ON A DIFFERENTIAL INCLUSION WITH CERTAIN NONLOCAL CONDITIONS*

Aurelian Cernea ${ }^{\dagger}$

Abstract

We consider a first-order nonconvex multivalued differential equation suject to some nonlocal conditions. We establish a Filippov type existence theorem and we prove the arcwise connectedness of the solution set of the problem considered.

MSC: 34A60
keywords: differential inclusion, boundary value problem, arcwise connectedness.

1 Introduction

This paper is concerned with the following problem

$$
\begin{align*}
& x^{\prime} \in F(t, x) \quad \text { a.e. }[0,1], \tag{1.1}\\
& x(0)+\sum_{i=1}^{m} a_{i} x\left(t_{i}\right)=x_{0}, \tag{1.2}
\end{align*}
$$

[^0]where $a_{i} \in \mathbf{R}, a_{i} \neq 0, i=\overline{1, m}, x_{0} \in \mathbf{R}, 0<t_{1}<t_{2}<\ldots<t_{m}<1$ and $F:[0,1] \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ is a set-valued map.

In the case when F is un upper semicontinuous set-valued map with convex values existence results for problem (1.1)-(1.2) may be found in [2,3]. In [2] the result uses Bohnenblust and Karlin fixed point theorem for set-valued maps and in [3], in the case $x_{0}=0$, the approach is based on topological transversality theory for set-valued maps.

The nonlocal condition (1.2) was used by Byszewski ([4,5]). If $a_{i} \neq 0$, $i=\overline{1, m}$ the results can be applied in kinematics to determine the evolution $t \rightarrow x(t)$ of the location of a physical object for which the positions $x(0), x\left(t_{1}\right), \ldots, x\left(t_{m}\right)$ are unknown but it is known the condition (1.2). Consequently, to describe some physical phenomena the nonlocal condition may be more useful than the standard initial condition $x(0)=x_{0}$. Obviously, when $a_{i}=0, i=\overline{1, m}$, one has the classical initial condition.

Our aim is to study problem (1.1)-(1.2) in the case when the values of F are not convex and is twofold. On one hand, we show that Filippov's ideas ([8]) can be suitably adapted in order to obtain the existence of solutions for problem (1.1)-(1.2). We recall that for a differential inclusion defined by a lipschitzian set-valued map with nonconvex values, Filippov's theorem ([8]) consists in proving the existence of a solution starting from a given almost solution. Moreover, the result provides an estimate between the starting almost solution and the solution of the differential inclusion.

On the other hand, following the approach in [10] we prove the arcwise connectedness of the solution set of problem (1.1)-(1.2). The proof is based on a result $([9,10])$ concerning the arcwise connectedness of the fixed point set of a class of set-valued contractions.

The paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the sequel, Section 3 is devoted to the Filippov type existence theorem and in Section 4 we obtain the arcwise connectedness of the solution set.

2 Preliminaries

In what follows we denote by I the interval $[0,1], C(I, \mathbf{R})$ is the Banach space of all continuous functions from I to \mathbf{R} with the norm $\|x\|_{C}=$ $\sup _{t \in I}|x(t)|$ and $L^{1}(I, \mathbf{R})$ is the Banach space of integrable functions $u($.$) :$ $I \rightarrow \mathbf{R}$ endowed with the norm $\|u\|_{1}=\int_{0}^{T}|u(t)| d t$. The Banach space of all absolutely continuous functions $x():. I \rightarrow \mathbf{R}$ with the norm $\|x(.)\|_{A C}=$ $|x(0)|+\left\|x^{\prime}(.)\right\|_{1}$ will be denoted by $A C(I, \mathbf{R})$.

Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff distance of the nonempty closed subsets $A, B \subset X$ is defined by

$$
D(A, B)=\max \left\{d^{*}(A, B), d^{*}(B, A)\right\}, \quad d^{*}(A, B)=\sup \{d(a, B) ; a \in A\}
$$

where $d(x, B)=\inf _{y \in B} d(x, y)$.
Next we need the following technical result proved in [2].
Lemma 2.1. Assume that $1+\sum_{i=1}^{m} a_{i} \neq 0$. For a given $f(.) \in C(I, \mathbf{R})$, the unique solution $x($.$) of problem x^{\prime}=f(t)$ with boundary condition (1.2) is given by

$$
x(t)=a\left(x_{0}-\sum_{i=1}^{m} a_{i} \int_{0}^{t_{i}} f(s) d s\right)+\int_{0}^{t} f(s) d s
$$

where $a=\frac{1}{1+\sum_{i=1}^{m} a_{i}}$.
Remark 2.2. If we denote $G(t, s)=\chi_{[0, t]}(s)-\sum_{i=1}^{m} a a_{i} \chi_{\left[0, t_{i}\right]}(s)$, where $\chi_{S}(\cdot)$ is the characteristic function of the set S, then the solution $x(\cdot)$ in Lemma 2.1 may be written as

$$
x(t)=a x_{0}+\int_{0}^{1} G(t, s) f(s) d s
$$

Obviously, $|G(t, s)| \leq 1+|a| \sum_{i=1}^{m}\left|a_{i}\right|=: M \forall t, s \in I$..

