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Abstract

We investigate algebraic and analytic properties of Pauli-quaternions.
Also, we compose a polar form and De Moivre’s formula over Pauli-
quaternions and research their characteristics by using the isomor-
phism of the Pauli matrices.
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1 Introduction

In mathematical physics, the Pauli matrices are Hermitian and unitary
which are elements of a set of three 2× 2 complex matrices as follows:

Definition 1. [5] [p.213] The Pauli matrices are real (2×2)-matrices which
are linear combinations of the basis matrices

1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

whose multiplication rules are σ21 = σ22 = σ23 = 1, σ1σ2 = iσ3 = −σ2σ1,
σ2σ3 = iσ1 = −σ3σ2 and σ3σ1 = iσ2 = −σ1σ3.
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These matrices have been introduced by the physicist Wolfgang Pauli. In
quantum mechanics, the Pauli matrices are complex matrices which has the
interaction of the spin with an external electromagnetic field. The real linear
span of {I, iσ1, iσ2, iσ3} is isomorphic to the real algebra of quaternions
H. The isomorphism from H to this set is given by the following map
which is reversed signs for the Pauli matrices: 1 7→ I, i 7→ −iσ1, j 7→
−iσ2, k 7→ −iσ3 (see [1]). Alternatively, the isomorphism can be acted by
a map using the Pauli matrices in reversed order such that 1 7→ I, i 7→
iσ3, j 7→ iσ2, k 7→ iσ1. Specially, many studies have been derived in
physics and mathematics. Altmann [2] presented a consistent description
of the geometric and quaternionic treatment of rotation operators by the
fundamentals of symmetries and matrices. Arvo [3] approached in graphics
programming by using techniques for representing polar forms of matrices
and variables. Ata and Yayli [4] gave one-to-one correspondence between the
elements of the unit split three-sphere with the complex hyperbolic special
unitary matrices. Cho [6] studied Euler’s formula and De Moivre’s formula
for complex numbers are generalized for quaternions. Farebrother et. al [7]
and Jafari and Yayli [8] established that 48 distinct ordered sets of three 4×4
skew-symmetric serve as the basis of an algebra of quaternions and studied
their properties over quaternions. Kim and Shon [9] gave and refined a polar
coordinate expression over split quaternions related to hyperholomorphic
functions.

Based on these studies, we give attention to apply to De Moivre’s formula
over quaternions consisting of Pauli matrices. We investigate algebraic and
analytic properties of Pauli-quaternions. Also, we compose a polar form and
De Moivre’s formula over Pauli-quaternions by using the isomorphism of the
Pauli matrices.

2 Preliminaries

We introduce definitions and notations of the Pauli matrix and quater-
nions represented by Pauli matrices. For detailed definitions and proper-
ties of Pauli matrix, we refer to [10]. A Pauli-quaternion is defined as
p = x01 + x1σ1 + x2σ2 + x3σ3 and a set of Pauli-quaternions is denoted
by HP . The conjugate of a Pauli-quaternion, denoted by p∗, is defined as
p∗ = x01−x1σ1−x2σ2−x3σ3. We give the product for any Pauli-quaternions
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p, q ∈ HP as follows:

pq = (x0y0 + x1y1 + x2y2 + x3y3)1 + {(x0y1 + x1y0) + i(x2y3 − x3y2)}σ1
+{(x0y2 + x2y0) + i(x3y1 − x1y3)}σ2
+{(x0y3 + x3y0) + i(x1y2 − x2y1)}σ3.

Moreover, we have pp∗ = p∗p = (x20 − x21 − x22 − x23)1. Also, the Pauli-
quaternion product may be written as

x0 x1 x2 x3
x1 x0 −ix3 ix2
x2 ix3 x0 −ix1
x3 −ix2 ix1 x0




y0
y1
y2
y3

 .

Let the inner product over Pauli-quaternions I(p) = x20 − x21 − x22 − x23 and
then, the norm of Pauli-quaternions is

N (p) =
√
|pp∗| =

√
|x20 − x21 − x22 − x23|.

