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A BEREZIN-TYPE MAP ON L2
a(C+)
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Abstract

In this paper we introduce a map E defined on the Bergman space

L2
a(C+, dÃ) as (Ef)(w) =

∫
C+

f(s)|bw(s)|2dÃ(s), w ∈ C+, where C+

is the right half plane, dÃ(s) = dxdy is the area measure and bw(s) =
1√
π

1+w
1+w

2Rew
(s+w)2 , s ∈ C+. We refer the map E as a Berezin-type map on

L2
a(C+). In this work we first investigate the boundedness of the map E

on various Lp space and show that the sequence {En} converges to 0 in

norm in the space L2(C+, dµ) where dµ(w) = |B(w,w)|dÃ(w), w ∈ C+.
We then discuss certain algebraic and ergodicity properties of the map
E involving subharmonic functions.

MSC: 47B35, 32M15
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1 Introduction

Let C+ = {s = x + iy ∈ C : Res > 0} be the right half plane.

Let dÃ(s) = dxdy be the area measure. Let L2(C+, dÃ) be the space of
complex-valued, square-integrable, measurable functions on C+ with respect

to the area measure. Let L2
a(C+) be the closed subspace [1] of L2(C+, dÃ)

consisting of those functions in L2(C+, dÃ) that are analytic. The space
L2
a(C+) is called the Bergman space of the right half plane. The func-

tions H(s, w) = 1
(s+w)2

, s ∈ C+, w ∈ C+ are the reproducing kernels [2] for
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L2
a(C+). Let hw(s) = H(s,w)√

H(w,w)
= 2Rew

(s+w)2
. The functions hw, w ∈ C+ are

the normalized reproducing kernels for L2
a(C+). Let L∞(C+) be the space of

complex-valued, essentially bounded, Lebesgue measurable functions on C+.
Define for f ∈ L∞(C+), ||f ||∞ = ess sup

s∈C+

|f(s)| <∞. The space L∞(C+) is

a Banach space with respect to the essential supremum norm .
Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C.

Let L2(D, dA) be the space of complex- valued, square-integrable, measur-
able functions on D with respect to the normalized area measure dA(z) =
1
πdxdy. Let L2

a(D) be the space consisting of those functions of L2(D, dA)

that are analytic.The space L2
a(D) is a closed subspace of L2(D, dA) and is

called the Bergman space of the open unit disk D. The sequence of functions
{en(z)}∞n=0 = {

√
n+ 1zn}∞n=0 form an orthonormal basis for L2

a(D). Since
point evaluation at z ∈ D is a bounded linear functional on the Hilbert space
L2
a(D), the Riesz representation theorem implies that there exists a unique

function Kz in L2
a(D) such that

f(z) =

∫
D
f(w)Kz(w)dA(w).

for all f in L2
a(D). Let K(z, w) be the function on D× D defined by

K(z, w) = Kz(w).

The function K(z, w) is analytic in z and co-analytic in w. In fact K(z, w) =
1

(1−zw)2
, z, w ∈ D and is the reproducing kernel [7], [4] of L2

a(D). For a ∈ D,

let ka(z) = K(z,a)√
K(a,a)

= (1−|a|2)
(1−az)2 . The function ka is called the normalized

reproducing kernel for L2
a(D). It is clear that ||ka||2 = 1. Let P denote the

orthogonal projection from L2(D, dA) onto L2
a(D). Let Aut(D) be the Lie

group of all automorphisms (biholomorphic mappings) of D. We can define
for each a ∈ D an automorphism φa in Aut(D) such that

(i) (φa ◦ φa)(z) = z;

(ii) φa(0) = a, φa(a) = 0;

(iii) φa has a unique fixed point in D.

In fact, φa(z) = a−z
1−az for all a and z in D. An easy calculation shows that

the derivative of φa at z is equal to −ka(z). It follows that the real Jacobian

determinant of φa at z is Jφa(z) = |ka(z)|2 = (1−|a|2)
|1−az|4 . For any f ∈ L1(D, dA),

we define a function Bf on D by

Bf(z) =

∫
D
f(φz(w))dA(w) =

∫
D
f(w)|kz(w)|2dA(w).
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The map B is called the the Berezin transform [7], [4] on D. The layout of
this paper is as follows: In section 2, we construct the Berezin-type map
E on L2

a(C+) by defining some elementary functions and discuss certain al-
gebraic properties of the operator. Section 3 is devoted to establish that

the operator E is not a bounded operator on L1(C+, dÃ) and show that
the sequence {En} converges to 0 in norm in the space L2(C+, dµ) where

dµ(w) = |B(w,w)|dÃ(w), w ∈ C+. Further, we prove that the integral op-

erator D given by (Df)(s) =

∫
C+

f(w)|bw(s)|2dÃ(w), s ∈ C+ is a contrac-

tion on L1(C+, dÃ) which maps L∞(C+) boundedly into Lp(C+, dÃ) for

1 ≤ p <∞. In section 4, we show that if f ∈ L1(C+, dÃ) is harmonic, then
Ef = Jf where (Jf)(w) = f(w) and if f ∈ L2(C+, dµ) and Ef = Jf then

f ≡ 0. Further, if f ∈ L1(C+, dÃ) is a real-valued subharmonic function on
C+ which admits an integrable harmonic majorant then the functions Enf
are subharmonic for all n ∈ N and Enf → Ju where u is the least harmonic
majorant of f.

