Ann. Acad. Rom. Sci.
Ser. Math. Appl.
ISSN 2066-6594 Vol. 9, No. 2/2017

A BEREZIN-TYPE MAP ON L2(C,)*

Namita Das’

Abstract

In this paper we introduce a map E defined on the Bergman space

L2(Cy,dA) as (Ef)(w) = /C F(8)|bw(s)[2dA(s),w € C,, where C

is the right half plane, dA(s) = dady is the area measure and bg(s) =
ﬁ%i—% (ffzf‘)’g ,5 € C.. We refer the map E as a Berezin-type map on
L2(C,). In this work we first investigate the boundedness of the map E
on various L? space and show that the sequence { E™} converges to 0 in
norm in the space L?(C, du) where du(w) = |B(w, w)|dA(w), w € C,.
We then discuss certain algebraic and ergodicity properties of the map
FE involving subharmonic functions.

MSC: 47B35, 32M15

keywords: Bergman space, the right half plane, Berezin transform,
automorphisms, subharmonic functions.

1 Introduction

Let C4 = {s = z+iy € C : Res > 0} be the right half plane.
Let dA(s) = dady be the area measure. Let L2(C,,dA) be the space of
complex-valued, square-integrable, measurable functions on C with respect
to the area measure. Let L2(C,) be the closed subspace [I] of L2(C,,dA)
consisting of those functions in L2(C+,dg) that are analytic. The space
L2(Cy) is called the Bergman space of the right half plane. The func-

tions H(s,w) = ﬁ, s € C4,w € C4 are the reproducing kernels [2] for
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L3(Cy). Let hy(s) = Iif(?w)) = (285{%”2. The functions h,,,w € C4 are
w,w

the normalized reproducing kernels for L2(C ). Let L>(C) be the space of

complex-valued, essentially bounded, Lebesgue measurable functions on C,..
Define for f € L*(Cy), || f|loc = ess sup |f(s)| < co. The space L*°(C;) is
seCy

a Banach space with respect to the essential supremum norm .

Let D = {z € C: |2| < 1} be the open unit disk in the complex plane C.
Let L?(D,dA) be the space of complex- valued, square-integrable, measur-
able functions on D with respect to the normalized area measure dA(z) =
Ldxdy. Let L2(D) be the space consisting of those functions of L?(D, dA)
that are analytic. The space L2(D) is a closed subspace of L?(D,dA) and is
called the Bergman space of the open unit disk ID. The sequence of functions
{en(2)}2 = {Vn+12"}5°, form an orthonormal basis for L2(D). Since
point evaluation at z € D is a bounded linear functional on the Hilbert space
L2(D), the Riesz representation theorem implies that there exists a unique
function K, in L2(ID) such that

1) = [ SR jaaw)
for all f in L2(D). Let K(z,w) be the function on D x D defined by
K(z,w) = K,(w).
The function K (z,w) is analytic in z and co-analytic in w. In fact K(z,w) =
ﬁ, z,w € D and is the reproducing kernel [7], [4] of L2(D). For a € D,
_ K@ka) _ (1-|a]?) : : :
let kqo(z) = \/Kz(aa’a) = (1_6‘;)2. The function k, is called the normalized
reproducing kernel for L2(D). It is clear that ykaHz = 1. Let P denote the
orthogonal projection from L?(D,dA) onto L2(D). Let Aut(D) be the Lie

group of all automorphisms (biholomorphic mappings) of D. We can define
for each a € D an automorphism ¢, in Aut(D) such that

(i) (¢a o ¢a)(2) = z;
(ii) ¢a(0) = a, d’a(a) =0;
(iii) ¢4 has a unique fixed point in D.

In fact, ¢o(2) = {== for all @ and z in D. An easy calculation shows that

the derivative of ¢, at z is equal to —kq(z). It follows that the real Jacobian
determinant of @, at z is Jy, (2) = |kq(2)]? = U-1al) For any f € L'(D,dA),

= T=azt-

we define a function Bf on D by

Bf(z) = /D F (6 (w))dA(w) = /D £ (w) ks () PdA(uw).
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The map B is called the the Berezin transform [7], [4] on D. The layout of
this paper is as follows: In section 2, we construct the Berezin-type map
E on L2(Cy) by defining some elementary functions and discuss certain al-
gebraic properties of the operator. Section 3 is devoted to establish that
the operator E is not a bounded operator on L'(Cy,dA) and show that
the sequence {E™} converges to 0 in norm in the space L?(Cy,du) where

dup(w) = |B(w,w)|dA(w),w € C,. Further, we prove that the integral op-
erator D given by (Df)(s) = / F(w)|bw(s)|?dA(w), s € Cy is a contrac-

