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Abstract

We consider a first-order nonconvex multivalued differential equa-
tion suject to some nonlocal conditions. We establish a Filippov type
existence theorem and we prove the arcwise connectedness of the solu-
tion set of the problem considered.
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1 Introduction

This paper is concerned with the following problem

x′ ∈ F (t, x) a.e. [0, 1], (1.1)

x(0) +
m∑
i=1

aix(ti) = x0, (1.2)
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where ai ∈ R, ai 6= 0, i = 1,m, x0 ∈ R, 0 < t1 < t2 < ... < tm < 1 and
F : [0, 1]×R→ P(R) is a set-valued map.

In the case when F is un upper semicontinuous set-valued map with con-
vex values existence results for problem (1.1)-(1.2) may be found in [2,3]. In
[2] the result uses Bohnenblust and Karlin fixed point theorem for set-valued
maps and in [3], in the case x0 = 0, the approach is based on topological
transversality theory for set-valued maps.

The nonlocal condition (1.2) was used by Byszewski ([4,5]). If ai 6= 0,
i = 1,m the results can be applied in kinematics to determine the evolu-
tion t → x(t) of the location of a physical object for which the positions
x(0), x(t1), ..., x(tm) are unknown but it is known the condition (1.2). Con-
sequently, to describe some physical phenomena the nonlocal condition may
be more useful than the standard initial condition x(0) = x0. Obviously,
when ai = 0, i = 1,m, one has the classical initial condition.

Our aim is to study problem (1.1)-(1.2) in the case when the values of F
are not convex and is twofold. On one hand, we show that Filippov’s ideas
([8]) can be suitably adapted in order to obtain the existence of solutions for
problem (1.1)-(1.2). We recall that for a differential inclusion defined by a
lipschitzian set-valued map with nonconvex values, Filippov’s theorem ([8])
consists in proving the existence of a solution starting from a given almost
solution. Moreover, the result provides an estimate between the starting
almost solution and the solution of the differential inclusion.

On the other hand, following the approach in [10] we prove the arcwise
connectedness of the solution set of problem (1.1)-(1.2). The proof is based
on a result ([9,10]) concerning the arcwise connectedness of the fixed point
set of a class of set-valued contractions.

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel, Section 3 is devoted to the Filippov type
existence theorem and in Section 4 we obtain the arcwise connectedness of
the solution set.

2 Preliminaries

In what follows we denote by I the interval [0, 1], C(I,R) is the Ba-
nach space of all continuous functions from I to R with the norm ||x||C =
supt∈I |x(t)| and L1(I,R) is the Banach space of integrable functions u(.) :

I → R endowed with the norm ||u||1 =
∫ T
0 |u(t)|dt. The Banach space of

all absolutely continuous functions x(.) : I → R with the norm ||x(.)||AC =
|x(0)|+ ||x′(.)||1 will be denoted by AC(I,R).
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Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff
distance of the nonempty closed subsets A,B ⊂ X is defined by

D(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
Next we need the following technical result proved in [2].

Lemma 2.1. Assume that 1 +
∑m

i=1 ai 6= 0. For a given f(.) ∈ C(I,R),
the unique solution x(.) of problem x′ = f(t) with boundary condition (1.2)
is given by

x(t) = a(x0 −
m∑
i=1

ai

∫ ti

0
f(s)ds) +

∫ t

0
f(s)ds,

where a = 1
1+

∑m
i=1 ai

.

Remark 2.2. If we denote G(t, s) = χ[0,t](s)−
∑m

i=1 aaiχ[0,ti](s), where
χS(·) is the characteristic function of the set S, then the solution x(·) in
Lemma 2.1 may be written as

x(t) = ax0 +

∫ 1

0
G(t, s)f(s)ds.

Obviously, |G(t, s)| ≤ 1 + |a|
∑m

i=1 |ai| =: M ∀ t, s ∈ I..

3 A Filippov type existence result

First we recall a selection result ([1]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider B the closed unit ball in Rn, H : I → P(Rn) is a
set-valued map with nonempty closed values g : I → Rn and L : I → [0,∞)
are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e. (I),

then the set-valued map t→ H(t)∩(g(t)+L(t)B) has a measurable selection.
In the sequel we assume the following conditions on F .