For p = x01 + x1σ1 + x2σ2 + x3σ3, if N (p) = 1, then p is called unit
Pauli-quaternions. Also, spacelike and timelike Pauli-quaternions have mul-
tiplicative inverse, denoted by p−1, of p ∈ H∗P , where H∗P = HP \ E with

E = {x01 + x1σ1 + x2σ2 + x3σ3 | x20 = x21 + x22 + x23},

and their property pp−1 = p−1p = 1. On the other hands, lightlike Pauli-
quaternions have no inverses. Referring [8] and [11], we give the following
definition:

Definition 2. p is spacelike if I(p) < 0, p is lightlike if I(p) = 0, p is
timelike if I(p) > 0.

Proposition 1. The set of spacelike Pauli-quaternions is not closed under
multiplication for Pauli-quaternions. On the other hand, the set of timelike
Pauli-quaternions forms a group under multiplication for Pauli-quaternions.

Proof. For any two elements p and q of the set of spacelike Pauli-quaternions,
the equations I(p) = x20−x21−x22−x23 < 0 and I(q) = y20 − y21 − y22 − y23 < 0
are satisfied. However, the product pq satisfies the following equation:

I(pq) = (x0y0 + x1y1 + x2y2 + x3y3)
2 + {(x0y1 + x1y0) + i(x2y3 − x3y2)}2

+{(x0y2 + x2y0) + i(x3y1 − x1y3)}2

+{(x0y3 + x3y0) + i(x1y2 − x2y1)}2

= (x20 − x21 − x22 − x23)(y20 − y21 − y22 − y23).
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Since I(p) < 0 and I(q) < 0, we have I(pq) > 0. Thus, the set of spacelike
Pauli-quaternions is not closed under multiplication. On the other hand, if p
and q are elements of the set of timelike Pauli-quaternions, then I(p) > 0 and
I(q) > 0 are satisfied. Also, since I(pq) > 0 is satisfied, the set of timelike
Pauli-quaternions is a group under multiplication for Pauli-quaternions.

Similarly, the vector part of any spacelike quaternion is spacelike, but
vector part of any timelike quaternion can be spacelike, timelike and null.

3 De Moivre’s Formula for Pauli-quaternions

Now, we express any Pauli-quaternions in a polar form similar to Pauli-
quaternions and quaternions. There are two types of polar forms of the
Pauli-quaternions which are referred by [8] and [10] as follows:
1) If p is spacelike, that is, I(p) = x20 − x21 − x22 − x23 < 0, then

p = N (p)(sinh θ +−→v cosh θ),

where

cosh θ =

√
x21 + x22 + x23
N (p)

and sinh θ =
x0
N (p)

with

N (p) =
√
−x20 + x21 + x22 + x23,

−→v =
x1σ1 + x2σ2 + x3σ3√

x21 + x22 + x23

and −→v 2 = 1.

Proposition 2. Let p = sinh θ + −→v cosh θ be a unit spacelike quaternion.
Then we have pn = sinhnθ + −→v coshnθ if |n| is odd, and pn = coshnθ +
−→v sinhnθ if |n| is even for n ∈ Z, where Z is the set of integers.

Proof. For n = 1, it is trivial. By the properties of hyperbolic functions,
we have p2 = sinh2 θ + cosh2 θ + 2−→v sinh θ cosh θ = cosh 2θ +−→v sinh 2θ and
p3 = sinh 3θ+−→v cosh 3θ. Furthermore, for n = −1, by the properties of the
multiplicative inverse element of HP , we have p−1 = − sinh θ+−→v cosh θ and
p−2 = (p2)−1 = cosh 2θ − −→v sinh 2θ. If the calculation process is repeated,
we can obtain the result.

2) If p is timelike, I(p) = x20 − x21 − x22 − x23 > 0, then

p = N (p)(cosh θ +−→w sinh θ),
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where

sinh θ =

√
x21 + x22 + x23
N (p)

and cosh θ =
x0
N (p)

,

with

N (p) =
√
x20 − x21 − x22 − x23,

−→w =
x1σ1 + x2σ2 + x3σ3√

x21 + x22 + x23

and −→w 2 = 1.