2 The Berezin-type map

In this section, we construct the Berezin-type map E on L2
a(C+) and

discuss certain algebraic properties of the operator. But first we introduce
some elementary functions and their basic properties.

Define M : C+ → D by Ms = 1−s
1+s . Then M is one-one, onto and

M−1 : D → C+ is given by M−1(z) = 1−z
1+z . Thus M is its self-inverse.

Let W : L2
a(D) → L2

a(C+) be defined by Wg(s) = 2√
π
g(Ms) 1

(1+s)2
. Then

W−1 : L2
a(C+) → L2

a(D) is given by W−1G(z) = 2
√
πG(Mz) 1

(1+z)2
, where

Mz = 1−z
1+z . If a ∈ D and a = c + id, c, d ∈ R, then ta(s) = −ids+(1−c)

(1+c)s+id is an

automorphism from C+ onto C+ and

(i) (ta ◦ ta)(s) = s.

(ii) t′a(s) = −la(s), where la(s) = 1−|a|2
((1+c)s+id)2

.

Let w ∈ C+ and w = Ma, a ∈ D. For f ∈ L1(C+, dÃ), define (Ef)(w) =

f̃(w) =

∫
C+

f(s)|bw(s)|2dÃ(s), w ∈ C+ where bw(s) = 1√
π

1+w
1+w

2Rew
(s+w)2

. Notice

that bw ∈ L∞(C+) for all w ∈ C+. Let B(s, w) = Bw(s) = 1
π

(1+a)2

(1−aMs)2
1

(1+s)2

and dµ(w) = |B(w,w)|dÃ(w), w ∈ C+.

Lemma 2.1. Let s, w ∈ C+. The following relations hold:
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(i) (bw(w))2 = B(w,w).

(ii) |bw(s)| ||Bw|| = |Bw(s)|.

Proof. Let w ∈ C+ and w = Ma = 1−a
1+a . Since

bw(s) =
1√
π

1 + w

1 + w

2Rew

[s+ w]2

=
2√
π

1− |a|2

(1 + a)2

1

[s+ w]2
,where

1− a
1 + a

= w,

=
2√
π

1− |a|2

(1 + a)2

1[
s+ 1−a

1+a

]2

=
2√
π

1− |a|2

[1− a(Ms)]2
1

(1 + s)2
,

we obtain

bw(w) =
2√
π

(1− |a|2)

(1− aMw)2

1

(1 + w)2

=
1

2
√
π

(1 + a)2

(1− |a|2)
.

Thus

bw(s)bw(w) =
2√
π

(1− |a|2)

(1− aMs)2

1

(1 + s)2

1

2
√
π

(1 + a)2

(1− |a|2)

=
(−1)

2π

(1 + a)2

(1− aMs)2
M ′

= B(s, w).

Hence bw(s) = B(s,w)
bw(w) and (bw(w))2 = B(w,w). This proves (i). To prove
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(ii), notice that

||Bw||2 =

∫
C+

|Bw(s)|2dÃ(s)

=

∫
C+

|B(s, w)|2dÃ(s)

=

∫
C+

|bw(w)|2|bw(s)|2dÃ(s)

= |bw(w)|2
∫
C+

|bw(s)|2dÃ(s)

= |bw(w)|2||bw||22 = |bw(w)|2,

since ||bw||2 = 1. Thus ||Bw|| = |bw(w)| and |bw(s)| ||Bw|| = |Bw(s)|.

Theorem 1. Let f ∈ L1(C+, dÃ). The following hold:

(i) If f is bounded, then so is Ef = f̃ and ‖f̃‖∞ ≤ ‖f‖∞. In other words,
E is a contraction in L∞(C+).

(ii) The norm of E on L∞(C+, dÃ) is equal to 1.

(iii) If f ≥ 0, then f̃ ≥ 0; if f ≥ g, then f̃ ≥ g̃.

(iv) The mapping E : f 7→ f̃ is a contractive linear operator on each of the

spaces Lp(C+, dµ(z)), 1 ≤ p ≤ ∞ where dµ(w) = |B(w,w)|dÃ(w).

(v) For arbitrary f ∈ L1(C+, dÃ), f̃(w) = 1
π

∫
C+

(f ◦ta◦M)(s)dÃ(s) where

a = Mw.

(vi) f̃ is an infinitely differentiable function on C+.

(vii) For f ∈ L1(C+, dÃ), define Taf = f ◦ta for a ∈ D. Then (ETaf)(w) =
(TaEf)(w).

Proof. (i) For proof of (i), assume f ∈ L∞(C+). Then

|f̃(w)| = 〈fbw, bw〉 ≤ ‖fbw‖2‖bw‖2 ≤ ‖f‖∞‖bw‖22 = ‖f‖∞.

(ii) Since f = f̃ when f is a constant function, hence the norm of E on

L∞(C+, dÃ) is equal to 1.
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(iii) The operator E is an integral operator with positive kernel. Thus if

f ≥ 0 then f̃ ≥ 0. If f ≥ g, let h = f − g. Then h ≥ 0 and therefore

h̃ ≥ 0. Hence f̃ ≥ g̃.

(iv) Since L1(C+, dµ) ⊂ L1(C+, dÃ), the operator E is defined on the for-
mer space, and

|f̃(w)| = |
∫
C+

f(s)|bw(s)|2dÃ(s)| ≤ E(|f |)(s).