Hypothesis 3.2. i) F : I ×R→ P(R) has nonempty closed values and
for every x ∈ R F (., x) is measurable.
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ii) There exists L(.) ∈ L1(I,R) such that for almost all t ∈ I, F (t, .) is
L(t)-Lipschitz in the sense that

D(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ R.

We are now ready to prove the main result of this section.

Theorem 3.3. Assume that 1+
∑m

i=1 ai 6= 0, Hypothesis 3.2 is satisfied,
M ||L||1 < 1 and let y ∈ AC(I,R) be such that there exists q(.) ∈ L1(I,R)
with d(y′(t), F (t, y(t))) ≤ q(t) a.e. (I). Denote y(0) +

∑m
i=1 aiy(ti) = y0.

Then there exists x(.) ∈ AC(I,R) a solution of problem (1.1)-(1.2) sat-
isfying for all t ∈ I

|x(t)− y(t)| ≤ 1

1−M ||L||1
[|a||x0 − y0|+M ||q||1]. (3.1)

Proof. The set-valued map t → F (t, y(t)) is measurable with closed
values and the hypothesis that d(y′(t), F (t, y(t))) ≤ q(t) a.e. (I) is equivalent
to

F (t, y(t)) ∩ {y′(t) + q(t)[−1, 1]} 6= ∅ a.e. (I).

It follows from Lemma 3.1 that there exists a measurable selection f1(t) ∈
F (t, y(t)) a.e. (I) such that

|f1(t)− y′(t)| ≤ q(t) a.e. (I) (3.2)

Define x1(t) = ax0 +
∫ 1
0 G(t, s)f1(s)ds and one has

|x1(t)− y(t)| = |ax0 − ay0 +
∫ 1
0 G(t, s)(f1(s)− y′(s))ds| ≤

|a||x0 − y0|+
∫ 1
0 |G(t, s)|q(s)ds ≤ |a||x0 − y0|+M ||q||1.

We claim that it is enough to construct the sequences xn(.) ∈ AC(I,R),
fn(.) ∈ L1(I,R), n ≥ 1 with the following properties

xn(t) = ax0 +

∫ 1

0
G(t, s)fn(s)ds, t ∈ I, (3.3)

fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1, (3.4)

|fn+1(t)− fn(t)| ≤ L(t)|xn(t)− xn−1(t)| a.e. (I), n ≥ 1. (3.5)

If this construction is realized then from (3.2)-(3.5) we have for almost
all t ∈ I

|xn+1(t)−xn(t)| ≤
∫ 1

0
|G(t, t1)|.|fn+1(t1)−fn(t1)|dt1 ≤M

∫ 1

0
L(t1)|xn(t1)−
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xn−1(t1)|dt1 ≤M
∫ 1

0
L(t1)

∫ 1

0
|G(t1, t2)|.|fn(t2)−fn−1(t2)|dt2 ≤M2

∫ 1

0
L(t1)∫ 1

0
L(t2)|xn−1(t2)− xn−2(t2)|dt2dt1 ≤Mn

∫ 1

0
L(t1)

∫ 1

0
L(t2)...

∫ 1

0
L(tn)

|x1(tn)− y(tn)|dtn...dt1 ≤ (M ||L||1)n(|a||x0 − y0|+M ||q||1).

Therefore {xn}n∈N is a Cauchy sequence in the Banach space C(I,R),
hence converging uniformly to some x ∈ C(I,R). Therefore, by (3.5), for
almost all t ∈ I, the sequence {fn(t)}n∈N is Cauchy in R. Let f be the
pointwise limit of fn.

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1

i=1 |xi+1(t)− xi(t)| ≤ |a||x0 − y0|
+M ||q||1 +

∑n−1
i=1 |a||x0 − y0|+M ||q||1)(M ||L||1)i = |a||x0−y0|+M ||q||1

1−M ||L||1 .

