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ON A DIFFERENTIAL INCLUSION
WITH CERTAIN NONLOCAL
CONDITIONS*

Aurelian Cerneal

Abstract

We consider a first-order nonconvex multivalued differential equa-
tion suject to some nonlocal conditions. We establish a Filippov type
existence theorem and we prove the arcwise connectedness of the solu-
tion set of the problem considered.
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1 Introduction
This paper is concerned with the following problem

¥ € F(t,z) a.e.[0,1], (1.1)

z(0) + Z a;x(t;) = xo, (1.2)
i=1
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where a; € R, a; #0,i=1,m, 10 € R, 0 < t] <ty < ... <t < 1 and
F:[0,1] x R — P(R) is a set-valued map.

In the case when F' is un upper semicontinuous set-valued map with con-
vex values existence results for problem (1.1)-(1.2) may be found in [2,3]. In
[2] the result uses Bohnenblust and Karlin fixed point theorem for set-valued
maps and in [3], in the case ¢ = 0, the approach is based on topological
transversality theory for set-valued maps.

The nonlocal condition (1.2) was used by Byszewski ([4,5]). If a; # 0,
i = 1, m the results can be applied in kinematics to determine the evolu-
tion ¢ — x(t) of the location of a physical object for which the positions
z(0), z(t1), ..., x(ty,) are unknown but it is known the condition (1.2). Con-
sequently, to describe some physical phenomena the nonlocal condition may
be more useful than the standard initial condition x(0) = xo. Obviously,
when a; = 0, i = 1, m, one has the classical initial condition.

Our aim is to study problem (1.1)-(1.2) in the case when the values of F’
are not convex and is twofold. On one hand, we show that Filippov’s ideas
([8]) can be suitably adapted in order to obtain the existence of solutions for
problem (1.1)-(1.2). We recall that for a differential inclusion defined by a
lipschitzian set-valued map with nonconvex values, Filippov’s theorem ([8])
consists in proving the existence of a solution starting from a given almost
solution. Moreover, the result provides an estimate between the starting
almost solution and the solution of the differential inclusion.

On the other hand, following the approach in [10] we prove the arcwise
connectedness of the solution set of problem (1.1)-(1.2). The proof is based
on a result ([9,10]) concerning the arcwise connectedness of the fixed point
set of a class of set-valued contractions.

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel, Section 3 is devoted to the Filippov type
existence theorem and in Section 4 we obtain the arcwise connectedness of
the solution set.

2 Preliminaries

In what follows we denote by I the interval [0,1], C(I,R) is the Ba-
nach space of all continuous functions from I to R with the norm ||z||c =
sup,c; |z(t)| and LY(I,R) is the Banach space of integrable functions u(.) :
I — R endowed with the norm ||ul|; = f(;f |u(t)|dt. The Banach space of

all absolutely continuous functions z(.) : I — R with the norm ||z(.)||ac =
|z(0)| + ||2(.)||1 will be denoted by AC(I,R).
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Let (X,d) be a metric space. We recall that the Pompeiu-Hausdorff
distance of the nonempty closed subsets A, B C X is defined by

D(A, B) = max{d*(A, B),d*(B, A)}, d*(A, B) = sup{d(a, B);a € A},

where d(x, B) = inf,cp d(z,y).
Next we need the following technical result proved in [2].

Lemma 2.1. Assume that 1+ ", a; # 0. For a given f(.) € C(I,R),
the unique solution x(.) of problem x’' = f(t) with boundary condition (1.2)
s given by

() =ato = /0 £(s)ds) + /0 £(s)ds,

_ 1
where a = T

Remark 2.2. If we denote G(t,5) = x[o,q(5) — D i%; aaix[o,,)(s), where
xs(+) is the characteristic function of the set S, then the solution z(-) in
Lemma 2.1 may be written as

1
x(t) = axg —I—/O G(t,s)f(s)ds.

Obviously, |G(t,s)| <1+ a|> 7" |ail = M Vt,sel.

3 A Filippov type existence result

First we recall a selection result ([1]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider B the closed unit ball in R", H : I — P(R") is a
set-valued map with nonempty closed values g : I — R™ and L : I — [0,00)
are measurable functions. If

Ht)Nn(g(t)+ L(t)B) 0 a.e. (1),

then the set-valued map t — H(t)N(g(t)+L(t)B) has a measurable selection.
In the sequel we assume the following conditions on F'.

