ISSN 2066-6594

Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 9, No. 1/2017

ON A DIFFERENTIAL INCLUSION WITH CERTAIN NONLOCAL CONDITIONS*

Aurelian Cernea †

Abstract

We consider a first-order nonconvex multivalued differential equation suject to some nonlocal conditions. We establish a Filippov type existence theorem and we prove the arcwise connectedness of the solution set of the problem considered.

MSC: 34A60

keywords: differential inclusion, boundary value problem, arcwise connectedness.

1 Introduction

This paper is concerned with the following problem

$$x' \in F(t, x)$$
 a.e. [0, 1], (1.1)

$$x(0) + \sum_{i=1}^{m} a_i x(t_i) = x_0, \qquad (1.2)$$

^{*}Accepted for publication in revised form on February 12-th 2017

[†]acernea@fmi.unibuc.ro Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, 010014 Bucharest and Academy of Romanian Scientists, Splaiul Independenței 54, 050094 Bucharest, Romania

where $a_i \in \mathbf{R}$, $a_i \neq 0$, $i = \overline{1, m}$, $x_0 \in \mathbf{R}$, $0 < t_1 < t_2 < ... < t_m < 1$ and $F : [0, 1] \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$ is a set-valued map.

In the case when F is un upper semicontinuous set-valued map with convex values existence results for problem (1.1)-(1.2) may be found in [2,3]. In [2] the result uses Bohnenblust and Karlin fixed point theorem for set-valued maps and in [3], in the case $x_0 = 0$, the approach is based on topological transversality theory for set-valued maps.

The nonlocal condition (1.2) was used by Byszewski ([4,5]). If $a_i \neq 0$, $i = \overline{1, m}$ the results can be applied in kinematics to determine the evolution $t \to x(t)$ of the location of a physical object for which the positions $x(0), x(t_1), ..., x(t_m)$ are unknown but it is known the condition (1.2). Consequently, to describe some physical phenomena the nonlocal condition may be more useful than the standard initial condition $x(0) = x_0$. Obviously, when $a_i = 0, i = \overline{1, m}$, one has the classical initial condition.

Our aim is to study problem (1.1)-(1.2) in the case when the values of F are not convex and is twofold. On one hand, we show that Filippov's ideas ([8]) can be suitably adapted in order to obtain the existence of solutions for problem (1.1)-(1.2). We recall that for a differential inclusion defined by a lipschitzian set-valued map with nonconvex values, Filippov's theorem ([8]) consists in proving the existence of a solution starting from a given almost solution. Moreover, the result provides an estimate between the starting almost solution and the solution of the differential inclusion.

On the other hand, following the approach in [10] we prove the arcwise connectedness of the solution set of problem (1.1)-(1.2). The proof is based on a result ([9,10]) concerning the arcwise connectedness of the fixed point set of a class of set-valued contractions.

The paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the sequel, Section 3 is devoted to the Filippov type existence theorem and in Section 4 we obtain the arcwise connectedness of the solution set.

2 Preliminaries

In what follows we denote by I the interval [0,1], $C(I, \mathbf{R})$ is the Banach space of all continuous functions from I to \mathbf{R} with the norm $||x||_C = \sup_{t \in I} |x(t)|$ and $L^1(I, \mathbf{R})$ is the Banach space of integrable functions u(.): $I \to \mathbf{R}$ endowed with the norm $||u||_1 = \int_0^T |u(t)| dt$. The Banach space of all absolutely continuous functions $x(.) : I \to \mathbf{R}$ with the norm $||x(.)||_{AC} = |x(0)| + ||x'(.)||_1$ will be denoted by $AC(I, \mathbf{R})$. Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff distance of the nonempty closed subsets $A, B \subset X$ is defined by

$$D(A,B) = \max\{d^*(A,B), d^*(B,A)\}, \quad d^*(A,B) = \sup\{d(a,B); a \in A\},$$

where $d(x, B) = \inf_{y \in B} d(x, y)$.

Next we need the following technical result proved in [2].