Ct

tion on L!'(Cy,dA) which maps L>(C,) boundedly into LP(C,,dA) for
1 < p < oo. In section 4, we show that if f € L'(C,,dA) is harmonic, then
Ef = Jf where (Jf)(w) = f(w) and if f € L?(C4,dp) and Ef = Jf then
f = 0. Further, if f € L'(C,dA) is a real-valued subharmonic function on
C4 which admits an integrable harmonic majorant then the functions E" f
are subharmonic for all n € N and E"f — Ju where u is the least harmonic
majorant of f.

2 The Berezin-type map

In this section, we construct the Berezin-type map E on L2(C.) and
discuss certain algebraic properties of the operator. But first we introduce
some elementary functions and their basic properties.

Define M : C,. — D by Ms = %T__‘; Then M is one-one, onto and

M~1: D — C; is given by M~1(z2) = % Thus M is its self-inverse.
Let W : L2(D) — L2(C.) be defined by Wg(s) = %Q(Ms)m%)z Then
WL L2(Cy) — Li(D) is given by W™1G(z) = 2\/7?G(Mz)‘ﬁ, where
Mz = %jé IfaeDand a=c+id, c,deR, then t,(s) = _(Zld%g:.;) is an
automorphism from C, onto C; and

(i) (tqg otq)(s) = s.

i: 1—|al?

(i) #,(s) = —La(s), Where Lo(s) = (o

Let w € C4 and w = Ma,a € D. For f € L*(C,,dA), define (Ef)(w) =
flw) = / F(9)|bw(s)2dA(s), w € Cy where bg(s) = -= 1w 28w Notice
Cy

— V7 4w (stw)?”

(1+a)? 1

that b@ S LOO(C+) for all w € (C+. Let B(S,’U]) = B@(S) = %m(l_"_sﬁ

and du(w) = |B(w, w)|dA(w), w € Cy.

Lemma 2.1. Let s,w € C4. The following relations hold:
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(i) (bw(w))* = B(w,w).
(it) |bw(s)| || Bwl| = |Bw(s)|-

l1-a

Proof. Let w € Cy and w = Ma = {7=. Since

we obtain

Thus

—a2 (12
o) — 2 0=l 11 ()

) (A+a)®
(1 —EMS)QM
= B(s,w).

2
ﬁ
(-1

2

Hence bg(s) = Blsw) 4nd (bw(w))? = B(w,w). This proves (i).

(
(1—aMs)2(1+s)22v/x (1—|a?)

155
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(ii), notice that

Bl ? = /C |Ba(s) [2dA(s)

=/+| (s,w) PdA(s)
= [ e

w)lbw (s) [ dA(s)

— ba(@) / Ibas(s) [2dA(s)

— [ba (@) P b} = b (),
since [|bg]l2 = 1. Thus || Bo| = |bo(w)| and [ba(s)| [|Bol| = | Ba(s)!

Theorem 1. Let f € Ll(C+,dg). The following hold:

(i) If f is bounded, then so is Ef = f and ||fllos < ||f|los- In other words,
E is a contraction in L>®(C4).

(ii) The norm of E on L=(Cy,dA) is equal to 1.
(vit) If f >0, then ]?2 0; if f > g, then fz g.
(iv) The mapping E : f — f s a contractive linear operator on ecich of the
spaces LP(Cy,du(z)),1 < p < oo where du(w) = | B(w, w)|dA(w).
(v) For arbitrary f € L'(C,,dA), f(w) = }r/ (fotgoM)(s)dA(s) where
a = Muw. o
(vi) f is an infinitely differentiable function on C,.

(vii) For f € LY(Cy,dA), define T,f = fotq fora € D. Then (ET,f)(w) =
(TaEf)(w).

Proof. (i) For proof of (i), assume f € L*°(C4). Then

()| = (fbw bw) < [1fbwllzlbwllz < || fllocbwll3 = I1flloo-

(ii) Since f = fwhen f is a constant function, hence the norm of E on

L>®(C4,dA) is equal to 1.
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(iii) The operator FE is an integral operator with positive kernel. Thus if
f>0thenf>0 If f>g,let h=f—g. Then h > 0 and therefore
h > 0. Hence f > 3.

(iv) Since L*(C,,du) C L*(Cy,dA), the operator E is defined on the for-

mer space, and

w)| = \/ £(5) ba(s) 2dA(s)| < E(f1)(5).