Hence if Bw(s) = (−1)
2π

(1+a)2

(1−aMs)2
M ′(s) then∫

C+

|f̃(w)||B(w,w)|dÃ(w)

≤
∫
C+

(∫
C+

|f(s)||bw(s)|2dÃ(s)

)
|B(w,w)|dÃ(w)

=

∫
C+

|f(s)|
∫
C+

|Bw(s)|2dÃ(w)dÃ(s)

=

∫
C+

|f(s)|〈Bw, Bw〉dÃ(s)

=

∫
C+

|f(s)||B(s, s)|dÃ(s),

,

the change of order of integration being justified by the positivity of
the integrand. It thus follows that E is a contraction on L1(C+, dµ).
The same is true for L∞(C+), and so the result follows from the
Marcinkiewicz interpolation theorem.

(v) Let f ∈ L1(C+, dÃ) and let a = Mw ∈ D. Then

f̃(w) =

∫
C+

f(s)|bw(s)|2dÃ(s)

=

∫
C+

(f ◦ ta)(s)|bw(ta(s))|2|la(s)|2dÃ(s)

=

∫
C+

(f ◦ ta)(s)|Vabw(s)|2dÃ(s)

=

∫
C+

(f ◦ ta)(s)|
(−1)√
π
M ′(s)|2dÃ(s)

= 1
π

∫
C+

(f ◦ ta ◦M)(s)|(M ′ ◦M)(s)|2|M ′(s)|2dÃ(s)

= 1
π

∫
C+

(f ◦ ta ◦M)(s)dÃ(s).
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(vi) The function f̃ is an infinitely differentiable function on C+. To see

this, let f ∈ L1(C+, dÃ). Then f ◦M ∈ L1(D, dA) and f̃(w) = B(f ◦
M)(a) where w = Mā ∈ C+ and a ∈ D. Now

B(f ◦M)(a) = 〈(f ◦M)ka, ka〉 =

∫
D

(1− |a|2)2

|1− āz|4
(f ◦M)(z)dA(z) (1)

where ka is the normalized reproducing kernel at a ∈ D and ka(z) =
(1−|a|2)
|1−āz|2 . Let a = x + iy ∈ D, x, y ∈ R. Denote ∂

∂a = 1
2( ∂
∂x − i ∂∂y )

and ∂
∂ā = 1

2( ∂
∂x + i ∂∂y ). It is not difficult to verify that ∂

∂a
(1−|a|2)2

|1−āz|4 =

2(z̄−ā)(1−āz)(1−|a|2)
|1−āz|6 . Since |z− a| · |1− āz| = |1− āz|2| z−a1−āz | ≤ |1− āz|

2,

it follows that

|f(z) · ∂
∂a

(1− |a|2)2

|1− āz|4
| ≤ ‖f‖∞

2(1− |a|2)

|1− āz|4
≤ 2‖f‖∞

(1− |a|)4
.

This is uniformly bounded when a ∈ B(a0, ε), a0 ∈ D and ε > 0 is
sufficiently small. Consequently, it is allowed to differentiate under

the integral sign in the formula (1), which gives ∂B(f◦M)
∂a =

∫
D

(f ◦

M)(z)
2(z̄ − ā)(1− āz)(1− |a|2)

|1− āz|6
dA(z). Thus f̃(w) = B(f ◦M)(a) is

infinitely differentiable.

(vii) To prove (vii), we shall first verify that (Bf)(φa(z)) = B(f ◦ φa)(z)
for all a, z ∈ D. Let G0 = {ψ ∈ Aut(D) : ψ(0) = 0}. For any a and b
in D, let U = φb ◦ φa ◦ φφa(b). Then U(0) = φb ◦ φa(φa(b)) = φb(b) = 0.
Thus U ∈ G0 is a unitary and φb ◦ φa = Uφφa(b). Now by a change of
variable, we obtain

Bf(φa(z)) =

∫
D
f(w)|kφa(z)(w)|2dA(w)

=

∫
D
f(φa(w))|kφa(z) ◦ φa(w)|2|ka(w)|2dA(w).

Hence there exists a unitary U with

φφa(z) ◦ φa = Uφφa◦φa(z) = Uφz.

Taking the real Jacobian determinants of the above equation, we get

|kφa(z) ◦ φa(w)|2|ka(w)|2 = |kz(w)|2
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for all a, z and w in D. Therefore,

Bf(φa(z)) =

∫
D
f(φa(w))|kz(w)|2dA(w)

= B(f ◦ φa)(z).

For f ∈ L1(C+, dÃ), f̃(w) =

∫
C+

f(s)|bw(s)|2dÃ(s) = B(f ◦M)(a).

Thus (Ef)(Ma) = B(f ◦M)(a). Now for z ∈ D,

B((f ◦M) ◦ φa)(z) = [B(f ◦M) ◦ φa](z) = B(f ◦M)(φa(z)).

That is,

E(f ◦M ◦ φa ◦M)(Mz̄) = (Ef)(Mφa(z)).

Hence E(f ◦ ta)(Mz̄) = (Ef)((M ◦ φa)(z)) = (Ef)((ta ◦M)(z)). Thus

E(f ◦ ta)(Mz) = (Ef)((ta ◦M)(z̄)) and therefore

E(f ◦ ta)(w) = (Ef)((ta ◦M)(Mw̄))

= (Ef)(ta(w))
= (Ef)(ta(w)).