Lemma 2.1. Assume that $1 + \sum_{i=1}^{m} a_i \neq 0$. For a given $f(.) \in C(I, \mathbf{R})$, the unique solution x(.) of problem x' = f(t) with boundary condition (1.2) is given by

$$x(t) = a(x_0 - \sum_{i=1}^m a_i \int_0^{t_i} f(s)ds) + \int_0^t f(s)ds,$$

where $a = \frac{1}{1 + \sum_{i=1}^{m} a_i}$.

Remark 2.2. If we denote $G(t,s) = \chi_{[0,t]}(s) - \sum_{i=1}^{m} aa_i \chi_{[0,t_i]}(s)$, where $\chi_S(\cdot)$ is the characteristic function of the set S, then the solution $x(\cdot)$ in Lemma 2.1 may be written as

$$x(t) = ax_0 + \int_0^1 G(t,s)f(s)ds.$$

Obviously, $|G(t,s)| \le 1 + |a| \sum_{i=1}^{m} |a_i| =: M \ \forall \ t, s \in I..$

3 A Filippov type existence result

First we recall a selection result ([1]) which is a version of the celebrated Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider B the closed unit ball in \mathbb{R}^n , $H: I \to \mathcal{P}(\mathbb{R}^n)$ is a set-valued map with nonempty closed values $g: I \to \mathbb{R}^n$ and $L: I \to [0, \infty)$ are measurable functions. If

$$H(t) \cap (g(t) + L(t)B) \neq \emptyset \quad a.e. \ (I),$$

then the set-valued map $t \to H(t) \cap (g(t) + L(t)B)$ has a measurable selection. In the sequel we assume the following conditions on F.

Hypothesis 3.2. i) $F: I \times \mathbb{R} \to \mathcal{P}(\mathbb{R})$ has nonempty closed values and for every $x \in \mathbb{R}$ F(., x) is measurable.

ii) There exists $L(.) \in L^1(I, \mathbf{R})$ such that for almost all $t \in I, F(t, .)$ is L(t)-Lipschitz in the sense that

$$D(F(t,x),F(t,y)) \le L(t)|x-y| \quad \forall \ x,y \in \mathbf{R}.$$

We are now ready to prove the main result of this section.

Theorem 3.3. Assume that $1 + \sum_{i=1}^{m} a_i \neq 0$, Hypothesis 3.2 is satisfied, $M||L||_1 < 1$ and let $y \in AC(I, \mathbf{R})$ be such that there exists $q(.) \in L^1(I, \mathbf{R})$ with $d(y'(t), F(t, y(t))) \leq q(t)$ a.e. (I). Denote $y(0) + \sum_{i=1}^{m} a_i y(t_i) = y_0$.

Then there exists $x(.) \in AC(I, \mathbf{R})$ a solution of problem (1.1)-(1.2) satisfying for all $t \in I$

$$|x(t) - y(t)| \le \frac{1}{1 - M||L||_1} [|a||x_0 - y_0| + M||q||_1].$$
(3.1)

Proof. The set-valued map $t \to F(t, y(t))$ is measurable with closed values and the hypothesis that $d(y'(t), F(t, y(t))) \leq q(t)$ a.e. (I) is equivalent to

$$F(t, y(t)) \cap \{y'(t) + q(t)[-1, 1]\} \neq \emptyset \quad a.e. (I).$$

It follows from Lemma 3.1 that there exists a measurable selection $f_1(t) \in F(t, y(t))$ a.e. (I) such that

$$|f_1(t) - y'(t)| \le q(t)$$
 a.e. (I) (3.2)

Define $x_1(t) = ax_0 + \int_0^1 G(t,s)f_1(s)ds$ and one has

$$\begin{aligned} |x_1(t) - y(t)| &= |ax_0 - ay_0 + \int_0^1 G(t,s)(f_1(s) - y'(s))ds| \le \\ |a||x_0 - y_0| + \int_0^1 |G(t,s)|q(s)ds \le |a||x_0 - y_0| + M||q||_1. \end{aligned}$$

We claim that it is enough to construct the sequences $x_n(.) \in AC(I, \mathbf{R})$, $f_n(.) \in L^1(I, \mathbf{R})$, $n \ge 1$ with the following properties

$$x_n(t) = ax_0 + \int_0^1 G(t,s)f_n(s)ds, \quad t \in I,$$
(3.3)

$$f_n(t) \in F(t, x_{n-1}(t))$$
 a.e. (I), $n \ge 1$, (3.4)

$$|f_{n+1}(t) - f_n(t)| \le L(t)|x_n(t) - x_{n-1}(t)| \quad a.e.(I), n \ge 1.$$
(3.5)