Hence if Bg(s) = % (1(};]?/}j)2 M’'(s) then

/ )| B(w, w)|dA(w)
Ct

<[ + ( / + \f(S)Ibw(S)Ing(S)> |B(w, w)|dA(w)
-/ 1560 [ 1Bao)PaAtw)ais) ,

Cy

:/(C |£(5)|(Bw, Bz)dA(s)
_ / F($) 1B, )|dA(s),

Cy

the change of order of integration being justified by the positivity of
the integrand. It thus follows that E is a contraction on L'(C,dpu).
The same is true for L°°(C.), and so the result follows from the
Marcinkiewicz interpolation theorem.

(v) Let f € L*(C4,dA) and let @ = Mw € D. Then

fw) = [ folbals)Pai(s)

- / (f © 1) (5) b (ta(5)) 2 La(s) [2dA(s)

_ / \VH )[2dA(s)
Cy

” M(s) PdA(s)

(C+

~ 1 / fotao M)( >\<M’oM><s>P|M’<s>|2dZ<s>
Cy

_ i/ foteo M)(s)dA(s).

Cy
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(vi)

(vii)

Namita Das

The function f is an infinitely differentiable function on C,. To see
this, let f € L'(Cy,dA). Then fo M € LY(D,dA) and f(w) = B(f o
M)(a) where w = Ma € C;4 and a € D. Now

_ a2 2
B(f o M)(a) = {(f o Mk o) = [ ST

e U e M)(E)AG) ()

where k, is the normalized reproducing kernel at a € D and k,(z) =

1—|al? . .
(‘1_;2"2). Let @ = z+iy € D,z,y € R. Denote & = (2 — za%)

11272

and % = %(% + ia%). It is not difficult to verify that %(hjgl'i =

2(z—a)(1—az)(1—|al?)
[1—az|6

it follows that

. Since [z —a| - [1 —az| = |1 —az*[£4] < 1 —az]?,

0 (1—laf*)?

1— |al?
‘f(z).%m (L —Jal*)

1 —az|*

2 floe
(T —al)®

IN

2
| < 1l

This is uniformly bounded when a € B(ag,€),a0 € D and € > 0 is
sufficiently small. Consequently, it is allowed to differentiate under

the integral sign in the formula 1' which gives 9B(foM) _ / (fo
D

da
zZ—a —az — |al?
M)(z)2( )(ﬁ azfél ")

infinitely differentiable.

dA(z). Thus f(w) = B(f o M)(a) is

To prove (vii), we shall first verify that (Bf)(¢q(2)) = B(f o ¢4)(2)
for all a,z € D. Let Gy = {¢ € Aut(D) : ¥(0) = 0}. For any a and b

in D, let U = ¢p 0 @a 0 Py, (1)- Then U(0) = ¢p 0 dpa(¢a(b)) = ¢p(b) = 0.
Thus U € Gy is a unitary and ¢y, 0 ¢ = Ugy, ). Now by a change of
variable, we obtain

Bf(¢(2)) = /D S )k, o) (w) PdA(w)

- /D F(Ga()) ko 2) © ba(w) 2lka(w)2dA(w).

Hence there exists a unitary U with

Ppo(2) © Pa = Ubgop(z) = Uz

Taking the real Jacobian determinants of the above equation, we get

Ega(z) © Pa(w) P lka(w)? = [kz(w)]?
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for all a,z and w in . Therefore,
BFGu(2) = [ f0u(w)lb(w) PdAw)
D

= B(f o ¢q)(2).
For f € LY(Cy,dA), f(w) = XC f(8)lbw(s)[?dA(s) = B(f o M)(a).
Thus (Ef)(Ma) = B(f o M)(a). T\IOW for z € D,
B((f o M) o ¢a)(z) = [B(f o M) o ¢a](2) = B(f o M)(a(2))-

That is,

E(f oMo gsoM)(M2) = (Ef)(Mg¢a(2))-

Hence B(f ota)(M2) = (Ef) (M 0 62)(2)) = (Ef)({ta 0 B)(2)). Thus
E(foty)(Mz)=(Ef)((tao M)(Z)) and therefore

E(fota)(w) = (Ef)((tao M)(Mw))
= (Ef)(ta(w)) (2)
= (Ef)(ta(w)).
Thus from ({2)) it follows that (ET,f)(w) = Ta(Ef)(w) = (TaEf)(w)D

3 Boundedness of the Berezin-type map

In this section we establish that the operator £ is not a bounded operator
on L'(C,,dA). Further, we prove that the integral operator D given by

(Df)(s) = / F(w)|bg(s)PdA(w), s € Cq is a contraction on L'(C,, dA)
Cy B
which maps L*>°(C,) boundedly into LP(C4,dA) for 1 < p < oc.