(3.6)
On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all

t ∈ I
|fn(t)− y′(t)| ≤

∑n−1
i=1 |fi+1(t)− fi(t)|+

|f1(t)− y′(t)| ≤ L(t) |a||x0−y0|+M ||q||1
1−M ||L||1 + q(t).

Hence the sequence fn is integrably bounded and therefore f ∈ L1(I,R).
Using Lebesque’s dominated convergence theorem and taking the limit

in (3.3), (3.4) we deduce that x is a solution of (1.1). Finally, passing to the
limit in (3.6) we obtained the desired estimate on x.

It remains to construct the sequences xn, fn with the properties in (3.3)-
(3.5). The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we
already constructed xn ∈ C(I,R) and fn ∈ L1(I,R), n = 1, 2, ...N satisfying
(3.3),(3.5) for n = 1, 2, ...N and (3.4) for n = 1, 2, ...N − 1. The set-valued
map t → F (t, xN (t)) is measurable. Moreover, the map t → L(t)|xN (t) −
xN−1(t)| is measurable. By the lipschitzianity of F (t, .) we have that for
almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)|xN (t)− xN−1(t)|[−1, 1]} 6= ∅.

From Lemma 3.1 there exists a measurable selection fN+1(.) of F (., xN (.))
such that

|fN+1(t)− fN (t)| ≤ L(t)|xN (t)− xN−1(t)| a.e. (I).

We define xN+1 as in (3.3) with n = N + 1. Thus fN+1 satisfies (3.4)
and (3.5) and the proof is complete.
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Remark 3.4. We note that similar existence results for other classes of
differential inclusions may be found in our previous papers [6,7].

4 Arcwise connectedness of the solution set

In this section we are concerned with the more general problem

x′ ∈ F (t, x,H(t, x)) a.e. ([0, 1]), (4.1)

x(0) +
m∑
i=1

aix(ti) = c, (4.2)

where c ∈ R, F : I × R × R → P(R), H : I × R → P(R) and by
F (t, x,H(t, x)) we understand ∪y∈H(t,x)F (t, x, y).

We assume that F and H are closed-valued multifunctions Lipschitzian
with respect to the second variable and F is contractive in the third vari-
able. Obviously, the right-hand side of the differential inclusion in (4.1) is
in general neither convex nor closed. We prove the arcwise connectedness of
the solution set to (4.1)-(4.2). When F does not depend on the last variable
(4.1) reduces to (1.1) and the result remains valid for problem (1.1)-(1.2).

Let Z be a metric space with the distance dZ . In what follows, when the
product Z = Z1×Z2 of metric spaces Zi, i = 1, 2, is considered, it is assumed
that Z is equipped with the distance dZ((z1, z2), (z

′
1, z
′
2)) =

∑2
i=1 dZi(zi, z

′
i).

Let X be a nonempty set and let F : X → P(Z) be a set-valued map
with nonempty closed values. In what follows dX stands for the distance
on X induced by the normed on X and Pompeiu-Hausdorff distance on
nonempty closed subsets of X is denoted by DX ..

The range of F is the set F (X) = ∪x∈XF (x). The multifunction F is
called Hausdorff continuous if for any x0 ∈ X and every ε > 0 there exists
δ > 0 such that x ∈ X, dX(x, x0) < δ implies DZ(F (x), F (x0)) < ε.

Let (T,F , µ) be a finite, positive, nonatomic measure space and let (X,
|.|X) be a Banach space. We recall that a set A ∈ F is called atom of µ if
µ(A) 6= 0 and for any B ∈ F , B ⊂ A one has µ(B) = 0 or µ(B) = µ(A). µ is
called nonatomic measure if F does not contains atoms of µ. For example,
Lebesgue’s measure on a given interval in Rn is a nonatomic measure.

We denote by L1(T,X) the Banach space of all (equivalence classes of)
Bochner integrable functions u : T → X endowed with the norm

|u|L1(T,X) =

∫
T
|u(t)|Xdµ
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A nonempty set K ⊂ L1(T,X) is called decomposable if, for every u, v ∈
K and every A ∈ F , one has

χA.u+ χT\A.v ∈ K

where χB, B ∈ F indicates the characteristic function of B.

