A REPRESENTATION OF DE MOIVRE'S FORMULA OVER PAULI-QUATERNIONS*

J. E. Kim ${ }^{\dagger}$

Abstract

We investigate algebraic and analytic properties of Pauli-quaternions. Also, we compose a polar form and De Moivre's formula over Pauliquaternions and research their characteristics by using the isomorphism of the Pauli matrices.

MSC: 32A99, 32W50, 30G35, 11E88
keywords: Pauli matrix, quaternions, De Moivre's formula, isomorphism

1 Introduction

In mathematical physics, the Pauli matrices are Hermitian and unitary which are elements of a set of three 2×2 complex matrices as follows:

Definition 1. [5] [p.213] The Pauli matrices are real (2×2)-matrices which are linear combinations of the basis matrices

$$
\mathbf{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

whose multiplication rules are $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\mathbf{1}, \sigma_{1} \sigma_{2}=i \sigma_{3}=-\sigma_{2} \sigma_{1}$, $\sigma_{2} \sigma_{3}=i \sigma_{1}=-\sigma_{3} \sigma_{2}$ and $\sigma_{3} \sigma_{1}=i \sigma_{2}=-\sigma_{1} \sigma_{3}$.

[^0]
[^0]: *Accepted for publication in revised form on June 13-th, 2017
 \dagger jeunkim@pusan.ac.kr Department of Mathematics, Dongguk University, Gyeongju-si 38066, Republic of Korea