If this construction is realized then from (3.2)-(3.5) we have for almost all $t \in I$

$$|x_{n+1}(t) - x_n(t)| \le \int_0^1 |G(t, t_1)| \cdot |f_{n+1}(t_1) - f_n(t_1)| dt_1 \le M \int_0^1 L(t_1) |x_n(t_1) - f_n(t_1) |x_n(t_1) - f_n(t_1)| dt_1 \le M \int_0^1 L(t_1) |x_n(t_1) - f_n(t_1) |x_n(t_1) - f_$$

A. Cernea

$$\begin{aligned} x_{n-1}(t_1)|dt_1 &\leq M \int_0^1 L(t_1) \int_0^1 |G(t_1, t_2)| \cdot |f_n(t_2) - f_{n-1}(t_2)|dt_2 &\leq M^2 \int_0^1 L(t_1) \\ \int_0^1 L(t_2)|x_{n-1}(t_2) - x_{n-2}(t_2)|dt_2dt_1 &\leq M^n \int_0^1 L(t_1) \int_0^1 L(t_2) \dots \int_0^1 L(t_n) \\ |x_1(t_n) - y(t_n)|dt_n \dots dt_1 &\leq (M||L||_1)^n (|a||x_0 - y_0| + M||q||_1). \end{aligned}$$

Therefore $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in the Banach space $C(I, \mathbb{R})$, hence converging uniformly to some $x \in C(I, \mathbb{R})$. Therefore, by (3.5), for almost all $t \in I$, the sequence $\{f_n(t)\}_{n \in \mathbb{N}}$ is Cauchy in \mathbb{R} . Let f be the pointwise limit of f_n .

Moreover, one has

$$\begin{aligned} |x_n(t) - y(t)| &\leq |x_1(t) - y(t)| + \sum_{i=1}^{n-1} |x_{i+1}(t) - x_i(t)| \leq |a| |x_0 - y_0| \\ + M||q||_1 + \sum_{i=1}^{n-1} |a| |x_0 - y_0| + M||q||_1) (M||L||_1)^i &= \frac{|a||x_0 - y_0| + M||q||_1}{1 - M||L||_1}. \end{aligned}$$

$$(3.6)$$

On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all $t \in I$

$$\begin{aligned} |f_n(t) - y'(t)| &\leq \sum_{i=1}^{n-1} |f_{i+1}(t) - f_i(t)| + \\ |f_1(t) - y'(t)| &\leq L(t) \frac{|a||x_0 - y_0| + M||q||_1}{1 - M||L||_1} + q(t) \end{aligned}$$

Hence the sequence f_n is integrably bounded and therefore $f \in L^1(I, \mathbf{R})$.

Using Lebesque's dominated convergence theorem and taking the limit in (3.3), (3.4) we deduce that x is a solution of (1.1). Finally, passing to the limit in (3.6) we obtained the desired estimate on x.

It remains to construct the sequences x_n , f_n with the properties in (3.3)-(3.5). The construction will be done by induction.

Since the first step is already realized, assume that for some $N \ge 1$ we already constructed $x_n \in C(I, \mathbf{R})$ and $f_n \in L^1(I, \mathbf{R}), n = 1, 2, ...N$ satisfying (3.3),(3.5) for n = 1, 2, ...N and (3.4) for n = 1, 2, ...N - 1. The set-valued map $t \to F(t, x_N(t))$ is measurable. Moreover, the map $t \to L(t)|x_N(t) - x_{N-1}(t)|$ is measurable. By the lipschitzianity of F(t, .) we have that for almost all $t \in I$

$$F(t, x_N(t)) \cap \{f_N(t) + L(t) | x_N(t) - x_{N-1}(t) | [-1, 1]\} \neq \emptyset.$$

From Lemma 3.1 there exists a measurable selection $f_{N+1}(.)$ of $F(., x_N(.))$ such that

$$|f_{N+1}(t) - f_N(t)| \le L(t)|x_N(t) - x_{N-1}(t)|$$
 a.e. (I).