Next we recall some preliminary results that are the main tools in the
proof of our result.

To simplify the notation we write E in place of L1(T,X).

The next two lemmas are proved in [10].

Lemma 4.1. Assume that φ : S×E → P(E) and ψ : S×E×E → P(E)
are Hausdorff continuous multifunctions with nonempty, closed, decompos-
able values, satisfying the following conditions

a) There exists L ∈ [0, 1) such that, for every s ∈ S and every u, u′ ∈ E,

DE(φ(s, u), φ(s, u′)) ≤ L|u− u′|E .

b) There exists M ∈ [0, 1) such that L+M < 1 and for every s ∈ S and
every (u, v), (u′, v′) ∈ E × E,

DE(ψ(s, u, v), ψ(s, u′, v′)) ≤M(|u− u′|E + |v − v′|E).

Set Fix(Γ(s, .)) = {u ∈ E;u ∈ Γ(s, u)}, where Γ(s, u) = ψ(s, u, φ(s, u)),
(s, u) ∈ S × E. Then

1) For every s ∈ S the set Fix(Γ(s, .)) is nonempty and arcwise con-
nected.

2) For any si ∈ S, and any ui ∈ Fix(Γ(s, .)), i = 1, ..., p there exists a
continuous function γ : S → E such that γ(s) ∈ Fix(Γ(s, .)) for all s ∈ S
and γ(si) = ui, i = 1, ..., p.

Lemma 4.2. Let U : T → P(X) and V : T × X → P(X) be two
nonempty closed-valued multifunctions satisfying the following conditions

a) U is measurable and there exists r ∈ L1(T ) such that DX(U(t), {0})
≤ r(t) for almost all t ∈ T .

b) The multifunction t→ V (t, x) is measurable for every x ∈ X.

c) The multifunction x→ V (t, x) is Hausdorff continuous for all t ∈ T .

Let v : T → X be a measurable selection from t→ V (t, U(t)).

Then there exists a selection u ∈ L1(T,X) of U(.) such that v(t) ∈
V (t, u(t)), t ∈ T .
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Hypothesis 4.3. Let F : I × R2 → P(R) and H : I × R → P(R)
be two set-valued maps with nonempty closed values, satisfying the following
assumptions

i) The set-valued maps t → F (t, u, v) and t → H(t, u) are measurable
for all u, v ∈ R.

ii) There exists l ∈ L1(I,R+) such that, for every u, u′ ∈ R,

D(H(t, u), H(t, u′)) ≤ l(t)|u− u′| a.e. (I).

iii) There exist m ∈ L1(I,R+) and θ ∈ [0, 1) such that, for every u, v, u′,
v′ ∈ R,

D(F (t, u, v), F (t, u′, v′)) ≤ m(t)|u− u′|+ θ|v − v′| a.e.(I).

iv) There exist f, g ∈ L1(I,R+) such that

d(0, F (t, 0, 0)) ≤ l(t), d(0, H(t, 0)) ≤ g(t) a.e.(I).

For c ∈ R we denote by S(c) the solution set of (4.1)-(4.2).
In what follows N(t) := max{l(t),m(t)}, t ∈ I.

Theorem 4.4. Assume that 1 +
∑m

i=1 ai 6= 0, Hypothesis 4.3 is satisfied

and 2M
∫ 1
0 N(s)ds +θ < 1. Then

1) For every c ∈ R, the solution set S(c) of (4.1)-(4.2) is nonempty and
arcwise connected in the space C(I,R).

2) For any ci ∈ R and any ui ∈ S(ci), i = 1, ..., p, there exists a con-
tinuous function s : R → C(I,R) such that s(c) ∈ S(c) for any c ∈ R and
s(ci) = ui, i = 1, ..., p.

3) The set S = ∪c∈RS(c) is arcwise connected in C(I,R).