(2)

Thus from (2) it follows that (ETaf)(w) = Ta(Ef)(w) = (TaEf)(w).

3 Boundedness of the Berezin-type map

In this section we establish that the operator E is not a bounded operator

on L1(C+, dÃ). Further, we prove that the integral operator D given by

(Df)(s) =

∫
C+

f(w)|bw(s)|2dÃ(w), s ∈ C+ is a contraction on L1(C+, dÃ)

which maps L∞(C+) boundedly into Lp(C+, dÃ) for 1 ≤ p <∞.

Proposition 3.1. The operator E is not a bounded operator on L1(C+, dÃ).

Proof. : If it were, its adjoint Ed ≡ D, where

(Df)(s) =

∫
C+

f(w)|bw(s)|2dÃ(w), s ∈ C+ (3)

would be a bounded operator on L∞(C+). Let f ∈ L∞(C+). Now if z = Ms
and w = Ma, then
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(Df)(s) =

∫
C+

f(w)|bw(s)|2dÃ(w)

=

∫
C+

f(w)|Wka(s)|2dÃ(w)

= 1
π

∫
C+

f(w)|ka(Ms)|2|M ′(s)|2dÃ(w)

= |M ′(s)|2
π

∫
C+

(f ◦M)(a)|ka(Ms)|2dÃ(Ma)

= |M ′(s)|2
∫
D

(f ◦M)(a)|ka(Ms)|2|M ′(a)|2dA(a).

Hence

(D1)(s) =

∫
C+

|bw(s)|2dÃ(w)

= |M ′(s)|2
∫
D
|ka(Ms)|2|M ′(a)|2dA(a)

≤ ‖M ′‖4∞
∫
D
|ka(z)|2dA(a)

≤ 24

∫
D
|ka(z)|2dA(a).

Now∫
D
|ka(z)|2dA(a) =

∫
D

(1− |a|2)2

|1− az|4
dA(a)

=

∫ 1

0
(1− r2)2 1

2π

∫ 2π

0

1

|1− zreit|4
dt2rdr

=

∫ 1

0
(1− r2)2

∞∑
n=0

(n+ 1)2r2n|z|2n2rdr

since ∫ 2π

0

1

|1− zreit|4
dt = 1+|z|2r2

(1−|z|2r2)3

=

∞∑
n=0

(n+ 1)2r2n|z|2n,

for z ∈ D and r ∈ (0, 1). Thus

|(D1)(s)| ≤ 24

∫ 1

0

∞∑
n=0

(n+ 1)2(1− t)2tn|z|2ndt

= 24
∞∑
n=0

2(n+ 1)

(n+ 2)(n+ 3)
|z|2n
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where s = Mz. As |z| → 1, this expression behaves (asymptotically) like
−24 log(1 − |z|2), hence D1 /∈ L∞(C+), so D ≡ Ed cannot be a bounded
operator on L∞(C+).

Lemma 3.1. The integral operator D given by (3) is a contraction on

L1(C+, dÃ) which maps L∞(C+) boundedly into Lp(C+, dÃ) for 1 ≤ p <∞.

Proof. For arbitrary f ∈ L1(C+, dÃ), by Fubini’s theorem [6] it follows that∫
C+

|(Df)(s)|dÃ(s) ≤
∫
C+

∫
C+

|bw(s)|2|f(w)|dÃ(w)dÃ(s)

=

∫
C+

|f(w)|
∫
C+

|bw(s)|2dÃ(s)dÃ(w)

=

∫
C+

|f(w)|〈bw, bw〉dÃ(w)

=

∫
C+

|f(w)|dÃ(w),

so D is a contraction on L1(C+, dÃ). If f ∈ L∞(C+), then

|(Df)(s)| ≤ ‖f‖∞
∫
C+

|bw(s)|2dÃ(w) = ‖f‖∞|(D1)(s)|.

Hence, to prove the second assertion of the lemma, it suffices to check that

D1 belongs to Lp(C+, dÃ) for each p ∈ [1,∞). We have already observed
that (D1)(s) behaves like −24 log(1 − |Ms|2) as |Ms| → 1, so it is enough
to show that log(1− |z|2) ∈ Lp(D, dA) for all p ∈ [1,∞). Now,∫

D
| log(1− |z|2)|pdA(z) =

∫ 1

0
| log(1− r2)|p2rdr =

∫ 1

0
| log(1− t)|pdt =∫ 1

0
| log t|pdt, and, changing the variable to y = − log t, this reduces to∫ ∞

0
ype−ydy = Γ(p+ 1) <∞.

On D, the only measure left invariant by all Möbius transformations eiθφa(z),

θ ∈ R is the pseudo-hyperbolic measure dη(z) = dA(z)
(1−|z|2)2

= K(z, z)dA(z).