3 A Filippov type existence result

First we recall a selection result ([1]) which is a version of the celebrated Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider B the closed unit ball in $\mathbf{R}^{n}, H: I \rightarrow \mathcal{P}\left(\mathbf{R}^{n}\right)$ is a set-valued map with nonempty closed values $g: I \rightarrow \mathbf{R}^{n}$ and $L: I \rightarrow[0, \infty)$ are measurable functions. If

$$
H(t) \cap(g(t)+L(t) B) \neq \emptyset \quad \text { a.e. }(I),
$$

then the set-valued map $t \rightarrow H(t) \cap(g(t)+L(t) B)$ has a measurable selection.
In the sequel we assume the following conditions on F.
Hypothesis 3.2. i) $F: I \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ has nonempty closed values and for every $x \in \mathbf{R} F(., x)$ is measurable.
ii) There exists $L(.) \in L^{1}(I, \mathbf{R})$ such that for almost all $t \in I, F(t,$.$) is$ $L(t)$-Lipschitz in the sense that

$$
D(F(t, x), F(t, y)) \leq L(t)|x-y| \quad \forall x, y \in \mathbf{R} .
$$

We are now ready to prove the main result of this section.
Theorem 3.3. Assume that $1+\sum_{i=1}^{m} a_{i} \neq 0$, Hypothesis 3.2 is satisfied, $M\|L\|_{1}<1$ and let $y \in A C(I, \mathbf{R})$ be such that there exists $q(.) \in L^{1}(I, \mathbf{R})$ with $d\left(y^{\prime}(t), F(t, y(t))\right) \leq q(t)$ a.e. (I). Denote $y(0)+\sum_{i=1}^{m} a_{i} y\left(t_{i}\right)=y_{0}$.

Then there exists $x(.) \in A C(I, \mathbf{R})$ a solution of problem (1.1)-(1.2) satisfying for all $t \in I$

$$
\begin{equation*}
|x(t)-y(t)| \leq \frac{1}{1-M\|L\|_{1}}\left[|a|\left|x_{0}-y_{0}\right|+M\|q\|_{1}\right] \tag{3.1}
\end{equation*}
$$

Proof. The set-valued map $t \rightarrow F(t, y(t))$ is measurable with closed values and the hypothesis that $d\left(y^{\prime}(t), F(t, y(t))\right) \leq q(t)$ a.e. (I) is equivalent to

$$
F(t, y(t)) \cap\left\{y^{\prime}(t)+q(t)[-1,1]\right\} \neq \emptyset \quad \text { a.e. }(I) .
$$

It follows from Lemma 3.1 that there exists a measurable selection $f_{1}(t) \in$ $F(t, y(t))$ a.e. (I) such that

$$
\begin{equation*}
\left|f_{1}(t)-y^{\prime}(t)\right| \leq q(t) \quad \text { a.e. }(I) \tag{3.2}
\end{equation*}
$$

Define $x_{1}(t)=a x_{0}+\int_{0}^{1} G(t, s) f_{1}(s) d s$ and one has

$$
\begin{aligned}
& \left|x_{1}(t)-y(t)\right|=\left|a x_{0}-a y_{0}+\int_{0}^{1} G(t, s)\left(f_{1}(s)-y^{\prime}(s)\right) d s\right| \leq \\
& |a|\left|x_{0}-y_{0}\right|+\int_{0}^{1}|G(t, s)| q(s) d s \leq|a|\left|x_{0}-y_{0}\right|+M| | q \|_{1}
\end{aligned}
$$

We claim that it is enough to construct the sequences $x_{n}(.) \in A C(I, \mathbf{R})$, $f_{n}(.) \in L^{1}(I, \mathbf{R}), n \geq 1$ with the following properties

$$
\begin{gather*}
x_{n}(t)=a x_{0}+\int_{0}^{1} G(t, s) f_{n}(s) d s, \quad t \in I \tag{3.3}\\
f_{n}(t) \in F\left(t, x_{n-1}(t)\right) \quad \text { a.e. }(I), n \geq 1 \tag{3.4}\\
\left|f_{n+1}(t)-f_{n}(t)\right| \leq L(t)\left|x_{n}(t)-x_{n-1}(t)\right| \quad \text { a.e. }(I), n \geq 1 \tag{3.5}
\end{gather*}
$$