Proposition 3.1. The operator E is not a bounded operator on L*(C,, dg)

Proof. : If it were, its adjoint E? = D, where
(Df)(s) = : f(w)|bw(s)PdA(w), s € Cy (3)
+

would be a bounded operator on L>®(C,). Let f € L*°(C,). Now if z = M's
and w = Ma, then
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0N = [ Slba)adw
— / W)Wk (s)|PdA(w)
- i/ w) o (M3)2[M (3) 2 dAw)
_ P (/ @)|ka(Ms)|2dA(Ma)
—|M(s) f a)|ka(Ms)|?| M’ (a)|?dA(a).
Hence

(D1)(s) = /C () [2d A (w)
= M) /D ke (M)[2| M (a) 2dA(a)

e / ia(2)PdA(a)

D
2 [ [ka(z) Ao

1— 2\2
[ha@Paaw = [ S aaw
D D 11— az[* )
1 4 1
- / (]- _72)2/ fdtQT‘dT
0 21 Jo |1 —zZreit]t

1 00
= /(1—7“2)22(12+1)2r2"|z|2"2rd7“
0

n=0

2
Y 1 dt . 1+|Z‘27’2
0 |1 *E’I“eit|4 (1—]z[?r2)3

o0

= Z(n + 1)%720 |z,

n=0

IN

IN

since

for z € D and r € (0,1). Thus
\mwng%/zn+ £)%t"| )2 dt

2(n+1)
— 24 2n
Z (n+2)(n+3) 12
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where s = Mz. As |z| — 1, this expression behaves (asymptotically) like
—2%1og(1 — |2]?), hence D1 ¢ L*>(C,), so D = E¢ cannot be a bounded
operator on L>(C,). O

Lemma 3.1. The integral operator D given by (@ 18 a contraction on
LY(C., dA) which maps L=(C..) boundedly into LP(C,,dA) for 1 < p < cc.

Proof. For arbitrary f € L*(C,,dA), by Fubini’s theorem [6] it follows that

/C+|<Df><s>dA<s> < /C/ Ibas(s) 2| ()| d A () dA(s)
w>|/ lbas(s) [2dA(s) d A (w)

Cy Cy
_ /(C | £ ()| (b, brs)d A (w)

- / | (w) dA(w),

Cy

so D is a contraction on L'(Cy,dA). If f € L>®(Cy), then

[(Df)(s)] < Hf”oo/ ba(s) PdA(w) = ||f o (D1)(5)].

C+

Hence, to prove the second assertion of the lemma, it suffices to check that

D1 belongs to LP(C,,dA) for each p € [1,00). We have already observed
that (D1)(s) behaves like —2*log(1 — [Ms|?) as |[Ms| — 1, so it is enough
to show that log(1 — |z|?) € LP(D, dA) for all p € [1,00). Now,

1 1

/|log(1—|z|2)|pdA(z):/ |log(1—r2)|p2rdr:/ log(1 — £)[Pdt =
D 0 0
1
ogt|"dt, and, changing the variable to y = —logt, this reduces to
1 Pd d, changi h iabl 1 hi d
0

/ ye Ydy=T(p+1) < 0. O
0

On D, the only measure left invariant by all Mdbius transformations ewqba( )
6 € R is the pseudo-hyperbolic measure dn(z) = (ldAl(P))Q = K(z,2)dA(2).
The invariance may be verified by direct computation. It turns out that the

Berezin transform behaves well [7] with respect to the invariant measures.
Consider the Fourier-Helgason transform [5], [3] on the disk. It maps a

function f(z) on the disk into a function f(¢,b) of ¢ € R and b on the unit
circle T={z € C: |2| = 1}. In fact

f.b) = /D f(@)ery(@)dn(z)
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gz St
where (1) = (|1b_'§|‘2) >z eD,teRand b e T. On L2(D,dn) with
respect to the invariant measure, the Berezin transform is a Fourier multi-

plier with respect to the Fourier-Helgason transform; the multiplier function
being (t? + )m, t € R. That is, for the Berezin transform B one has

(Bf)(t, b) = m(t)f(t,b) where m(t) = (t2 + UW For more details see
[5] and [2].

Lemma 3.2. The following is true for the Berezin-type map E as an oper-
ator on L*(Cy,du) where du(w) = |B(w,w)|dA(w),w € C.