The invariance may be verified by direct computation. It turns out that the
Berezin transform behaves well [7] with respect to the invariant measures.
Consider the Fourier-Helgason transform [5], [3] on the disk. It maps a

function f(z) on the disk into a function f̂(t, b) of t ∈ R and b on the unit
circle T = {z ∈ C : |z| = 1}. In fact

f̂(t, b) =

∫
D
f(x)et,b(x)dη(x)
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where et,b(x) =
(

1−|x|2
|b−x|2

) 1
2

+it
, x ∈ D, t ∈ R and b ∈ T. On L2(D, dη) with

respect to the invariant measure, the Berezin transform is a Fourier multi-
plier with respect to the Fourier-Helgason transform; the multiplier function
being (t2 + 1

4) π
cosh(πt) , t ∈ R. That is, for the Berezin transform B one has

(̂Bf)(t, b) = m(t)f̂(t, b) where m(t) = (t2 + 1
4) π

cosh(πt) . For more details see

[5] and [2].

Lemma 3.2. The following is true for the Berezin-type map E as an oper-

ator on L2(C+, dµ) where dµ(w) = |B(w,w)|dÃ(w), w ∈ C+.

(i) E is positive.

(ii) En converges to 0 in SOT.

(iii) En converges to 0 in norm.

Proof. We shall first show that f ∈ L2(D, dη) if and only if f ◦ M ∈
L2(C+, dµ). So let f ∈ L2(D, dη) where dη(z) = dA(z)

(1−|z|2)2
= K(z, z)dA(z).

For w = Ma,∫
D
|f(a)|2K(a, a)dA(a) =

∫
D
|f(a)|2|B(w,w)

K(a, a)

B(w,w)
|dA(a)

=

∫
D
|f(a)|2|B(w,w)| |K(a, a)|

|B(w,w)|
dA(a)

= 4π

∫
D
|f(a)|2|B(w,w)| 1

|1 + a|4
dA(a)

= 4π

∫
D
|f(a)|2|B(Ma,Ma)| 1

|1 + a|4
dA(a)

= π

∫
D
|(f ◦M)(Ma)|2|M ′(a)|2|B(w,w)|dA(a)

=

∫
C+

|(f ◦M)(w)|2|B(w,w)|dÃ(w).

Now we proceed to prove that the Berezin transform B is positive as
an operator on L2(D, dη). Observe that the function m(t) has a maxi-
mum at t = 0 with value π

4 . By spectral theorem, B has thus norm π
4 ,

which is strictly less than 1. Using the Fourier-Helgason transform, one has
(by Plancherel theorem, which also holds [5] for this transform) 〈Bf, f〉 =

〈(̂Bf), f̂〉 =

∫
R

∫
T
m(t)|f̂(t, b)|2dtdb ≥ 0 since the multiplier function m(t) =

(t2 + 1
4) π

cosh(πt) is positive. Thus the operator B is positive. This also

gives the spectral decomposition of B. Let E(λ) be the resolution of iden-
tity for the self-adjoint operator B. Then ‖Bnf‖2 =

∫
[0,π

4
] |λ

n|2d〈E(λ)f, f〉.
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According to the Lebesgue monotone convergence theorem, this tends to
‖(I −E(1−))f‖2 = ‖Pker(B−I)f‖2 where Pker(B−I) is the orthogonal projec-

tion from L2
a(D) onto ker(B − I).

Further notice that if f ∈ L2(D, dη) is harmonic then f ≡ 0. To see this,
let

M(r) =
1

2π

∫ 2π

0
|f(reit)|2dt.

This is a nonnegative and nondecreasing function of r. Now,

‖f‖2L2(D,dη) =

∫ 1

0
M(r)

2r

(1− r2)2
dr <∞.

So M(r) must tend to zero as r → 1. Thus M(r) ≡ 0, whence f ≡ 0. Thus
it follows that ker(I − B) = {0} since 1 is not in the spectrum of B and
hence, ‖Bnf‖ tends to zero. In fact, even ‖Bn‖ tends to zero as ‖B‖ < 1.
Since (Eng)(Ma) = Bn(g ◦ M)(a), a ∈ D for g ∈ L2(C+, dµ), the result
follows.

4 Harmonic and subharmonic functions

In this section we show that if f ∈ L1(C+, dÃ) is harmonic, then f̃ = Jf

where (Jf)(w) = f(w) and if f ∈ L2(C+, dµ) and f̃ = Jf then f ≡ 0.

Further if f ∈ L1(C+, dÃ) is a real-valued subharmonic function on C+

which admits an integrable harmonic majorant then the functions Enf are
subharmonic for all n ∈ N and Enf → Ju where u is the least harmonic
majorant of f.

Theorem 2. If a function f ∈ L1(C+, dÃ) is harmonic, then f̃ = Jf where

(Jf)(w) = f(w). If f ∈ L2(C+, dµ) and f̃ = Jf then f ≡ 0.

Proof. Notice that if w = Ma,

f̃(w) = 〈fbw, bw〉
= 〈fWka,Wka〉
= B(f ◦M)(a).

Let f = Wg = (−1)√
π

(g◦M)M ′, g ∈ L1(D, dA). Now f is harmonic implies

(g ◦M)M ′ is harmonic and therefore g(M ′ ◦M) is harmonic. Thus g
M ′ and
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g
M ′ ◦ φa are harmonic. Hence

f̃(w) = B(f ◦M)(a)

= (−1)√
π
B[((g ◦M)M ′) ◦M ](a)

= (−1)√
π
B(g(M ′ ◦M))(a)

= (−1)√
π

(−1)
√
π
(

(f◦M)M ′

M ′

)
(a)

= (f ◦M)(a) = f(Ma) = f(w)
= (Jf)(w)

since (M ′ ◦M)M ′ = 1 and |ka(φa(z))||ka(z)| = 1.
Suppose f ∈ L2(C+, dµ) is harmonic. Then f◦M ∈ L2(D, dη). Now since

f̃(w) = (Jf)(w) = f(w) for all w ∈ C+, hence B(f ◦M)(a) = (f ◦M)(a)
for all a ∈ D. Therefore f ◦M is harmonic in D and f ◦M ∈ L2(D, dη) ⊂
L2(D, dA). Thus f is harmonic in C+.