Hypothesis 3.2. i) F': I x R — P(R) has nonempty closed values and
for every x € R F(.,x) is measurable.
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ii) There erists L(.) € L*(I,R) such that for almost all t € I, F(t,.) is
L(t)-Lipschitz in the sense that

D(F(t,x), F(t,y)) < L(t)|x —y| ¥V z,y €R.
We are now ready to prove the main result of this section.

Theorem 3.3. Assume that 1+ ;" a; # 0, Hypothesis 3.2 is satisfied,
M]||L||x < 1 and let y € AC(I,R) be such that there exists q(.) € L*(I,R)

with d(y'(t), F(t,y(t))) < q(t) a.e. (I). Denote y(0) + > " a;iy(t;) = yo.
Then there exists x(.) € AC(I,R) a solution of problem (1.1)-(1.2) sat-
isfying for allt € 1

1
() = y(0)] < Ty lalleo — sl + Mllglh). @)

)) is measurable with closed

Proof. The set-valued map ¢ — F(t,y(t
t))) < q(t) a.e. (I)is equivalent

values and the hypothesis that d(y/(t), F (¢, y(
to

Ft,y®) n{y'(t) + )1, 1} # 0 a.e. (I).
It follows from Lemma 3.1 that there exists a measurable selection fi(t) €
F(t,y(t)) a.e. (I) such that

/1) =y (D) < q(t) ae. (1) (3-2)
Define x1(t) = axg + fol G(t,s)f1(s)ds and one has

1
[#1(t) = y(#)] = |azo — ayo + Jo G(&,8)(f1(s) = y/(s))ds| <
lallzo = yol + fy 1G(t, s)la(s)ds < |al|zo — yo| + M||q|s-
We claim that it is enough to construct the sequences z,(.) € AC(I,R),
fn(.) € LY(I,R), n > 1 with the following properties

1
o (1) = azo + /0 Glt,5)fu(s)ds, tel, (3.3)

fa(t) € F(t,xn—1(t)) a.e.(I), n>1, (3.4)
[fr1(t) = fu(D)] < L(D)|2n(t) = 2na(t)] ae.(I),n=1.  (3.5)

If this construction is realized then from (3.2)-(3.5) we have for almost
allter

1 1
|[Zny1(t) =20 (t)] S/O |Gt t1)|.| frr1(t1) — fulta)]dta SM/O L(t1)|zn(t1)—
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Tn—1(t1)]dly < M/OlL(tl) /01 G (t1, t2)].| fu(t2) = fa—1(t2)|dl2 < M2/01L(751)

1 1 1 1
/0 L(tQ)‘l'n,l(tg)—$n,2(t2)|dt2dt1 SM”/O L(tl)/o L(tg)/o L(tn)

|21(tn) = y(tn)|dtn...dity < (M||L[[1)" (|al|zo = yol + M|g[[1)-

Therefore {x,, }nen is a Cauchy sequence in the Banach space C(I,R),
hence converging uniformly to some x € C(I,R). Therefore, by (3.5), for
almost all ¢ € I, the sequence {f,(t)}nen is Cauchy in R. Let f be the
pointwise limit of f,.

Moreover, one has

[n () =y ()] < |21 (t) = y(O] + 375 i (t) — i(t)] < Jallzo — yol

Ml + 30 o — ol + Mlall) ([|]L ) = lelizo—pol tillall,
(3.6)

On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all

tel
) =y O] < S22 i () = i)+
fi(t) — o/ (8)] < L(r)lelmoztoatldl 4 ().

Ll

Hence the sequence f,, is integrably bounded and therefore f € L'(I,R).

Using Lebesque’s dominated convergence theorem and taking the limit
n (3.3), (3.4) we deduce that z is a solution of (1.1). Finally, passing to the
limit in (3.6) we obtained the desired estimate on .

It remains to construct the sequences x,, f, with the properties in (3.3)-
(3.5). The construction will be done by induction.

Since the first step is already realized, assume that for some N > 1 we
already constructed x,, € C(I,R) and f,, € L*(I,R),n = 1,2, ...N satisfying
(3.3),(3.5) for n = 1,2,..N and (3.4) for n = 1,2,...N — 1. The set-valued
map t — F(t,xn(t)) is measurable. Moreover, the map ¢t — L(t)|zn(t) —
xn—1(t)] is measurable. By the lipschitzianity of F(t,.) we have that for
almost all t € T

F(t,zn () N {fn(t) + Lt)|zn (t) — zn-1(8)|[-1, 1]} # 0.

From Lemma 3.1 there exists a measurable selection fyyi1(.) of F/(.,zn(.))
such that

[fn(t) = In(@)] < L)|zn () —2na(t)] ae. (I).