We define x_{N+1} as in (3.3) with n = N + 1. Thus f_{N+1} satisfies (3.4) and (3.5) and the proof is complete.

66

Remark 3.4. We note that similar existence results for other classes of differential inclusions may be found in our previous papers [6,7].

4 Arcwise connectedness of the solution set

In this section we are concerned with the more general problem

$$x' \in F(t, x, H(t, x))$$
 a.e. ([0, 1]), (4.1)

$$x(0) + \sum_{i=1}^{m} a_i x(t_i) = c, \qquad (4.2)$$

where $c \in \mathbf{R}$, $F : I \times \mathbf{R} \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$, $H : I \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$ and by F(t, x, H(t, x)) we understand $\bigcup_{y \in H(t, x)} F(t, x, y)$.

We assume that F and H are closed-valued multifunctions Lipschitzian with respect to the second variable and F is contractive in the third variable. Obviously, the right-hand side of the differential inclusion in (4.1) is in general neither convex nor closed. We prove the arcwise connectedness of the solution set to (4.1)-(4.2). When F does not depend on the last variable (4.1) reduces to (1.1) and the result remains valid for problem (1.1)-(1.2).

Let Z be a metric space with the distance d_Z . In what follows, when the product $Z = Z_1 \times Z_2$ of metric spaces $Z_i, i = 1, 2$, is considered, it is assumed that Z is equipped with the distance $d_Z((z_1, z_2), (z'_1, z'_2)) = \sum_{i=1}^2 d_{Z_i}(z_i, z'_i)$.

that Z is equipped with the distance $d_Z((z_1, z_2), (z'_1, z'_2)) = \sum_{i=1}^2 d_{Z_i}(z_i, z'_i)$. Let X be a nonempty set and let $F: X \to \mathcal{P}(Z)$ be a set-valued map with nonempty closed values. In what follows d_X stands for the distance on X induced by the normed on X and Pompeiu-Hausdorff distance on nonempty closed subsets of X is denoted by D_X .

The range of F is the set $F(X) = \bigcup_{x \in X} F(x)$. The multifunction F is called Hausdorff continuous if for any $x_0 \in X$ and every $\epsilon > 0$ there exists $\delta > 0$ such that $x \in X, d_X(x, x_0) < \delta$ implies $D_Z(F(x), F(x_0)) < \epsilon$.

Let (T, \mathcal{F}, μ) be a finite, positive, nonatomic measure space and let $(X, |.|_X)$ be a Banach space. We recall that a set $A \in \mathcal{F}$ is called atom of μ if $\mu(A) \neq 0$ and for any $B \in \mathcal{F}, B \subset A$ one has $\mu(B) = 0$ or $\mu(B) = \mu(A)$. μ is called nonatomic measure if \mathcal{F} does not contains atoms of μ . For example, Lebesgue's measure on a given interval in \mathbb{R}^n is a nonatomic measure.

We denote by $L^1(T, X)$ the Banach space of all (equivalence classes of) Bochner integrable functions $u: T \to X$ endowed with the norm

$$|u|_{L^1(T,X)} = \int_T |u(t)|_X d\mu$$

A nonempty set $K \subset L^1(T, X)$ is called decomposable if, for every $u, v \in K$ and every $A \in \mathcal{F}$, one has

$$\chi_A.u + \chi_{T \setminus A}.v \in K$$

where $\chi_B, B \in \mathcal{F}$ indicates the characteristic function of B.

Next we recall some preliminary results that are the main tools in the proof of our result.

To simplify the notation we write E in place of $L^1(T, X)$.

The next two lemmas are proved in [10].