But the only harmonic function in L2(C+, dµ) is constant zero. To see
this, let f ∈ L2(C+, dµ) is harmonic. Then g = f ◦ M ∈ L2(D, dη) is

harmonic. Let M(r) = 1
2π

∫ 2π

0
|g(reit)|2dt. This is a nonnegative and non-

decreasing function of r and

‖g‖2L2(D,dη) =

∫ 1

0
M(r)

2r

(1− r2)2
dr <∞.

Thus M(r) must tend to zero as r → 1. Thus M(r) ≡ 0. Hence g ≡ 0.
That is, f ◦M ≡ 0. This implies f ≡ 0.

Theorem 3. Assume that f ∈ L1(C+, dÃ) is a real-valued subharmonic
function on C+ which admits an integrable harmonic majorant (i.e., there

exists a function v ∈ L1(C+, dÃ) harmonoic on C+ and such that v(s) ≥
f(s) for all s ∈ C+.) Then Enf → Ju where u is the least harmonic majo-
rant of f.

Proof. Let f ∈ L1(C+, dÃ) is a real-valued subharmonic function on C+.
Then f ◦ M ∈ L1(D, dA) is real-valued subharmonic function on D. If f
admits an integrable harmonic majorant v then f ◦M admits an integrable
harmonic majorant v ◦M on D and if u is the least harmonic majorant of f
on C+ then u ◦M is the least harmonic majorant of f ◦M on D.

According to a theorem of Frostman ([3]), there exists a positive Borel
measure κ on D such that

f(s) = u(s) +
1

4

∫
D

ln|φMs(z1)|2dκ(z1)
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for all s ∈ C+. Let g(z1) = ln|z1|2. Since |φMs(z1)| = |φz1(Ms)|, we have

f(s) = u(s) + 1
4

∫
D(g ◦ φz1)(Ms)dκ(z1).

Hence

(Ef◦M)(z̄) = (Eu◦M)(z̄)+

∫
D

(1− |z|2)2

|1−Msz|4
1

4

∫
D

(g◦φz1)(Ms)dκ(z1)dA(Ms).

(4)

Since f ≤ u ≤ v and f, v ∈ L1(C+, dÃ), we have u ∈ L1(C+, dÃ). Further,
from Theorem 2 , it follows that (Eu ◦M) = (Ju ◦M). Since (g ◦ φz1)(Ms)
takes nonpositive values, we may interchange the order of integration in (4),
to obtain

(Ef ◦M)(z̄) = (Eu ◦M)(z̄) +
1

4

∫
D
B(g ◦ φz1)(z)dκ(z1). (5)

Proceeding by induction, we obtain

(Enf ◦M)(z̄) = (Eu ◦M)(z̄) +
1

4

∫
D
Bn(g ◦ φz1)(z)dκ(z1).

We shall now show that

Bn(g ◦ φz1)(z)→ 0

as n→∞, for all z1, z ∈ D. Notice that Bn(g ◦ φz1) = (Bng) ◦ φz1 . Thus it
is suffices to prove that Bng → 0. It is not difficult to show that (Bg)(z1) =
|z1|2 − 1. Thus g ≤ Bg. This implies Bkg ≤ Bk+1g for all k ∈ N. So

g ≤ Bg ≤ B2g ≤ B3g ≤ · · · ≤ 0.

Hence the limit lim
n→∞

(Bng)(z1) = Ψ(z1) must exist and Ψ ≤ 0. From

Lebesgue monotone convergence theorem, it follows that

(BΨ)(z) =

∫
D

(Ψ ◦ φz)(w)dA(w)

=

∫
lim
n→∞

(Bng)(φz(w))dA(w)

= lim
n→∞

∫
Bn(g ◦ φz)(w)dA(w)

= lim
n→∞

Bn(

∫
(g ◦ φz)(w)dA(w))

= lim
n→∞

(Bn+1g)(z) = Ψ(z).



166 Namita Das

We claim that Ψ ≡ 0. Assume the contrary. Because |z1|2− 1 = (Bg)(z1) ≤
Ψ(z1) ≤ 0, we have lim

|z1|→1
Ψ(z1) = 0. Consequently, Ψ must attain its infi-

mum at some point z2 ∈ D– suppose (replacing Ψ by Ψ◦φz2 otherwise) that

z2 = 0. Then Ψ(0) = (BΨ)(0) =

∫
D

Ψ(z1)dA(z1) > inf
z1∈D

Ψ(z1)

∫
D
dA(z1) =

Ψ(0). This is a contradiction. Hence Ψ ≡ 0.
Because κ is a positive measure, we may apply the Lebesgue monotone

convergence theorem to conclude that (Enf) ◦M → (Ju) ◦M as n → ∞.
Thus (Enf)→ Ju as n→∞.