Proof. 1) For c ∈ R and u ∈ L1(I,R), set

uc(t) = ac+

∫ 1

0
G(t, s)u(s)ds, t ∈ I.

We prove that the multifunctions φ : R × L1(I,R) → P(L1(I,R)) and
ψ : R× L1(I,R)× L1(I,R)→ P(L1(I,R)) given by

φ(c, u) = {v ∈ L1(I,R); v(t) ∈ H(t, uc(t)) a.e. (I)},

ψ(c, u, v) = {w ∈ L1(I,R); w(t) ∈ F (t, uc(t), v(t)) a.e. (I)},

c ∈ R, u, v ∈ L1(I,R) satisfy the hypotheses of Lemma 4.1.



70 A. Cernea

Since uc is measurable and H satisfies Hypothesis 4.3 i) and ii), the
multifunction t → H(t, uc(t)) is measurable and nonempty closed valued,
hence it has a measurable selection. Therefore due to Hypothesis 4.3 iv),
the set φ(c, u) is nonempty. The fact that the set φ(c, u) is closed and
decomposable follows by simple computation. In the same way we obtain
that ψ(c, u, v) is a nonempty closed decomposable set.

Pick (c, u), (c1, u1) ∈ R×L1(I,R) and choose v ∈ φ(c, u). For each ε > 0
there exists v1 ∈ φ(c1, u1) such that, for every t ∈ I, one has

|v(t)− v1(t)| ≤ D(H(t, uc(t)), H(t, uc1(t))) + ε ≤
N(t)[|a||c− c1|+

∫ 1
0 |G(t, s)|.|u(s)− u1(s)|ds] + ε.

Therefore,

||v − v1||1 ≤ |a||c− c1|.
∫ 1

0
N(t)dt+M

∫ 1

0
N(t)dt||u− u1||1 + εT

for any ε > 0.

This implies

dL1(I,R)(v, φ(c1, u1)) ≤ |a||c− c1|.
∫ 1

0
N(t)dt+M

∫ 1

0
N(t)dt||u− u1||1

for all v ∈ φ(c, u). Consequently,

DL1(I,R)(φ(c, u), φ(c1, u1)) ≤ |a||c− c1|.
∫ 1

0
N(t)dt+M

∫ 1

0
N(t)dt||u−u1||1

which shows that φ is Hausdorff continuous and satisfies the assumptions of
Lemma 4.1.

Pick (c, u, v), (c1, u1, v1) ∈ R × L1(I,R) × L1(I,R) and choose w ∈
ψ(c, u, v). Then, as before, for each ε > 0 there exists w1 ∈ ψ(c1, u1, v1)
such that for every t ∈ I

|w(t)− w1(t)| ≤ D(F (t, uc(t), v(t)), F (t, uc1(t), v1(t))) + ε ≤

≤ N(t)|uc(t)− uc1(t)|+ θ|v(t)− v1(t)|+ ε ≤

N(t)[|ac− ac1|+
∫ 1

0
|G(t, s)|.|u(s)− u1(s)|ds] + θ|v(t)− v1(t)|+ ε

≤ N(t)[|a||c− c1|+M ||u− u1||1] + θ|v(t)− v1(t)|+ ε.
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Hence

||w − w1||1 ≤ |a||c− c1|.
∫ 1
0 N(t)dt+M

∫ 1
0 N(t)dt||u− u1||1

+θ||v − v1||1 + εT ≤ |a||c− c1|.
∫ 1
0 N(t)dt+ (M

∫ 1
0 N(t)dt+

θ)dL1(I,R)×L1(I,R)((u, v), (u1, v1)) + εT.

As above, we deduce that

DL1(I,R)(ψ(c, u, v), ψ(c1, u1, v1)) ≤ |a||c− c1|.
∫ 1

0
N(t)dt+

(M

∫ 1

0
N(t)dt+ θ)dL1(I,R)×L1(I,R)((u, v), (u1, v1)),

namely, the multifunction ψ is Hausdorff continuous and satisfies the hy-
pothesis of Lemma 4.1.