If this construction is realized then from (3.2)-(3.5) we have for almost all $t \in I$

$$
\left|x_{n+1}(t)-x_{n}(t)\right| \leq \int_{0}^{1}\left|G\left(t, t_{1}\right)\right| \cdot\left|f_{n+1}\left(t_{1}\right)-f_{n}\left(t_{1}\right)\right| d t_{1} \leq M \int_{0}^{1} L\left(t_{1}\right) \mid x_{n}\left(t_{1}\right)-
$$

$$
\begin{gathered}
x_{n-1}\left(t_{1}\right)\left|d t_{1} \leq M \int_{0}^{1} L\left(t_{1}\right) \int_{0}^{1}\right| G\left(t_{1}, t_{2}\right)|\cdot| f_{n}\left(t_{2}\right)-f_{n-1}\left(t_{2}\right) \mid d t_{2} \leq M^{2} \int_{0}^{1} L\left(t_{1}\right) \\
\int_{0}^{1} L\left(t_{2}\right)\left|x_{n-1}\left(t_{2}\right)-x_{n-2}\left(t_{2}\right)\right| d t_{2} d t_{1} \leq M^{n} \int_{0}^{1} L\left(t_{1}\right) \int_{0}^{1} L\left(t_{2}\right) \ldots \int_{0}^{1} L\left(t_{n}\right) \\
\left|x_{1}\left(t_{n}\right)-y\left(t_{n}\right)\right| d t_{n} \ldots d t_{1} \leq\left(M| | L \|_{1}\right)^{n}\left(|a|\left|x_{0}-y_{0}\right|+M| | q \|_{1}\right) .
\end{gathered}
$$

Therefore $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ is a Cauchy sequence in the Banach space $C(I, \mathbf{R})$, hence converging uniformly to some $x \in C(I, \mathbf{R})$. Therefore, by (3.5), for almost all $t \in I$, the sequence $\left\{f_{n}(t)\right\}_{n \in \mathbf{N}}$ is Cauchy in \mathbf{R}. Let f be the pointwise limit of f_{n}.

Moreover, one has

$$
\begin{align*}
& \left|x_{n}(t)-y(t)\right| \leq\left|x_{1}(t)-y(t)\right|+\sum_{i=1}^{n-1}\left|x_{i+1}(t)-x_{i}(t)\right| \leq|a|\left|x_{0}-y_{0}\right| \\
& +M\|q\|_{1}+\sum_{i=1}^{n-1}\left|a\left\|x_{0}-y_{0} \mid+M\right\| q \|_{1}\right)\left(M\|L\|_{1}\right)^{i}=\frac{|a|\left|x_{0}-y_{0}\right|+M\|q\| \|_{1}}{1-M\|L\|_{1}} . \tag{3.6}
\end{align*}
$$

On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all $t \in I$

$$
\begin{aligned}
& \left|f_{n}(t)-y^{\prime}(t)\right| \leq \sum_{i=1}^{n-1}\left|f_{i+1}(t)-f_{i}(t)\right|+ \\
& \left|f_{1}(t)-y^{\prime}(t)\right| \leq L(t) \frac{|a|\left|x_{0}-y_{0}\right|+M\|q\|}{1-M| | L \|_{1}}+q(t) .
\end{aligned}
$$

Hence the sequence f_{n} is integrably bounded and therefore $f \in L^{1}(I, \mathbf{R})$.
Using Lebesque's dominated convergence theorem and taking the limit in (3.3), (3.4) we deduce that x is a solution of (1.1). Finally, passing to the limit in (3.6) we obtained the desired estimate on x.

It remains to construct the sequences x_{n}, f_{n} with the properties in (3.3)(3.5). The construction will be done by induction.

Since the first step is already realized, assume that for some $N \geq 1$ we already constructed $x_{n} \in C(I, \mathbf{R})$ and $f_{n} \in L^{1}(I, \mathbf{R}), n=1,2, \ldots N$ satisfying (3.3),(3.5) for $n=1,2, \ldots N$ and (3.4) for $n=1,2, \ldots N-1$. The set-valued map $t \rightarrow F\left(t, x_{N}(t)\right)$ is measurable. Moreover, the map $t \rightarrow L(t) \mid x_{N}(t)-$ $x_{N-1}(t) \mid$ is measurable. By the lipschitzianity of $F(t,$.$) we have that for$ almost all $t \in I$

$$
F\left(t, x_{N}(t)\right) \cap\left\{f_{N}(t)+L(t)\left|x_{N}(t)-x_{N-1}(t)\right|[-1,1]\right\} \neq \emptyset .
$$

From Lemma 3.1 there exists a measurable selection $f_{N+1}($.$) of F\left(., x_{N}().\right)$ such that

$$
\left|f_{N+1}(t)-f_{N}(t)\right| \leq L(t)\left|x_{N}(t)-x_{N-1}(t)\right| \quad \text { a.e. }(I) .
$$

We define x_{N+1} as in (3.3) with $n=N+1$. Thus f_{N+1} satisfies (3.4) and (3.5) and the proof is complete.