Remark 4.1: If f is real-valued, subharmonic and f ∈ L2(C+, dµ), we may
proceed a little more quickly. The subharmonicity of f implies that f ◦M
is real-valued, subharmonic and h1 = f ◦M ∈ L2(D, dη) and for a ∈ D,

(Bh1)(a) =

∫
D

(h1 ◦ φa)(z))dA(z) ≥ h1(φa(0)) = h1(a),

that is, Bh1 ≥ h1. Further, B commutes with 4h, where 4h := (1 −
|z|2)2 ∂2

∂z∂z̄ , the Laplace-Beltrami operator on D.Hence4hBh1 = B(4hh1) ≥
0 since 4hh1 ≥ 0; in other words, Bh1 is also subharmonic. Proceeding by
induction, we obtain a nondecreasing sequence {Bkh1}k∈N of subharmonic
functions. Their limit Ψ is either identically +∞, or is a subharmonic func-
tion satisfying BΨ = Ψ. Since Ψ ∈ L2(D, dη), the former case cannot occur;
further,

Ψ(0) = (BΨ)(0) =

∫
D

Ψ(z)dA(z),

and so Ψ is actually harmonic; hence, it is a harmonic majorant of h1 =
f ◦ M. If Υ is another harmonic majorant of h1, then h1 ≤ Υ implies
Bnh1 ≤ BnΥ = Υ, whence also Ψ ≤ Υ; consequently, Ψ is the least har-
monic majorant of h1 = f ◦ M. This in turn implies Ψ ◦ M is the least
harmonic majorant of f and Enf → J(Ψ ◦M) as n→∞.

Theorem 4. Assume f ∈ L1(C+, dÃ) is real-valued subharmonic function
on C+ which admits an integrable harmonic majorant v. Then the functions
Enf are subharmonic for all n ∈ N.

Proof. Let 0 < R < 1. From [3], it follows that

f(s) = u(s) +
1

4

∫
D

ln|φMs(z1)|2dκ(z1)

for all s ∈ C+. Since |φMs(z1)| = |φz1(Ms)|, hence

f(s) = u(s) +
1

4

∫
D

(g ◦ φz1)(Ms)dκ(z1)
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where g(z) = ln |z|2. Thus

(Ef◦M)(z̄) = (Eu◦M)(z̄)+

∫
D

(1− |z|2)2

|1−Msz|4
1

4

∫
D

(g◦φz1)(Ms)dκ(z1)dA(Ms).

Hence it follows that

1

2π

∫ 2π

0
(Ef ◦M)(Re−it)dt

=
1

2π

∫ 2π

0
(u ◦M)(Reit)dt+

1

2π

∫ 2π

0

1

4

∫
D
B(g ◦ φz1)(Reit)dκ(z1)dt.

Since the second integrand is nonpositive, we may interchange the order of
integration; consequently,

1

2π

∫ 2π

0
(Ef ◦M)(Re−it)dt

= (u ◦M)(0) +
1

4

∫
D

(
1

2π

∫ 2π

0
B(g ◦ φz1)(Reit)dt

)
dκ(z1).

It is not difficult to check that if g(x) = ln |x|2, then (Bg)(x) = |x|2− 1 and
therefore B(g ◦ φz1)(z) = |φz1(z)|2 − 1 is a subharmonic function of z. This
implies

1

2π

∫ 2π

0
B(g ◦ φz1)(Reit)dt ≥ B(g ◦ φz1)(0).

Hence

1

2π

∫ 2π

0
(Ef◦M)(Re−it)dt ≥ (u◦M)(0)+

1

4

∫
D
B(g◦φz1)(0)dκ(z1) = (Ef◦M)(0)

for every R ∈ (0, 1). Similarly one can show that

1

2π

∫ 2π

0
(E(f ◦ ta) ◦M)(Re−it)dt ≥ (E(f ◦ ta) ◦M)(0)

for 0 < R < 1. Thus B(f ◦M) satisfies the sub-mean value property, and
therefore is subharmonic on D. Hence Ef ◦ M is subharmonic on D and
therefore Ef is subharmonic on C+. Since f ≤ v, hence f ◦M ≤ v ◦M.
Therefore B(f ◦ M) ≤ B(v ◦ M) = v ◦ M. Thus B(f ◦ M) also has an
integrable harmonic majorant and Ef ◦M also has an integrable harmonic
majorant . Consequently, we may proceed by induction, and the theorem
follows.



168 Namita Das

Remark 4.2: There is no nonzero harmonic function in L2(C+, dµ), but
there are plenty of subharmonic functions. The functions Eng, n ∈ N where
g(s) = ln |Ms|2 = ln |1−s1+s |

2, s ∈ C+ serve as an example. This can be verified
as follows:∫

C+

|g(w)|2|B(w,w)|dÃ(w) =

∫
D
|(g ◦M)(Mw)|2K(Mw,Mw)dA(Mw)

=

∫
D
|(g ◦M)(z)|2K(z, z)dA(z)

=

∫
D

(ln |z|2)2 dA(z)

(1− |z|2)2

=

∫ 1

0

(
lnt

1− t

)2

dt

=

∫ 1

0

∞∑
n=0

∞∑
m=0

tm+nln2tdt

=
∞∑
n=0

∞∑
m=0

2

(m+ n+ 1)3

=
∞∑
k=0

2

(k + 1)2

= π2

3 < +∞.