Define Γ(c, u) = ψ(c, u, φ(c, u)), (c, u) ∈ R × L1(I,R). According to
Lemma 4.1, the set Fix(Γ(c, .)) = {u ∈ L1(I,R);u ∈ Γ(c, u)} is nonempty
and arcwise connected in L1(I,R). Moreover, for fixed ci ∈ R and vi ∈
Fix(Γ(ci, .)), i = 1, ..., p, there exists a continuous function γ : R→ L1(I,R)
such that

γ(c) ∈ Fix(Γ(c, .)), ∀c ∈ R, (4.3)

γ(ci) = vi, i = 1, ..., p. (4.4)

We shall prove that

Fix(Γ(c, .)) = {u ∈ L1(I,R); u(t) ∈ F (t, uc(t), H(t, uc(t))) a.e. (I)}.
(4.5)

Denote by A(c) the right-hand side of (4.5). If u ∈ Fix(Γ(c, .)) then
there is v ∈ φ(c, v) such that u ∈ ψ(c, u, v). Therefore, v(t) ∈ H(t, uc(t))
and

u(t) ∈ F (t, uc(t), v(t)) ⊂ F (t, uc(t), H(t, uc(t))) a.e. (I),

so that Fix(Γ(c, .)) ⊂ A(c).

Let now u ∈ A(c). By Lemma 4.2, there exists a selection v ∈ L1(I,R)
of the multifunction t→ H(t, uc(t))) satisfying

u(t) ∈ F (t, uc(t), v(t)) a.e. (I).

Hence, v ∈ φ(c, v), u ∈ ψ(c, u, v) and thus u ∈ Γ(c, u), which completes the
proof of (4.5).
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We next note that the function T : L1(I,R)→ C(I,R),

T (u)(t) :=

∫ 1

0
G(t, s)u(s)ds, t ∈ I

is continuous and one has

S(c) = ac+ T (Fix(Γ(c, .))), c ∈ R. (4.6)

Since Fix(Γ(c, .)) is nonempty and arcwise connected in L1(I,R), the
set S(c) has the same properties in C(I,R).

2) Let ci ∈ R and let ui ∈ S(ci), i = 1, ..., p be fixed. By (4.6) there
exists vi ∈ Fix(Γ(ci, .)) such that

ui = aci + T (vi), i = 1, ..., p.

If γ : R → L1(I,R) is a continuous function satisfying (4.3) and (4.4) we
define, for every c ∈ R,

s(c) = ac+ T (γ(c)).

Obviously, the function s : R → C(I,R) is continuous, s(c) ∈ S(c) for all
c ∈ R, and

s(ci) = aci + T (γ(ci)) = aci + T (vi) = ui, i = 1, ..., p.

3) Let u1, u2 ∈ S = ∪c∈RS(c) and choose ci ∈ R, i = 1, 2 such that
ui ∈ S(ci), i = 1, 2. From the conclusion of 2) we deduce the existence of
a continuous function s : R → C(I,R) satisfying s(ci) = ui, i = 1, 2 and
s(c) ∈ S(c), c ∈ R. Let h : [0, 1] → R be a continuous mapping such that
h(0) = c1 and h(1) = c2. Then the function s ◦ h : [0, 1] → C(I,R) is
continuous and verifies

s ◦ h(0) = u1, s ◦ h(1) = u2, s ◦ h(τ) ∈ S(h(τ)) ⊂ S, τ ∈ [0, 1].

As an example we consider problem (4.1) defined by F (., ., .) : [0, 1] ×
R×R→ P(R), H(., .) : [0, 1]×R→ P(R) with

F (t, x, y) = [− 1

4M

|x|
1 + |x|

, 0] ∪ [0,
1

4

|y|
1 + |y|

],

H(t, x) = { 1
4Met+1(1+|x|)} and with any nonlocal conditions (4.2). A straight-

forward computation shows that m(t) ≡ 1
4M , θ = 1

4 , l(t) ≡ 1
4Me . In this case,

2M
∫ 1
0 N(s)ds+ θ = 2M

∫ 1
0

1
4M ds+ 1

4 < 1. Then, if for every c ∈ R we de-
note by S(c) the solution set of (4.1)-(4.2), by Theorem 4.4, S(c) is arcwise
connected in the space C(I,R).
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