(i) E is positive.
(ii) E™ converges to 0 in SOT.

(iii) E™ converges to 0 in norm.

Proof. We shall first show that f € L2?(D,dn) if and only if fo M €
L*(Cy,du). So let f € L?(D,dn) where dn(z) = % = K(z,2)dA(z).
For w = Ma,

[ir@Pr@aia@ = [ ir@PBm.e g i@
D D

= [ r@PB@ )l 5 = da@)
= ar [ 1f@PIB@.w) | dA@)
= dr [ 1@ PIB(OMa M) o dA@

= /I o M)(Ma)P|M'(@)*| B(w, w)|dA(a)

- A|uw@wnwwmew.

Now we proceed to prove that the Berezin transform B is positive as
an operator on L?(D,dn). Observe that the function m(t) has a maxi-
mum at ¢ = 0 with value 7. By spectral theorem, B has thus norm 7,
which is strictly less than 1. Using the Fourier-Helgason transform, one has
(by Plancherel theorem, which also holds [5] for this transform) (Bf, f) =

<(Bf) 7= / / m(t)|f(t,b)|>dtdb > 0 since the multiplier function m(t) =

(t? + i)m is positive. Thus the operator B is positive. This also

gives the spectral decomposition of B. Let E(\) be the resolution of iden-
tity for the self-adjoint operator B. Then ||B"f||?> = f[o 8 INY2d(E(N)f, f)-



A Berezin-type map 163

According to the Lebesgue monotone convergence theorem, this tends to
(I —E(1-)f|? = HPker(B_I)fH2 where Py, (p—r) is the orthogonal projec-
tion from L2(D) onto ker(B — I).

Further notice that if f € L?(ID, dn) is harmonic then f = 0. To see this,
let

1

M(r):%

/27r |f(7‘eit)|2dt.
0

This is a nonnegative and nondecreasing function of r. Now,

9 B lM 2r d
1122 ,an) = ; (T)m < 00

So M (r) must tend to zero as r — 1. Thus M(r) = 0, whence f = 0. Thus
it follows that ker(I — B) = {0} since 1 is not in the spectrum of B and
hence, ||B"™f]| tends to zero. In fact, even ||B™|| tends to zero as ||B]| < 1.
Since (E"g)(M@) = B"(g o M)(a),a € D for g € L?*(C,du), the result
follows. O

4 Harmonic and subharmonic functions

In this section we show that if f € L'(Cy, d/~1) is harmonic, then f: Jf
where (Jf)(w) = f(w) and if f € L2(C4,dp) and f = Jf then f = 0.
Further if f € L'(Cy,dA) is a real-valued subharmonic function on C.
which admits an integrable harmonic majorant then the functions E™f are

subharmonic for all n € N and E"f — Ju where u is the least harmonic
majorant of f.

Theorem 2. If a function f € L'(C,, de is harmonic, then f~: J f where
(Jf)(w) = f(w). If f € L*(C,,dp) and f = Jf then f = 0.

Proof. Notice that if w = Ma,

fw) = (fbw,bw)
(fWka, Wkq)

= B(foM)(a).

Let f=Wg = (_Tjr)(goM)M’,g € Ll(]D), dA). Now f is harmonic implies

(g o M)M' is harmonic and therefore g(M’ o M) is harmonic. Thus % and
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7 © ¢a are harmonic. Hence

flw) = B(foM)(a)
= SJB[(go M)M') o M](a)
= S2B(g(M' 0 M))(a)
= 2y (E) @
= (foM)(a) = f(Ma) = f(w)
= (JH)w)

since (Mo M)M' =1 and |kq(¢a(2))|ka(2)| = 1.

Suppose f € L?(C4,dpu) is harmonic. Then foM € L*(D, dn). Now since
f(w) = (Jf)(w) = f(w) for all w € C,, hence B(f o M)(a) = (f o M)(a)
for all a € D. Therefore f o M is harmonic in D and fo M € L*(D,dn) C
L?*(D,dA). Thus f is harmonic in C.

But the only harmonic function in L?(Cy,dpu) is constant zero. To see
this, let f € L?(Cy,dp) is harmonic. Then g = fo M € L*(D,dn) is

2

T
harmonic. Let M(r) = ;ﬂ/ |g(re')|?dt. This is a nonnegative and non-
0

decreasing function of r and

1 2r
2 _
191172 D,4n) —/0 M) gy dr < o

Thus M (r) must tend to zero as r — 1. Thus M (r) = 0. Hence g = 0
That is, f o M = 0. This implies f = 0. 0

Theorem 3. Assume that f € L'(Cy,dA) is a real-valued subharmonic
function on C4 which admits an integrable harmonic majorant (i.e., there
ezists a function v € LY(Cy,dA) harmonoic on C4 and such that v(s) >
f(s) for all s € C4.) Then E™f — Ju where u is the least harmonic majo-
rant of f.

