B +M

∫ t

0
‖U(t, s)‖B(E)|f(s, yρ(s,ys), w)| ds

≤ Me−αt‖φ‖B +M

∫ t

0
e−α(t−s)p(s, w) ψ

(
‖yρ(s,ys)‖B, w

)
ds

≤ M‖φ‖B +M

∫ t

0
p(s, w) ψ

(
(M∞ + Lφ)‖φ‖B +K∞R(w), w

)
ds

≤ M‖φ‖B +M ψ
(

(M∞ + Lφ)‖φ‖B +K∞R(w), w
)
‖p‖L1

≤ R(w).

This implies that N is a random operator with stochastic domain D and
N(w) : D(w) −→ D(w) for each w ∈ Ω.
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Step 1: N is continuous.
Let yn be a sequence such that yn −→ y in Y . Then

|(N(w)yn)(t)− (N(w)y)(t)| ≤
∫ t

0
‖U(t, s)‖B(E)

∣∣∣f(s, ynρ(s,yns ), w)−

f(s, yρ(s,ys), w)
∣∣∣ ds

≤M
∫ t

0
e−α(t−s)

∣∣∣f(s, ynρ(s,yns ), w)− f(s, yρ(s,ys), w)
∣∣∣ ds.

Since f(s, ·, w) is continuous, we have by the Lebesgue dominated con-
vergence theorem

|(N(w)yn)(t)− (N(w)y)(t)| → 0 as n→ +∞.

Thus N is continuous.

Step 2: We prove that for every w ∈ Ω, {y ∈ D(w) : N(w)y = y} 6= ∅. For
prove this we apply Schauder’s theorem. N(D(w)) is relatively compact. To
prove the compactness, we will use Corduneanu’s lemma.

(a) Firstly, it is clear that the assumption (i) is holds. Then we will show
that N(D(w)) is equicontinuous set for each closed bounded interval
[0, T ] in J . Let τ1, τ2 ∈ [0, T ] with τ2 > τ1, D(w) be a bounded set,
and y ∈ D(w). Then

|(N(w)y)(τ2)− (N(w)y)(τ1)|
≤ ‖U(τ2, 0)− U(τ1, 0)‖B(E)‖φ‖B

+
∣∣∣ ∫ τ1

0
[U(τ2, s)− U(τ1, s)]f(s, yρ(s,ys), w)ds

∣∣∣
+

∣∣∣ ∫ τ2

τ1

U(τ2, s)f(s, yρ(s,ys), w)
∣∣∣ds

≤ ‖U(τ2, 0)− U(τ1, 0)‖B(E)‖φ‖B

+

∫ τ1

0
|U(τ2, s)− U(τ1, s)||f(s, yρ(s,ys), w)| ds

+

∫ τ2

τ1

|U(τ2, s)f(s, yρ(s,ys), w)| ds
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≤ |U(τ2, 0)− U(τ1, 0)|‖φ‖B + ψ
(

(M∞ + Lφ)‖φ‖B +K∞R(w), w
)

∫ τ1

0
|U(τ2, s)− U(τ1, s)|p(s, w)ds

+ Mψ
(

(M∞ + Lφ)‖φ‖B +K∞R(w), w
)∫ τ2

τ1

p(s, w)ds.

The right-hand of the above inequality tends to zero as τ2 − τ1 → 0,
thus N is bounded and equicontinuous.

Next, let w ∈ Ω be fixed (therefore we do not write ’w’ in the sequel)
but arbitrary.

(b) Now we will prove that Z(t, w) = {(N(w)y)(t) : y ∈ D(w)} is precom-
pact in E. Let t ∈ [0, T ] be fixed and let ε be a real number satisfying
0 < ε < t. For y ∈ D(w) we define

(Nε(w)y)(t) = U(t, 0)φ(0, w)+U(t, t−ε)
∫ t−ε

0
U(t−ε, s)f(s, yρ(s,ys), w) ds.

Since U(t, s) is a compact operator and the set Zε(t, w) = {(Nε(w)y)(t) :
y ∈ D(w)} is the image of bounded set of E then Zε(t, w) is pre-
compact in E for every ε, 0 < ε < t. Moreover

|(N(w)y)(t)− (Nε(w)y)(t)|

≤
∫ t

t−ε
‖U(t, s)‖B(E)|f(s, yρ(s,ys), w)|ds

≤ Mψ
(

(M + Lφ)‖φ‖B +KR(w), w
)
e−α(t−s)

∫ t

t−ε
p(s, w)ds.