Remark 3.4. We note that similar existence results for other classes of differential inclusions may be found in our previous papers [6,7].

4 Arcwise connectedness of the solution set

In this section we are concerned with the more general problem

$$
\begin{gather*}
x^{\prime} \in F(t, x, H(t, x)) \quad \text { a.e. }([0,1]), \tag{4.1}\\
x(0)+\sum_{i=1}^{m} a_{i} x\left(t_{i}\right)=c, \tag{4.2}
\end{gather*}
$$

where $c \in \mathbf{R}, F: I \times \mathbf{R} \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R}), H: I \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ and by $F(t, x, H(t, x))$ we understand $\cup_{y \in H(t, x)} F(t, x, y)$.

We assume that F and H are closed-valued multifunctions Lipschitzian with respect to the second variable and F is contractive in the third variable. Obviously, the right-hand side of the differential inclusion in (4.1) is in general neither convex nor closed. We prove the arcwise connectedness of the solution set to (4.1)-(4.2). When F does not depend on the last variable (4.1) reduces to (1.1) and the result remains valid for problem (1.1)-(1.2).

Let Z be a metric space with the distance d_{Z}. In what follows, when the product $Z=Z_{1} \times Z_{2}$ of metric spaces $Z_{i}, i=1,2$, is considered, it is assumed that Z is equipped with the distance $d_{Z}\left(\left(z_{1}, z_{2}\right),\left(z_{1}^{\prime}, z_{2}^{\prime}\right)\right)=\sum_{i=1}^{2} d_{Z_{i}}\left(z_{i}, z_{i}^{\prime}\right)$.

Let X be a nonempty set and let $F: X \rightarrow \mathcal{P}(Z)$ be a set-valued map with nonempty closed values. In what follows d_{X} stands for the distance on X induced by the normed on X and Pompeiu-Hausdorff distance on nonempty closed subsets of X is denoted by D_{X}..

The range of F is the set $F(X)=\cup_{x \in X} F(x)$. The multifunction F is called Hausdorff continuous if for any $x_{0} \in X$ and every $\epsilon>0$ there exists $\delta>0$ such that $x \in X, d_{X}\left(x, x_{0}\right)<\delta$ implies $D_{Z}\left(F(x), F\left(x_{0}\right)\right)<\epsilon$.

Let (T, \mathcal{F}, μ) be a finite, positive, nonatomic measure space and let (X, $|\cdot|_{X}$) be a Banach space. We recall that a set $A \in \mathcal{F}$ is called atom of μ if $\mu(A) \neq 0$ and for any $B \in \mathcal{F}, B \subset A$ one has $\mu(B)=0$ or $\mu(B)=\mu(A)$. μ is called nonatomic measure if \mathcal{F} does not contains atoms of μ. For example, Lebesgue's measure on a given interval in \mathbf{R}^{n} is a nonatomic measure.

We denote by $L^{1}(T, X)$ the Banach space of all (equivalence classes of) Bochner integrable functions $u: T \rightarrow X$ endowed with the norm

$$
|u|_{L^{1}(T, X)}=\int_{T}|u(t)|_{X} d \mu
$$

A nonempty set $K \subset L^{1}(T, X)$ is called decomposable if, for every $u, v \in$ K and every $A \in \mathcal{F}$, one has

$$
\chi_{A} \cdot u+\chi_{T \backslash A} \cdot v \in K
$$

where $\chi_{B}, B \in \mathcal{F}$ indicates the characteristic function of B.
Next we recall some preliminary results that are the main tools in the proof of our result.

To simplify the notation we write E in place of $L^{1}(T, X)$.
The next two lemmas are proved in [10].
Lemma 4.1. Assume that $\phi: S \times E \rightarrow \mathcal{P}(E)$ and $\psi: S \times E \times E \rightarrow \mathcal{P}(E)$ are Hausdorff continuous multifunctions with nonempty, closed, decomposable values, satisfying the following conditions
a) There exists $L \in[0,1)$ such that, for every $s \in S$ and every $u, u^{\prime} \in E$,

$$
D_{E}\left(\phi(s, u), \phi\left(s, u^{\prime}\right)\right) \leq L\left|u-u^{\prime}\right|_{E}
$$

b) There exists $M \in[0,1)$ such that $L+M<1$ and for every $s \in S$ and every $(u, v),\left(u^{\prime}, v^{\prime}\right) \in E \times E$,

$$
D_{E}\left(\psi(s, u, v), \psi\left(s, u^{\prime}, v^{\prime}\right)\right) \leq M\left(\left|u-u^{\prime}\right|_{E}+\left|v-v^{\prime}\right|_{E}\right)
$$