Proposition 3. Let p = cosh θ + −→w sinh θ be a unit spacelike quaternion.
Then we have

pn = coshnθ +−→w sinhnθ (1)

for n ∈ Z, where Z is the set of integers.

Proof. Like the proof process of Proposition (3), by applying the induction,
we can obtain the expression of Equation (1).

We introduce the R-linear transformations representing left and right
multiplication in HP by using the De Moivre’s formula for a corresponding
matrix representation. Let p be a Pauli-quaternion, then ϕLp : HP → HP

and ϕRp : HP → HP defined as follows: for χ ∈ HP ,

ϕLp(χ) = pχ and ϕRp(χ) = χp, (2)

respectively. The Hamilton’s operator ϕLp and ϕRp can be written by the
matrices:

AϕLp
=


a0 a1 a2 a3
a1 a0 −ia3 ia2
a2 ia3 a0 −ia1
a3 −ia2 ia1 a0


and

AϕRp
=


a0 a1 a2 a3
a1 a0 ia3 −ia2
a2 −ia3 a0 ia1
a3 ia2 −ia1 a0

 ,

respectively. For unit Pauli-quaternions χ, the mapping ϕp : HP → HP is
defined by ϕp = ϕLp ◦ϕRp = ϕRp ◦ϕLp . If p and q are Pauli-quaternions and
λ is a real number and ϕLp and ϕRp are operators as defined in equations
AϕLp

and AϕRp
, respectively, then the following properties hold:
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Proposition 4. Let χ, χ1 and χ2 be Pauli-quaternions and let α and β be
real constants. Then,
1) χ1 = χ2 if and only if ϕLp(χ1) = ϕLp(χ2) (ϕRp(χ1) = ϕRp(χ2)),
2) ϕLp(αχ1 + βχ2) = αϕLp(χ1) + βϕLp(χ2),
3) ϕRp(αχ1 + βχ2) = αϕRp(χ1) + βϕRp(χ2),
4) ϕLp(χ)ϕRp(χ) = ϕRp(χ)ϕLp(χ).

Proof. From the definition of ϕLp and ϕLp (see (2)), we can obtain the above
results.

Theorem 1. Let ψL be a mapping defined as

ψL : (HP ,+, ·) → (M(4,R),⊕,⊗);

ψL(x0 + x1σ1 + x2σ2 + x3σ3) →


x0 x1 x2 x3
x1 x0 −ix3 ix2
x2 ix3 x0 −ix1
x3 −ix2 ix1 x0


is an isomorphism.

Proof. By the definition of the equality of a matrix, we have that ψL(x) =
ψL(y), where x = x0 + x1σ1 + x2σ2 + x3σ3 and y = y0 + y1σ1 + y2σ2 + y3σ3,
implies x = y, that is, ψL is injective. For any elements of M(4,R), since
there is an element of HP such that

ψL(x0 + x1σ1 + x2σ2 + x3σ3) →


x0 x1 x2 x3
x1 x0 −ix3 ix2
x2 ix3 x0 −ix1
x3 −ix2 ix1 x0

 , (3)

the mapping ψL is subjective. Also, by using Equation (3), we calculate
ψL(xy) and ψL(x)ψL(y). From comparing with ψL(xy) and ψL(x)ψL(y),
we obtain that ψL(xy) = ψL(x)ψL(y). Therefore, the mapping ψL is an
isomorphism.

Theorem 2. Let ψR be a mapping defined as

ψR : (HP ,+, ·) → (M(4,R),⊕,⊗);

ψR(x0 + x1σ1 + x2σ2 + x3σ3) →


x0 x1 x2 x3
x1 x0 ix3 −ix2
x2 −ix3 x0 ix1
x3 ix2 −ix1 x0


is also an isomorphism.
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Proof. Using the similar process of the proof of Theorem 1, we can also
obtain that ψR is an isomorphism.
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