Proof. Let f € L'(Cy,dA) is a real-valued subharmonic function on C,.
Then fo M € LYD,dA) is real-valued subharmonic function on D. If f
admits an integrable harmonic majorant v then f o M admits an integrable
harmonic majorant vo M on D and if u is the least harmonic majorant of f
on C4 then wo M is the least harmonic majorant of f o M on D.

According to a theorem of Frostman ([3]), there exists a positive Borel
measure k£ on D such that

F5) = u(s) + 7 [ nl6ara(en) )
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for all s € C,. Let g(21) = In|z1|2. Since |prrs(21)| = |2, (Ms)], we have

fls) = uls)+ 7 [p(g0¢z)(Ms)dr(z1).
Hence

(2P 1 ,
T [ gotu ) rs)dn(1)aavs)
B B (4)
Since f < u < wv and f,v € L'(Cy,dA), we have u € L*(C,,dA). Further,
from Theorem [2], it follows that (Fuo M) = (Juo M). Since (g o ¢.,)(Ms)
takes nonpositive values, we may interchange the order of integration in ,
to obtain

(EfoM)(z2) = (BuoM)(2)+ /D

(Bf o M)(2) = (Buo M)E) + [ Blaooa)@intz). ()

Proceeding by induction, we obtain

(B"f o M)(2) = (Buo M)(@) + 7 [ B'(906.)()dn(a0).

We shall now show that
B"(go¢z)(2) =0

as n — oo, for all z1,z € D. Notice that B"(g o ¢,,) = (B"g) o ¢,,. Thus it
is suffices to prove that B"g — 0. It is not difficult to show that (Bg)(z1) =
|z1|? — 1. Thus g < Bg. This implies B¥g < B¥*lg for all k € N. So

g<Bg<B’)<B%g<...<0.
Hence the limit li_>m (B"g)(z1) = ¥(z1) must exist and ¥ < 0. From
Lebesgue monotone convergence theorem, it follows that
BYE) = [@oo)widaw)

- f Tim (B) (6. (w))dA(w)

= ILm /B”(go¢z)(w)dA(w)

= Jin B"([ (g0 0.)(w)dA(w)

= lim (B"lg)(2) = ¥(2).

n—oo
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We claim that ¥ = 0. Assume the contrary. Because |z1|2 —1 = (Bg)(z1) <

U(z1) < 0, we have |li‘m U(z1) = 0. Consequently, ¥ must attain its infi-
z1|—1

mum at some point zo € D- suppose (replacing ¥ by Wo ¢, otherwise) that
zo = 0. Then ¥(0) = (BVY)(0) = / U(z1)dA(z1) > inf \I’(zl)/ dA(z) =
D z1€D D

U(0). This is a contradiction. Hence ¥ = 0.

Because k is a positive measure, we may apply the Lebesgue monotone
convergence theorem to conclude that (E™f)o M — (Ju) o M as n — oo.
Thus (E™f) — Ju as n — oc. O

Remark 4.1: If f is real-valued, subharmonic and f € L?(C,, du), we may
proceed a little more quickly. The subharmonicity of f implies that f o M
is real-valued, subharmonic and h; = f o M € L%*(D, dn) and for a € D,

(Bh1)(a) = /D(hl © ¢a)(2))dA(2) = h1(¢a(0)) = ha(a),

that is, Bh; > h;. Further, B commutes with Ap, where A, = (1 —
|z|2)? 8222, the Laplace-Beltrami operator on D. Hence Ay Bhy = B(Aphy) >
0 since Aphy > 0; in other words, Bhy is also subharmonic. Proceeding by
induction, we obtain a nondecreasing sequence {Bkhl}keN of subharmonic
functions. Their limit ¥ is either identically +o0, or is a subharmonic func-
tion satisfying BU = . Since ¥ € L?(ID, dn), the former case cannot occur;
further,

¥(0) = (BY)0) = [ (A,

D

and so V¥ is actually harmonic; hence, it is a harmonic majorant of h; =
f oM. If T is another harmonic majorant of hy, then h; < YT implies
B"hy < B™Y = 7T, whence also ¥ < T; consequently, ¥ is the least har-
monic majorant of hy = f o M. This in turn implies ¥ o M is the least
harmonic majorant of f and E"f — J(V o M) as n — oc.