Set $\operatorname{Fix}(\Gamma(s,))=.\{u \in E ; u \in \Gamma(s, u)\}$, where $\Gamma(s, u)=\psi(s, u, \phi(s, u))$, $(s, u) \in S \times E$. Then

1) For every $s \in S$ the set $F i x(\Gamma(s,)$.$) is nonempty and arcwise con-$ nected.
2) For any $s_{i} \in S$, and any $u_{i} \in \operatorname{Fix}(\Gamma(s,)),. i=1, \ldots, p$ there exists a continuous function $\gamma: S \rightarrow E$ such that $\gamma(s) \in \operatorname{Fix}(\Gamma(s,)$.$) for all s \in S$ and $\gamma\left(s_{i}\right)=u_{i}, i=1, \ldots, p$.

Lemma 4.2. Let $U: T \rightarrow \mathcal{P}(X)$ and $V: T \times X \rightarrow \mathcal{P}(X)$ be two nonempty closed-valued multifunctions satisfying the following conditions
a) U is measurable and there exists $r \in L^{1}(T)$ such that $D_{X}(U(t),\{0\})$ $\leq r(t)$ for almost all $t \in T$.
b) The multifunction $t \rightarrow V(t, x)$ is measurable for every $x \in X$.
c) The multifunction $x \rightarrow V(t, x)$ is Hausdorff continuous for all $t \in T$.

Let $v: T \rightarrow X$ be a measurable selection from $t \rightarrow V(t, U(t))$.
Then there exists a selection $u \in L^{1}(T, X)$ of $U($.$) such that v(t) \in$ $V(t, u(t)), t \in T$.

Hypothesis 4.3. Let $F: I \times \mathbf{R}^{2} \rightarrow \mathcal{P}(\mathbf{R})$ and $H: I \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ be two set-valued maps with nonempty closed values, satisfying the following assumptions
i) The set-valued maps $t \rightarrow F(t, u, v)$ and $t \rightarrow H(t, u)$ are measurable for all $u, v \in \mathbf{R}$.
ii) There exists $l \in L^{1}\left(I, \mathbf{R}_{+}\right)$such that, for every $u, u^{\prime} \in \mathbf{R}$,

$$
D\left(H(t, u), H\left(t, u^{\prime}\right)\right) \leq l(t)\left|u-u^{\prime}\right| \quad \text { a.e. }(I) .
$$

iii) There exist $m \in L^{1}\left(I, \mathbf{R}_{+}\right)$and $\theta \in[0,1)$ such that, for every u, v, u^{\prime}, $v^{\prime} \in \mathbf{R}$,

$$
D\left(F(t, u, v), F\left(t, u^{\prime}, v^{\prime}\right)\right) \leq m(t)\left|u-u^{\prime}\right|+\theta\left|v-v^{\prime}\right| \quad \text { a.e. }(I) .
$$

iv) There exist $f, g \in L^{1}\left(I, \mathbf{R}_{+}\right)$such that

$$
d(0, F(t, 0,0)) \leq l(t), \quad d(0, H(t, 0)) \leq g(t) \quad \text { a.e. }(I)
$$

For $c \in \mathbf{R}$ we denote by $S(c)$ the solution set of (4.1)-(4.2).
In what follows $N(t):=\max \{l(t), m(t)\}, t \in I$.
Theorem 4.4. Assume that $1+\sum_{i=1}^{m} a_{i} \neq 0$, Hypothesis 4.3 is satisfied and $2 M \int_{0}^{1} N(s) d s+\theta<1$. Then

1) For every $c \in \mathbf{R}$, the solution set $S(c)$ of (4.1)-(4.2) is nonempty and arcwise connected in the space $C(I, \mathbf{R})$.
2) For any $c_{i} \in \mathbf{R}$ and any $u_{i} \in S\left(c_{i}\right), i=1, \ldots, p$, there exists a continuous function $s: \mathbf{R} \rightarrow C(I, \mathbf{R})$ such that $s(c) \in S(c)$ for any $c \in \mathbf{R}$ and $s\left(c_{i}\right)=u_{i}, i=1, \ldots, p$.
3) The set $S=\cup_{c \in \mathbf{R}} S(c)$ is arcwise connected in $C(I, \mathbf{R})$.