Lemma 4.1. Assume that $\phi: S \times E \to \mathcal{P}(E)$ and $\psi: S \times E \times E \to \mathcal{P}(E)$ are Hausdorff continuous multifunctions with nonempty, closed, decomposable values, satisfying the following conditions

a) There exists $L \in [0, 1)$ such that, for every $s \in S$ and every $u, u' \in E$,

$$D_E(\phi(s,u),\phi(s,u')) \le L|u-u'|_E.$$

b) There exists $M \in [0,1)$ such that L + M < 1 and for every $s \in S$ and every $(u, v), (u', v') \in E \times E$,

$$D_E(\psi(s, u, v), \psi(s, u', v')) \le M(|u - u'|_E + |v - v'|_E).$$

Set $Fix(\Gamma(s,.)) = \{u \in E; u \in \Gamma(s,u)\}$, where $\Gamma(s,u) = \psi(s,u,\phi(s,u))$, $(s,u) \in S \times E$. Then

1) For every $s \in S$ the set $Fix(\Gamma(s,.))$ is nonempty and arcwise connected.

2) For any $s_i \in S$, and any $u_i \in Fix(\Gamma(s,.)), i = 1, ..., p$ there exists a continuous function $\gamma : S \to E$ such that $\gamma(s) \in Fix(\Gamma(s,.))$ for all $s \in S$ and $\gamma(s_i) = u_i, i = 1, ..., p$.

Lemma 4.2. Let $U : T \to \mathcal{P}(X)$ and $V : T \times X \to \mathcal{P}(X)$ be two nonempty closed-valued multifunctions satisfying the following conditions

a) U is measurable and there exists $r \in L^1(T)$ such that $D_X(U(t), \{0\}) \leq r(t)$ for almost all $t \in T$.

b) The multifunction $t \to V(t, x)$ is measurable for every $x \in X$.

c) The multifunction $x \to V(t, x)$ is Hausdorff continuous for all $t \in T$. Let $v: T \to X$ be a measurable selection from $t \to V(t, U(t))$.

Then there exists a selection $u \in L^1(T, X)$ of U(.) such that $v(t) \in V(t, u(t)), t \in T$.

A differential inclusion with nonlocal conditions

Hypothesis 4.3. Let $F : I \times \mathbb{R}^2 \to \mathcal{P}(\mathbb{R})$ and $H : I \times \mathbb{R} \to \mathcal{P}(\mathbb{R})$ be two set-valued maps with nonempty closed values, satisfying the following assumptions

i) The set-valued maps $t \to F(t, u, v)$ and $t \to H(t, u)$ are measurable for all $u, v \in \mathbf{R}$.

ii) There exists $l \in L^1(I, \mathbf{R}_+)$ such that, for every $u, u' \in \mathbf{R}$,

$$D(H(t, u), H(t, u')) \le l(t)|u - u'|$$
 a.e. (I).

iii) There exist $m \in L^1(I, \mathbf{R}_+)$ and $\theta \in [0, 1)$ such that, for every $u, v, u', v' \in \mathbf{R}$,

$$D(F(t, u, v), F(t, u', v')) \le m(t)|u - u'| + \theta|v - v'| \quad a.e.(I).$$

iv) There exist $f, g \in L^1(I, \mathbf{R}_+)$ such that

$$d(0, F(t, 0, 0)) \le l(t), \quad d(0, H(t, 0)) \le g(t) \quad a.e.(I)$$

For $c \in \mathbf{R}$ we denote by S(c) the solution set of (4.1)-(4.2). In what follows $N(t) := \max\{l(t), m(t)\}, t \in I$.

Theorem 4.4. Assume that $1 + \sum_{i=1}^{m} a_i \neq 0$, Hypothesis 4.3 is satisfied and $2M \int_0^1 N(s) ds + \theta < 1$. Then

1) For every $c \in \mathbf{R}$, the solution set S(c) of (4.1)-(4.2) is nonempty and arcwise connected in the space $C(I, \mathbf{R})$.

2) For any $c_i \in \mathbf{R}$ and any $u_i \in S(c_i)$, i = 1, ..., p, there exists a continuous function $s : \mathbf{R} \to C(I, \mathbf{R})$ such that $s(c) \in S(c)$ for any $c \in \mathbf{R}$ and $s(c_i) = u_i, i = 1, ..., p$.

3) The set $S = \bigcup_{c \in \mathbf{R}} S(c)$ is arcwise connected in $C(I, \mathbf{R})$.