Theorem 4. Assume f € LI(C+,dZ) is real-valued subharmonic function
on Cy which admits an integrable harmonic majorant v. Then the functions
E™f are subharmonic for all n € N.

Proof. Let 0 < R < 1. From [3], it follows that

76) = u(s) + 7 [ nlasa(en) )

for all s € C. Since |¢nrrs(21)| = |¢z, (Ms)], hence

£6) = uls) + 1 [ (900:)(M)dnz)
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where g(z) = In|z|2. Thus

(1—]zP)* 1

(EfoM)(z) = (EUOM)(E)JF/D 11— Msepd /D(goqﬁm)(Ms)dﬁ(zl)dA(Ms)-

Hence it follows that

1 2w

— [ (EfoM)(Re ™)dt
27T 0

1 2

. 1 2m 1 '
:% ; (UOM>(R€”)dt+27T/(; 4/[DB(QO¢Z1)(ReZt)d/€(21)dt.

Since the second integrand is nonpositive, we may interchange the order of
integration; consequently,

1 2

— | (EfoM)(Re ®)dt
2 Jo

1 1 2m .

= (uo M)(0) + / </ B(go gbzl)(Relt)dt) dr(z1).
4 D 2T 0

It is not difficult to check that if g(z) = In |x|2, then (Bg)(z) = |z|?> — 1 and

therefore B(go ¢,,)(z) = |¢, (2)|> — 1 is a subharmonic function of z. This

implies

2
3 | Bloo o) (Rt = Blgoo.,)(0).
Hence
1 27 i 1
or [ (EfeM)(Re )t = (oM)(0)+ [ Blgosu,)0)dn(ar) = (EfoM)(0)
T Jo D

for every R € (0,1). Similarly one can show that

2m

% (E(f oty) o M)(Re ™)dt > (E(f oty) o M)(0)
0

for 0 < R < 1. Thus B(f o M) satisfies the sub-mean value property, and
therefore is subharmonic on . Hence Ef o M is subharmonic on D and
therefore Ef is subharmonic on C4. Since f < v, hence fo M < vo M.
Therefore B(f o M) < B(vo M) = vo M. Thus B(f o M) also has an
integrable harmonic majorant and E f o M also has an integrable harmonic

majorant . Consequently, we may proceed by induction, and the theorem
follows. O
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Remark 4.2: There is no nonzero harmonic function in L?(C,dy), but
there are plenty of subharmonic functions. The functions E™g,n € N where
g(s) =In|Ms|? = In |12 s $|2, s € C4 serve as an example. This can be verified
as follows:

/ l9(w)2|B(@, w)|dA(w) = / (g 0 M)(Muw) 2K (Muw, Muw)dA(Mw)
Cy D

- /D (g0 M)(2) 2K (2, 2)dA()
o2 dA(z)
JAC E i s
/ 1 (1>2dt
1 o0 00
= / Z Ztm+”ln2tdt
n= Om 0
2
= (m+n+1)3
2
(4 12
= I < +o0.

I I
(]2 M

=~
© ||

|

Hence g € L*(C,,du) and g is subharmonic, and therefore by Theorem
E™g is subharmonic for all n € N.

Given a bounded real-valued subharmonic function on D, the boundary
values of its least harmonic majorant can be described explicitly. In fact if ®
is a bounded real-valued subharmonic function on D, define ® on T (the unit

circle in C) by ®(e?) = lin% sup®(re?), and let ¥ be the Poisson extension
r—

of ®|r into the interior of D. Then V¥ is the least harmonic majorant of ®.
The following is also valid.

Theorem 5. Suppose ¢ is a bounded real-valued subharmonic function on
C4. Define ¢ on iR by

¢(iy) = lim sup ¢(z + iy),z > 0,

x—0

and let ¢ be the Poisson extension of ¢|;r into Cy. Then v is the least
harmonic majorant of ¢.