Proof. 1) For $c \in \mathbf{R}$ and $u \in L^{1}(I, \mathbf{R})$, set

$$
u_{c}(t)=a c+\int_{0}^{1} G(t, s) u(s) d s, \quad t \in I
$$

We prove that the multifunctions $\phi: \mathbf{R} \times L^{1}(I, \mathbf{R}) \rightarrow \mathcal{P}\left(L^{1}(I, \mathbf{R})\right)$ and $\psi: \mathbf{R} \times L^{1}(I, \mathbf{R}) \times L^{1}(I, \mathbf{R}) \rightarrow \mathcal{P}\left(L^{1}(I, \mathbf{R})\right)$ given by

$$
\begin{gathered}
\phi(c, u)=\left\{v \in L^{1}(I, \mathbf{R}) ; \quad v(t) \in H\left(t, u_{c}(t)\right) \quad \text { a.e. }(I)\right\} \\
\psi(c, u, v)=\left\{w \in L^{1}(I, \mathbf{R}) ; \quad w(t) \in F\left(t, u_{c}(t), v(t)\right) \quad \text { a.e. }(I)\right\},
\end{gathered}
$$

$c \in \mathbf{R}, u, v \in L^{1}(I, \mathbf{R})$ satisfy the hypotheses of Lemma 4.1.

Since u_{c} is measurable and H satisfies Hypothesis 4.3 i) and ii), the multifunction $t \rightarrow H\left(t, u_{c}(t)\right)$ is measurable and nonempty closed valued, hence it has a measurable selection. Therefore due to Hypothesis 4.3 iv), the set $\phi(c, u)$ is nonempty. The fact that the set $\phi(c, u)$ is closed and decomposable follows by simple computation. In the same way we obtain that $\psi(c, u, v)$ is a nonempty closed decomposable set.

Pick $(c, u),\left(c_{1}, u_{1}\right) \in \mathbf{R} \times L^{1}(I, \mathbf{R})$ and choose $v \in \phi(c, u)$. For each $\varepsilon>0$ there exists $v_{1} \in \phi\left(c_{1}, u_{1}\right)$ such that, for every $t \in I$, one has

$$
\begin{aligned}
& \left|v(t)-v_{1}(t)\right| \leq D\left(H\left(t, u_{c}(t)\right), H\left(t, u_{c_{1}}(t)\right)\right)+\varepsilon \leq \\
& N(t)\left[|a|\left|c-c_{1}\right|+\int_{0}^{1}|G(t, s)| \cdot\left|u(s)-u_{1}(s)\right| d s\right]+\varepsilon
\end{aligned}
$$

Therefore,

$$
\left\|v-v_{1}\right\|_{1} \leq|a|\left|c-c_{1}\right| \cdot \int_{0}^{1} N(t) d t+M \int_{0}^{1} N(t) d t \mid\left\|u-u_{1}\right\|_{1}+\varepsilon T
$$

for any $\varepsilon>0$.
This implies

$$
d_{L^{1}(I, \mathbf{R})}\left(v, \phi\left(c_{1}, u_{1}\right)\right) \leq|a|\left|c-c_{1}\right| \cdot \int_{0}^{1} N(t) d t+M \int_{0}^{1} N(t) d t\left\|u-u_{1}\right\|_{1}
$$

for all $v \in \phi(c, u)$. Consequently,
$D_{L^{1}(I, \mathbf{R})}\left(\phi(c, u), \phi\left(c_{1}, u_{1}\right)\right) \leq|a|\left|c-c_{1}\right| \cdot \int_{0}^{1} N(t) d t+M \int_{0}^{1} N(t) d t| | u-u_{1} \|_{1}$
which shows that ϕ is Hausdorff continuous and satisfies the assumptions of Lemma 4.1.

Pick $(c, u, v),\left(c_{1}, u_{1}, v_{1}\right) \in \mathbf{R} \times L^{1}(I, \mathbf{R}) \times L^{1}(I, \mathbf{R})$ and choose $w \in$ $\psi(c, u, v)$. Then, as before, for each $\varepsilon>0$ there exists $w_{1} \in \psi\left(c_{1}, u_{1}, v_{1}\right)$ such that for every $t \in I$

$$
\begin{gathered}
\left|w(t)-w_{1}(t)\right| \leq D\left(F\left(t, u_{c}(t), v(t)\right), F\left(t, u_{c_{1}}(t), v_{1}(t)\right)\right)+\varepsilon \leq \\
\leq N(t)\left|u_{c}(t)-u_{c_{1}}(t)\right|+\theta\left|v(t)-v_{1}(t)\right|+\varepsilon \leq \\
N(t)\left[\left|a c-a c_{1}\right|+\int_{0}^{1}|G(t, s)| \cdot\left|u(s)-u_{1}(s)\right| d s\right]+\theta\left|v(t)-v_{1}(t)\right|+\varepsilon \\
\leq N(t)\left[|a|\left|c-c_{1}\right|+M| | u-u_{1}| |_{1}\right]+\theta\left|v(t)-v_{1}(t)\right|+\varepsilon
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \left\|w-w_{1}\right\|_{1} \leq|a|\left|c-c_{1}\right| \cdot \int_{0}^{1} N(t) d t+M \int_{0}^{1} N(t) d t\left\|u-u_{1}\right\|_{1} \\
& +\theta\left\|v-v_{1}\right\|_{1}+\varepsilon T \leq|a|\left|c-c_{1}\right| \cdot \int_{0}^{1} N(t) d t+\left(M \int_{0}^{1} N(t) d t+\right. \\
& \theta) d_{L^{1}(I, \mathbf{R}) \times L^{1}(I, \mathbf{R})}\left((u, v),\left(u_{1}, v_{1}\right)\right)+\varepsilon T .
\end{aligned}
$$