Proof. 1) For $c \in \mathbf{R}$ and $u \in L^1(I, \mathbf{R})$, set

$$u_c(t) = ac + \int_0^1 G(t,s)u(s)ds, \quad t \in I.$$

We prove that the multifunctions $\phi : \mathbf{R} \times L^1(I, \mathbf{R}) \to \mathcal{P}(L^1(I, \mathbf{R}))$ and $\psi : \mathbf{R} \times L^1(I, \mathbf{R}) \times L^1(I, \mathbf{R}) \to \mathcal{P}(L^1(I, \mathbf{R}))$ given by

$$\phi(c, u) = \{ v \in L^1(I, \mathbf{R}); \quad v(t) \in H(t, u_c(t)) \quad a.e. \ (I) \},\$$

 $\psi(c, u, v) = \{ w \in L^1(I, \mathbf{R}); \quad w(t) \in F(t, u_c(t), v(t)) \quad a.e. \ (I) \},\$

 $c \in \mathbf{R}, u, v \in L^1(I, \mathbf{R})$ satisfy the hypotheses of Lemma 4.1.

Since u_c is measurable and H satisfies Hypothesis 4.3 i) and ii), the multifunction $t \to H(t, u_c(t))$ is measurable and nonempty closed valued, hence it has a measurable selection. Therefore due to Hypothesis 4.3 iv), the set $\phi(c, u)$ is nonempty. The fact that the set $\phi(c, u)$ is closed and decomposable follows by simple computation. In the same way we obtain that $\psi(c, u, v)$ is a nonempty closed decomposable set.

Pick $(c, u), (c_1, u_1) \in \mathbf{R} \times L^1(I, \mathbf{R})$ and choose $v \in \phi(c, u)$. For each $\varepsilon > 0$ there exists $v_1 \in \phi(c_1, u_1)$ such that, for every $t \in I$, one has

$$\begin{aligned} |v(t) - v_1(t)| &\leq D(H(t, u_c(t)), H(t, u_{c_1}(t))) + \varepsilon \leq \\ N(t)[|a||c - c_1| + \int_0^1 |G(t, s)| \cdot |u(s) - u_1(s)|ds] + \varepsilon. \end{aligned}$$

Therefore,

$$||v - v_1||_1 \le |a||c - c_1| \int_0^1 N(t)dt + M \int_0^1 N(t)dt ||u - u_1||_1 + \varepsilon T$$

for any $\varepsilon > 0$.

This implies

$$d_{L^{1}(I,\mathbf{R})}(v,\phi(c_{1},u_{1})) \leq |a||c-c_{1}| \int_{0}^{1} N(t)dt + M \int_{0}^{1} N(t)dt ||u-u_{1}||_{1}$$

for all $v \in \phi(c, u)$. Consequently,

$$D_{L^{1}(I,\mathbf{R})}(\phi(c,u),\phi(c_{1},u_{1})) \leq |a||c-c_{1}| \int_{0}^{1} N(t)dt + M \int_{0}^{1} N(t)dt ||u-u_{1}||_{1}$$

which shows that ϕ is Hausdorff continuous and satisfies the assumptions of Lemma 4.1.

Pick $(c, u, v), (c_1, u_1, v_1) \in \mathbf{R} \times L^1(I, \mathbf{R}) \times L^1(I, \mathbf{R})$ and choose $w \in \psi(c, u, v)$. Then, as before, for each $\varepsilon > 0$ there exists $w_1 \in \psi(c_1, u_1, v_1)$ such that for every $t \in I$

$$\begin{split} |w(t) - w_1(t)| &\leq D(F(t, u_c(t), v(t)), F(t, u_{c_1}(t), v_1(t))) + \varepsilon \leq \\ &\leq N(t)|u_c(t) - u_{c_1}(t)| + \theta|v(t) - v_1(t)| + \varepsilon \leq \\ N(t)[|ac - ac_1| + \int_0^1 |G(t, s)| . |u(s) - u_1(s)|ds] + \theta|v(t) - v_1(t)| + \varepsilon \\ &\leq N(t)[|a||c - c_1| + M||u - u_1||_1] + \theta|v(t) - v_1(t)| + \varepsilon. \end{split}$$