Hence g ∈ L2(C+, dµ) and g is subharmonic, and therefore by Theorem 4,
Eng is subharmonic for all n ∈ N.

Given a bounded real-valued subharmonic function on D, the boundary
values of its least harmonic majorant can be described explicitly. In fact if Φ
is a bounded real-valued subharmonic function on D, define Φ on T (the unit

circle in C) by Φ(eiθ) = lim
r→1

supΦ(reiθ), and let Ψ be the Poisson extension

of Φ|T into the interior of D. Then Ψ is the least harmonic majorant of Φ.
The following is also valid.

Theorem 5. Suppose φ is a bounded real-valued subharmonic function on
C+. Define φ on iR by

φ(iy) = lim sup
x→0

φ(x+ iy), x > 0,

and let ψ be the Poisson extension of φ |iR into C+. Then ψ is the least
harmonic majorant of φ.

Proof. Let φ be a bounded real-valued subharmonic function on C+. Then
φ ◦M is a real-valued subharmonic function on D. Let

(φ ◦M)(ε) = lim sup
r→1

(φ ◦M)(rε), ε ∈ T,
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and let ψ ◦M be the Poisson extension of φ ◦M |T into D. Then it is not
difficult to see that ψ ◦M is the least harmonic majorant of φ ◦M. To see
this, let u ◦M be the least harmonic majorant of φ ◦M. Except for ε on a
set of measure(arc-length measure) zero, we have

lim
r→1

(u ◦M)(rε) ≥ lim sup
r→1

(φ ◦M)(rε) = (φ ◦M)(ε) = lim
r→1

(ψ ◦M)(rε).

It follows thus that the bounded harmonic function (u − ψ) ◦M = u ◦
M − ψ ◦M has nonnegative radial limits almost everywhere on T; hence,
u ◦M ≥ ψ ◦M on D. We shall now show that u ◦M ≤ ψ ◦M. Because
subharmonicity and harmonicity is invariant under Mobius transformations,
it suffices to show that (ψ ◦M)(0) ≥ (u ◦M)(0). Without loss of generality,
we shall assume that φ ◦M ≤ 0, hence also u ◦M ≤ 0 and ψ ◦M ≤ 0.
Applying the Fatou’s lemma to the function t→ (φ ◦M)(reit), we obtain

1

2π

∫ 2π

0
lim sup

r→1
(φ ◦M)(reit)dt ≥ lim sup

r→1

1

2π

∫ 2π

0
(φ ◦M)(reit)dt. (6)

The left hand side of (6) is equal to (ψ ◦M)(0) and in the right hand
side, we can replace limsup by either lim or by sup and the right hand side
equals (u ◦M)(0). Thus ψ ◦M is the least harmonic majorant of φ ◦M.
Hence ψ is the least harmonic majorant of φ as claimed.

Let
V (C+) = {f ∈ L∞(C+) : ess lim

x→0
f(x+ iy) = 0}

and
V (D) = {f ∈ L∞(D) : ess lim

|z|→1
f(z) = 0}.

Theorem 6. If f ∈ V (C+), then Enf converges uniformly to 0.

Proof. Let f ∈ V (C+). Then ess lim
Res→0

f(s) = 0. That is, ess lim
|z|→1

(f ◦

M)(z) = 0. Hence f ◦M ∈ V (D). We shall now show that Bn(f ◦M) → 0
uniformly. That will imply (Enf)◦M → 0 uniformly and therefore Enf → 0
uniformly. Let g = f◦M ∈ V (D). Without loss of generality, we shall assume
g ≤ 0 since B is linear. As D(D) (the set of all infinitely differentiable
functions on D whose support is a compact subset of D) is dense in V (D)
and B is a contraction on L∞(D), we shall consider only g ∈ D(D). So
assume g ≤ 0 and support of g is contained in {z ∈ D : |z| < R}, 0 < R < 1.
Define the function G on [0, 1] as follows:

G(t) = −‖g‖∞, if 0 ≤ t ≤ R,
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G(1) = 0 and G(t) is linear on [R, 1],

and set Φ(z) = G(|z|), z ∈ D. The function Φ is subharmonic, its least
harmonic majorant being constant zero. By Theorem 3, BnΦ → 0, since
Φ = 0 on ∂D = T. By Dini’s theorem, {BnΦ} converges uniformly to 0. But
Φ ≤ g ≤ 0, hence BkΦ ≤ Bkg ≤ 0 and so {Bn(f ◦M)} = {Bng} converges
uniformly to 0 as well. Thus Enf → 0 uniformly on C+.

Corollary 1. Suppose f ∈ C(C+ ∪ iR). Then {Enf} converges uniformly
to Jh, where h is the harmonic function whose boundary values coincides
with f |iR .

Proof. Because f ∈ C(C+ ∪ iR), hence f ◦M ∈ C(D) and f ◦M |T ∈ C(T).
Let h ◦M be the harmonic extension of f ◦M into D. Then h ◦M ∈ C(D)
and f ◦M − h ◦M ∈ V (D) and Bn(f ◦M − h ◦M)→ 0 uniformly. That is,
Bn((f −h)◦M)→ 0 uniformly. But B(h◦M) = h◦M. Hence {Bn(f ◦M)}
converges uniformly to h◦M. This implies (Enf)◦M → J(h◦M) = (Jh)◦M.
Thus {Enf} converges uniformly to Jh.
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