As above, we deduce that

$$
\begin{gathered}
D_{L^{1}(I, \mathbf{R})}\left(\psi(c, u, v), \psi\left(c_{1}, u_{1}, v_{1}\right)\right) \leq|a|\left|c-c_{1}\right| \cdot \int_{0}^{1} N(t) d t+ \\
\quad\left(M \int_{0}^{1} N(t) d t+\theta\right) d_{L^{1}(I, \mathbf{R}) \times L^{1}(I, \mathbf{R})}\left((u, v),\left(u_{1}, v_{1}\right)\right),
\end{gathered}
$$

namely, the multifunction ψ is Hausdorff continuous and satisfies the hypothesis of Lemma 4.1.

Define $\Gamma(c, u)=\psi(c, u, \phi(c, u)),(c, u) \in \mathbf{R} \times L^{1}(I, \mathbf{R})$. According to Lemma 4.1, the set $\operatorname{Fix}(\Gamma(c,))=.\left\{u \in L^{1}(I, \mathbf{R}) ; u \in \Gamma(c, u)\right\}$ is nonempty and arcwise connected in $L^{1}(I, \mathbf{R})$. Moreover, for fixed $c_{i} \in \mathbf{R}$ and $v_{i} \in$ $\operatorname{Fix}\left(\Gamma\left(c_{i},.\right)\right), i=1, \ldots, p$, there exists a continuous function $\gamma: \mathbf{R} \rightarrow L^{1}(I, \mathbf{R})$ such that

$$
\begin{gather*}
\gamma(c) \in F i x(\Gamma(c, .)), \quad \forall c \in \mathbf{R}, \tag{4.3}\\
\gamma\left(c_{i}\right)=v_{i}, \quad i=1, \ldots, p . \tag{4.4}
\end{gather*}
$$

We shall prove that

$$
\begin{equation*}
\operatorname{Fix}(\Gamma(c, .))=\left\{u \in L^{1}(I, \mathbf{R}) ; \quad u(t) \in F\left(t, u_{c}(t), H\left(t, u_{c}(t)\right)\right) \quad \text { a.e. }(I)\right\} . \tag{4.5}
\end{equation*}
$$

Denote by $A(c)$ the right-hand side of (4.5). If $u \in \operatorname{Fix}(\Gamma(c,)$.$) then$ there is $v \in \phi(c, v)$ such that $u \in \psi(c, u, v)$. Therefore, $v(t) \in H\left(t, u_{c}(t)\right)$ and

$$
u(t) \in F\left(t, u_{c}(t), v(t)\right) \subset F\left(t, u_{c}(t), H\left(t, u_{c}(t)\right)\right) \quad \text { a.e. }(I),
$$

so that $F i x(\Gamma(c,).) \subset A(c)$.
Let now $u \in A(c)$. By Lemma 4.2, there exists a selection $v \in L^{1}(I, \mathbf{R})$ of the multifunction $t \rightarrow H\left(t, u_{c}(t)\right)$) satisfying

$$
u(t) \in F\left(t, u_{c}(t), v(t)\right) \quad \text { a.e. }(I) .
$$

Hence, $v \in \phi(c, v), u \in \psi(c, u, v)$ and thus $u \in \Gamma(c, u)$, which completes the proof of (4.5).

We next note that the function $\mathcal{T}: L^{1}(I, \mathbf{R}) \rightarrow C(I, \mathbf{R})$,

$$
\mathcal{T}(u)(t):=\int_{0}^{1} G(t, s) u(s) d s, \quad t \in I
$$

is continuous and one has

$$
\begin{equation*}
S(c)=a c+\mathcal{T}(\operatorname{Fix}(\Gamma(c, .))), \quad c \in \mathbf{R} \tag{4.6}
\end{equation*}
$$