Hence

$$\begin{aligned} ||w - w_1||_1 &\leq |a||c - c_1| \cdot \int_0^1 N(t)dt + M \int_0^1 N(t)dt ||u - u_1||_1 \\ + \theta ||v - v_1||_1 + \varepsilon T &\leq |a||c - c_1| \cdot \int_0^1 N(t)dt + (M \int_0^1 N(t)dt + \\ \theta) d_{L^1(I,\mathbf{R}) \times L^1(I,\mathbf{R})}((u,v),(u_1,v_1)) + \varepsilon T. \end{aligned}$$

As above, we deduce that

$$D_{L^{1}(I,\mathbf{R})}(\psi(c,u,v),\psi(c_{1},u_{1},v_{1})) \leq |a||c-c_{1}| \int_{0}^{1} N(t)dt + (M \int_{0}^{1} N(t)dt + \theta)d_{L^{1}(I,\mathbf{R}) \times L^{1}(I,\mathbf{R})}((u,v),(u_{1},v_{1})),$$

namely, the multifunction ψ is Hausdorff continuous and satisfies the hypothesis of Lemma 4.1.

Define $\Gamma(c, u) = \psi(c, u, \phi(c, u)), (c, u) \in \mathbf{R} \times L^1(I, \mathbf{R})$. According to Lemma 4.1, the set $Fix(\Gamma(c, .)) = \{u \in L^1(I, \mathbf{R}); u \in \Gamma(c, u)\}$ is nonempty and arcwise connected in $L^1(I, \mathbf{R})$. Moreover, for fixed $c_i \in \mathbf{R}$ and $v_i \in$ $Fix(\Gamma(c_i, .)), i = 1, ..., p$, there exists a continuous function $\gamma : \mathbf{R} \to L^1(I, \mathbf{R})$ such that

$$\gamma(c) \in Fix(\Gamma(c,.)), \quad \forall c \in \mathbf{R},$$

$$(4.3)$$

$$\gamma(c_i) = v_i, \quad i = 1, ..., p.$$
 (4.4)

We shall prove that

$$Fix(\Gamma(c,.)) = \{ u \in L^{1}(I, \mathbf{R}); \quad u(t) \in F(t, u_{c}(t), H(t, u_{c}(t))) \quad a.e. \ (I) \}.$$
(4.5)

Denote by A(c) the right-hand side of (4.5). If $u \in Fix(\Gamma(c,.))$ then there is $v \in \phi(c,v)$ such that $u \in \psi(c,u,v)$. Therefore, $v(t) \in H(t,u_c(t))$ and

$$u(t) \in F(t, u_c(t), v(t)) \subset F(t, u_c(t), H(t, u_c(t)))$$
 a.e. (I),

so that $Fix(\Gamma(c,.)) \subset A(c)$.

Let now $u \in A(c)$. By Lemma 4.2, there exists a selection $v \in L^1(I, \mathbf{R})$ of the multifunction $t \to H(t, u_c(t))$ satisfying

$$u(t) \in F(t, u_c(t), v(t)) \quad a.e. (I).$$

Hence, $v \in \phi(c, v)$, $u \in \psi(c, u, v)$ and thus $u \in \Gamma(c, u)$, which completes the proof of (4.5).

A. Cernea

We next note that the function $\mathcal{T}: L^1(I, \mathbf{R}) \to C(I, \mathbf{R}),$

$$\mathcal{T}(u)(t) := \int_0^1 G(t,s)u(s)ds, \quad t \in I$$

is continuous and one has

$$S(c) = ac + \mathcal{T}(Fix(\Gamma(c,.))), \quad c \in \mathbf{R}.$$
(4.6)

Since $Fix(\Gamma(c, .))$ is nonempty and arcwise connected in $L^1(I, \mathbf{R})$, the set S(c) has the same properties in $C(I, \mathbf{R})$.