Proof. Let ¢ be a bounded real-valued subharmonic function on C,. Then
¢ o M is a real-valued subharmonic function on D. Let

(¢ 0 M)(e) = limsup(¢ o M)(re), € € T,

r—1
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and let ¢ o M be the Poisson extension of ¢ o M |r into D. Then it is not
difficult to see that ¢ o M is the least harmonic majorant of ¢ o M. To see
this, let w o M be the least harmonic majorant of ¢ o M. Except for € on a
set of measure(arc-length measure) zero, we have

lim(u o M)(re) > limsup(¢ o M)(re) = (¢po M)(e) = lim (¢ o M)(re).

r—1 r—s1 r—1

It follows thus that the bounded harmonic function (v — 1) o M = uo
M — i o M has nonnegative radial limits almost everywhere on T; hence,
uoM > oM on . We shall now show that wo M < 1 o M. Because
subharmonicity and harmonicity is invariant under Mobius transformations,
it suffices to show that (¢ o M)(0) > (uo M)(0). Without loss of generality,
we shall assume that ¢ o M < 0, hence also uo M < 0 and ¥ o M < 0.
Applying the Fatou’s lemma to the function t — (¢ o M)(re'), we obtain

1 2m ) 1 21 )
lim sup(¢ o M)(re™)dt > lim sup — / (po M)(re™)dt.  (6)
0

2m 0 r—1 r—1 &7

The left hand side of (6) is equal to (¢ o M)(0) and in the right hand
side, we can replace limsup by either lim or by sup and the right hand side
equals (u o M)(0). Thus ¢ o M is the least harmonic majorant of ¢ o M.
Hence 1) is the least harmonic majorant of ¢ as claimed. O

Let
V(€)= {f € L¥(Cy) : ess lim f(a +iy) = 0}

and
V(D) ={feL*D): esslggllf(z) = 0}.

Theorem 6. If f € V(C,), then E™f converges uniformly to 0.

Proof. Let f € V(C;). Then ess lim f(s) = 0. That is, ess lim (f o

€5—0 |z|—1

M)(z) = 0. Hence f o M € V(D). We shall now show that B"(f o M) — 0
uniformly. That will imply (E™ f)oM — 0 uniformly and therefore E" f — 0
uniformly. Let g = foM € V(D). Without loss of generality, we shall assume
g < 0 since B is linear. As D(D) (the set of all infinitely differentiable
functions on D whose support is a compact subset of D) is dense in V(D)
and B is a contraction on L*°(DD), we shall consider only g € D(D). So
assume g < 0 and support of ¢ is contained in {z € D: |2| < R},0 < R < 1.
Define the function G on [0, 1] as follows:

G(t) = —||glloo, if 0<t<R,
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G(1) =0 and G(t) is linear on [R,1],

and set ®(z) = G(|z]),2 € D. The function ® is subharmonic, its least
harmonic majorant being constant zero. By Theorem [3] B"® — 0, since
® =0 on 9D = T. By Dini’s theorem, { B"®} converges uniformly to 0. But
® < g <0, hence B*¥® < B¥g < 0 and so {B"(f o M)} = {B"g} converges
uniformly to 0 as well. Thus E™f — 0 uniformly on C,. O

Corollary 1. Suppose f € C(Cy UiR). Then {E™f} converges uniformly
to Jh, where h is the harmonic function whose boundary values coincides
with f |iR .

Proof. Because f € C(C, UiR), hence fo M € C(D) and f o M|y € C(T).
Let h o M be the harmonic extension of f o M into D. Then ho M € C(D)
and foM —hoM € V(D) and B"(foM — ho M) — 0 uniformly. That is,
B"((f —h)o M) — 0 uniformly. But B(ho M) = ho M. Hence {B"(fo M)}
converges uniformly to ho M. This implies (E" f)oM — J(hoM) = (Jh)oM.
Thus {E™ f} converges uniformly to Jh. O

References

[1] Conway, J. B., A Course in Functional Analysis, Graduate Texts in
Mathematics 96, Springer, New York, 1996.

[2] Elliott, S., and Wynn A., Composition operators on weighted Bergman
spaces of a half plane, Proc. Edinb. Math. Soc. 54(2011), 373-379.

[3] Hayman, W. K., Kennedy, P. B., “Subharmonic functions”, vol. 1, Aca-
demic Press, 1976.

[4] Hedenmalm, H., Korenblum, B. and Zhu, K. “Theory of Bergman
spaces”, Springer-Verlag, New York, 2000.

[5] Helgason, S., “Groups and geometric analysis”, Academic Press, Or-
lando, 1984.

[6] Rudin, W., Principles of Mathematical Analysis, International Series in
Pure and Applied Mathematics, 3rd edition, McGraw-Hill, New York,
1976.

[7] Zhu, K., Operator Theory in Fuction Spaces, Monographs and textbooks
in pure and applied Mathematics 139, Marcel Dekker, New York, 1990.



	Introduction
	The Berezin-type map 
	Boundedness of the Berezin-type map 
	Harmonic and subharmonic functions