Since $\operatorname{Fix}(\Gamma(c,)$.$) is nonempty and arcwise connected in L^{1}(I, \mathbf{R})$, the set $S(c)$ has the same properties in $C(I, \mathbf{R})$.
2) Let $c_{i} \in \mathbf{R}$ and let $u_{i} \in S\left(c_{i}\right), i=1, \ldots, p$ be fixed. By (4.6) there exists $v_{i} \in \operatorname{Fix}\left(\Gamma\left(c_{i},.\right)\right)$ such that

$$
u_{i}=a c_{i}+\mathcal{T}\left(v_{i}\right), \quad i=1, \ldots, p
$$

If $\gamma: \mathbf{R} \rightarrow L^{1}(I, \mathbf{R})$ is a continuous function satisfying (4.3) and (4.4) we define, for every $c \in \mathbf{R}$,

$$
s(c)=a c+\mathcal{T}(\gamma(c))
$$

Obviously, the function $s: \mathbf{R} \rightarrow C(I, \mathbf{R})$ is continuous, $s(c) \in S(c)$ for all $c \in \mathbf{R}$, and

$$
s\left(c_{i}\right)=a c_{i}+\mathcal{T}\left(\gamma\left(c_{i}\right)\right)=a c_{i}+\mathcal{T}\left(v_{i}\right)=u_{i}, \quad i=1, \ldots, p
$$

3) Let $u_{1}, u_{2} \in S=\cup_{c \in \mathbf{R}} S(c)$ and choose $c_{i} \in \mathbf{R}, i=1,2$ such that $u_{i} \in S\left(c_{i}\right), i=1,2$. From the conclusion of 2$)$ we deduce the existence of a continuous function $s: \mathbf{R} \rightarrow C(I, \mathbf{R})$ satisfying $s\left(c_{i}\right)=u_{i}, i=1,2$ and $s(c) \in S(c), c \in \mathbf{R}$. Let $h:[0,1] \rightarrow \mathbf{R}$ be a continuous mapping such that $h(0)=c_{1}$ and $h(1)=c_{2}$. Then the function $s \circ h:[0,1] \rightarrow C(I, \mathbf{R})$ is continuous and verifies

$$
s \circ h(0)=u_{1}, \quad s \circ h(1)=u_{2}, \quad s \circ h(\tau) \in S(h(\tau)) \subset S, \quad \tau \in[0,1]
$$

As an example we consider problem (4.1) defined by $F(., .,):.[0,1] \times$ $\mathbf{R} \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R}), H(.,):.[0,1] \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ with

$$
F(t, x, y)=\left[-\frac{1}{4 M} \frac{|x|}{1+|x|}, 0\right] \cup\left[0, \frac{1}{4} \frac{|y|}{1+|y|}\right]
$$

$H(t, x)=\left\{\frac{1}{4 M e^{t+1}(1+|x|)}\right\}$ and with any nonlocal conditions (4.2). A straightforward computation shows that $m(t) \equiv \frac{1}{4 M}, \theta=\frac{1}{4}, l(t) \equiv \frac{1}{4 M e}$. In this case, $2 M \int_{0}^{1} N(s) d s+\theta=2 M \int_{0}^{1} \frac{1}{4 M} d s+\frac{1}{4}<1$. Then, if for every $c \in \mathbf{R}$ we denote by $S(c)$ the solution set of (4.1)-(4.2), by Theorem 4.4, $S(c)$ is arcwise connected in the space $C(I, \mathbf{R})$.

References

[1] J.P. Aubin, H. Frankowska. Set-valued Analysis. Birkhauser, Basel, 1990.
[2] A. Boucherif. First-order differential inclusions with nonlocal initial conditions. Appl. Math. Letters 15:409-414, 2002.
[3] A. Boucherif. Nonlocal Cauchy problems for first-order multivalued differential equations. Electronic J. Differ. Equations 2002:1-11, no. 47, 2002.
[4] L. Byszewski. Application of properties of the right-hand sides of evolution equations to an investigation of nonlocal evolution problems. Nonlin. Anal. 33:413-426, 1998.
[5] L. Byszewski. Existence and uniqueness of a classical solution to a functional-differential abstract nonlocal Cauchy problem. J. Appl. Math. Stochastic Anal. 12:91-97, 1999.
[6] A.Cernea. A note on some boundary value problems for higher order differential inclusions. Ann. Acad. Rom. Sci. Ser. Math. Appl. 3:375-383, 2011.
[7] A. Cernea. A note on mild solutions for nonconvex fractional semilinear differential inclusions. Ann. Acad. Rom. Sci. Ser. Math. Appl. 5:35-45, 2013.
[8] A.F. Filippov. Classical solutions of differential equations with multivalued right hand side. SIAM J. Control 5:609-621, 1967.
[9] S. Marano. Fixed points of multivalued contractions with nonclosed, nonconvex values. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 5:203-212, 1994.
[10] S. Marano, V. Staicu. On the set of solutions to a class of nonconvex nonclosed differential inclusions. Acta Math. Hungar. 76:287-301, 1997.

[^0]: *Accepted for publication in revised form on February 12-th 2017
 ${ }^{\dagger}$ acernea@fmi.unibuc.ro Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, 010014 Bucharest and Academy of Romanian Scientists, Splaiul Independenţei 54, 050094 Bucharest, Romania