2) Let $c_i \in \mathbf{R}$ and let $u_i \in S(c_i), i = 1, ..., p$ be fixed. By (4.6) there exists $v_i \in Fix(\Gamma(c_i, .))$ such that

$$u_i = ac_i + \mathcal{T}(v_i), \quad i = 1, \dots, p.$$

If $\gamma : \mathbf{R} \to L^1(I, \mathbf{R})$ is a continuous function satisfying (4.3) and (4.4) we define, for every $c \in \mathbf{R}$,

$$s(c) = ac + \mathcal{T}(\gamma(c)).$$

Obviously, the function $s : \mathbf{R} \to C(I, \mathbf{R})$ is continuous, $s(c) \in S(c)$ for all $c \in \mathbf{R}$, and

$$s(c_i) = ac_i + \mathcal{T}(\gamma(c_i)) = ac_i + \mathcal{T}(v_i) = u_i, \quad i = 1, ..., p$$

3) Let $u_1, u_2 \in S = \bigcup_{c \in \mathbf{R}} S(c)$ and choose $c_i \in \mathbf{R}$, i = 1, 2 such that $u_i \in S(c_i)$, i = 1, 2. From the conclusion of 2) we deduce the existence of a continuous function $s : \mathbf{R} \to C(I, \mathbf{R})$ satisfying $s(c_i) = u_i$, i = 1, 2 and $s(c) \in S(c)$, $c \in \mathbf{R}$. Let $h : [0, 1] \to \mathbf{R}$ be a continuous mapping such that $h(0) = c_1$ and $h(1) = c_2$. Then the function $s \circ h : [0, 1] \to C(I, \mathbf{R})$ is continuous and verifies

$$s \circ h(0) = u_1, \quad s \circ h(1) = u_2, \quad s \circ h(\tau) \in S(h(\tau)) \subset S, \quad \tau \in [0, 1].$$

As an example we consider problem (4.1) defined by $F(.,.,.) : [0,1] \times \mathbf{R} \times \mathbf{R} \to \mathcal{P}(\mathbf{R}), H(.,.) : [0,1] \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$ with

$$F(t, x, y) = \left[-\frac{1}{4M} \frac{|x|}{1+|x|}, 0\right] \cup \left[0, \frac{1}{4} \frac{|y|}{1+|y|}\right],$$

 $H(t,x) = \left\{\frac{1}{4Me^{t+1}(1+|x|)}\right\}$ and with any nonlocal conditions (4.2). A straightforward computation shows that $m(t) \equiv \frac{1}{4M}, \theta = \frac{1}{4}, l(t) \equiv \frac{1}{4Me}$. In this case, $2M \int_0^1 N(s)ds + \theta = 2M \int_0^1 \frac{1}{4M}ds + \frac{1}{4} < 1$. Then, if for every $c \in \mathbf{R}$ we denote by S(c) the solution set of (4.1)-(4.2), by Theorem 4.4, S(c) is arcwise connected in the space $C(I, \mathbf{R})$.

72

References

- J.P. Aubin, H. Frankowska. Set-valued Analysis. Birkhauser, Basel, 1990.
- [2] A. Boucherif. First-order differential inclusions with nonlocal initial conditions. Appl. Math. Letters 15:409-414, 2002.
- [3] A. Boucherif. Nonlocal Cauchy problems for first-order multivalued differential equations. *Electronic J. Differ. Equations* 2002:1-11, no. 47, 2002.
- [4] L. Byszewski. Application of properties of the right-hand sides of evolution equations to an investigation of nonlocal evolution problems. *Nonlin. Anal.* 33:413-426, 1998.
- [5] L. Byszewski. Existence and uniqueness of a classical solution to a functional-differential abstract nonlocal Cauchy problem. J. Appl. Math. Stochastic Anal. 12:91-97, 1999.
- [6] A.Cernea. A note on some boundary value problems for higher order differential inclusions. Ann. Acad. Rom. Sci. Ser. Math. Appl. 3:375-383, 2011.
- [7] A. Cernea. A note on mild solutions for nonconvex fractional semilinear differential inclusions. Ann. Acad. Rom. Sci. Ser. Math. Appl. 5:35-45, 2013.
- [8] A.F. Filippov. Classical solutions of differential equations with multivalued right hand side. SIAM J. Control 5:609-621, 1967.
- [9] S. Marano. Fixed points of multivalued contractions with nonclosed, nonconvex values. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 5:203-212, 1994.
- [10] S. Marano, V. Staicu. On the set of solutions to a class of nonconvex nonclosed differential inclusions. *Acta Math. Hungar.* 76:287-301, 1997.