The right-hand side tends to zero as ε → 0, then N(w)y converges
uniformly to Nε(w)y which implies that Z(t, w) = {(N(w)y)(t) : y ∈
D(w)} is precompact in E.

(c) Finally, it remains to show that N is equiconvergent.

Let y ∈ D(w), then from (H1), (H3) we have

|(N(w)y)(t)| ≤Me−αt‖φ‖B +M ψ
(

(M∞ + Lφ)‖φ‖B +K∞R(w), w
)
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∫ t

0
e−α(t−s)p(s, w) ds,

it follows immediately by (H4) that |(N(w)y)(t)| −→ 0 as t→ +∞.
Then

lim
t→+∞

|(N(w)y)(t)− (N(w)y)(+∞)| = 0,

which implies that N is equiconvergent.

A consequence of Steps 1-2 and (a), (b), (c), we can conclude that N(w) :
D(w) → D(w) is continuous and compact. From Schauder’s theorem, we
deduce that N(w) has a fixed point y(w) in D(w). Since

⋂
w∈ΩD(w) 6= ∅,

and the hypothesis that a measurable selector of intD exists holds, Lemma
2 implies that the random operator N has a stochastic fixed point y∗(w),
which is a mild solution of the random problem (1)-(2).

4 An example

Consider the following functional partial differential equation:

∂

∂t
z(t, x, w) = a(t, x)

∂2

∂x2
z(t, x, w) + C0(w)b(t)

∫ 0

−∞
F (z(t+ σ(t, z(t+ s,

x,w)),x,w))ds, x∈ [0, π], t ≥ 0, w ∈ Ω (5)

z(t, 0, w) = z(t, π, w) = 0, t ≥ 0, w ∈ Ω (6)

z(s, x, w) = z0(s, x, w), s ∈ (−∞, 0], x ∈ [0, π], w ∈ Ω, (7)

where a(t, ξ) is a continuous function which is uniformly Hölder continuous
in t, C0 is a real-valued random variable, b ∈ L1(J ; (0,+∞)), F : R → R
is continuous, z0 : (−∞, 0] × [0, π] × Ω → R and σ : J × R → R are given
functions.

Suppose that E = L2[0, π], (Ω,F, P ) is a complete probability space.
Take and define A(t) : D(A(t)) ⊂ E → E by A(t)v(·) = a(t, ·)v′′(·) with
domain

D(A) = {v ∈ E, v, v′are absolutely continuous, v′′ ∈ E, v(0) = v(π) = 0}.

Then A(t) generates an evolution system U(t, s) satisfying assumption
(H1) (see [12, 22]).
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Let B = BCU((−∞, 0];E): the space of uniformly bounded continuous
functions endowed with the following norm:

‖φ‖ = sup
s≤0
|φ(s)| for φ ∈ B

For φ ∈ BCU((−∞, 0];E), x ∈ [0, π] and w ∈ Ω, Set

y(t, x, w) = z(t, x, w), t ∈ [0, T ]

φ(s, x, w) = z0(s, x, w), s ∈ (−∞, 0],

f(t, φ(x), w) = C0(w)b(t)

∫ 0

−∞
F (z(t+ σ(t, z(t+ s, x, w)), x, w))ds,

and

ρ(t, φ)(x) = σ(t, z(t, x, w)).

Let φ ∈ B be such that (Hφ) holds, and let t→ φt be continuous on R(ρ−).

Then the problem (1)-(2) in an abstract formulation of the problem (5)-
(7), and conditions (H1) − (H6) are satisfied. Theorem 2 implies that the
random problem (5)-(7) has at least one random mild solutions.

Acknowledgement. The authors are grateful to the referee for the
helpful remarks.
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