We define 41 as in (3.3) with n = N 4+ 1. Thus fyy; satisfies (3.4)
and (3.5) and the proof is complete.
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Remark 3.4. We note that similar existence results for other classes of
differential inclusions may be found in our previous papers [6,7].

4 Arcwise connectedness of the solution set
In this section we are concerned with the more general problem

¥ € F(t,z, H(t,x)) ae. ([0,1]), (4.1)

x(0) + Z a;x(t;) = c, (4.2)
i=1

where c € R, F : I xR xR — PR), H : I x R - P(R) and by
F(t,z, H(t,x)) we understand Uye (s 2) F (¢, 2, ).

We assume that F' and H are closed-valued multifunctions Lipschitzian
with respect to the second variable and F' is contractive in the third vari-
able. Obviously, the right-hand side of the differential inclusion in (4.1) is
in general neither convex nor closed. We prove the arcwise connectedness of
the solution set to (4.1)-(4.2). When F does not depend on the last variable
(4.1) reduces to (1.1) and the result remains valid for problem (1.1)-(1.2).

Let Z be a metric space with the distance dz. In what follows, when the
product Z = Z7 X Z5 of metric spaces Z;,i = 1, 2, is considered, it is assumed
that Z is equipped with the distance dz((21, 22), (2}, 23)) = Yoo, dz, (2, 21).

Let X be a nonempty set and let F' : X — P(Z) be a set-valued map
with nonempty closed values. In what follows dx stands for the distance
on X induced by the normed on X and Pompeiu-Hausdorff distance on
nonempty closed subsets of X is denoted by Dx..

The range of F' is the set F(X) = UgexF(x). The multifunction F' is
called Hausdorff continuous if for any xzg € X and every € > 0 there exists
d > 0 such that x € X, dx(x,x0) < 0 implies Dz(F(z), F(x0)) < €.

Let (T, F, u) be a finite, positive, nonatomic measure space and let (X,
|.|x) be a Banach space. We recall that a set A € F is called atom of p if
p(A) # 0 and for any B € F, B C A one has u(B) =0 or u(B) = pu(A). pis
called nonatomic measure if F does not contains atoms of y. For example,
Lebesgue’s measure on a given interval in R" is a nonatomic measure.

We denote by L'(T, X) the Banach space of all (equivalence classes of)
Bochner integrable functions v : " — X endowed with the norm

ful 1 rx) = /T ()| xdp
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A nonempty set K ¢ L'(T, X) is called decomposable if, for every u,v €
K and every A € F, one has

XAU+XT\4-0 € K

where xp, B € F indicates the characteristic function of B.

Next we recall some preliminary results that are the main tools in the
proof of our result.

To simplify the notation we write E in place of L*(T, X).

The next two lemmas are proved in [10].

Lemma 4.1. Assume that ¢ : SXE — P(E) and : SXx ExXE — P(FE)
are Hausdorff continuous multifunctions with nonempty, closed, decompos-
able values, satisfying the following conditions

a) There exists L € [0,1) such that, for every s € S and every u,u’ € E,

Dg(¢(s,u), ¢(s,u")) < Llu —u'|p.

b) There exists M € [0,1) such that L+ M < 1 and for every s € S and
every (u,v), (u',v') € E x E,

Dp(t(s, u,v),¢(s,u',v') < M(Ju —o/|g + [v = '|p).

Set Fiz(I'(s,.)) = {u € E;u € I'(s,u)}, where I'(s,u) = (s, u, (s, u)),
(s,u) € S x E. Then

1) For every s € S the set Fix(I'(s,.)) is nonempty and arcwise con-
nected.

2) For any s; € S, and any u; € Fix(I'(s,.)),i = 1,...,p there erists a
continuous function v : S — E such that v(s) € Fix(I'(s,.)) for all s € S
and v(s;) = u;yi =1,...,p.

Lemma 4.2. LetU : T — P(X) and V : T x X — P(X) be two
nonempty closed-valued multifunctions satisfying the following conditions

a) U is measurable and there exists v € LY(T) such that Dx(U(t),{0})
< r(t) for almost allt € T.

b) The multifunction t — V (t,x) is measurable for every x € X.

c) The multifunction © — V (t,x) is Hausdorff continuous for allt € T.

Let v : T — X be a measurable selection from t — V(t,U(t)).

Then there exists a selection u € LY(T,X) of U(.) such that v(t) €
V(t,u(t)), teT.
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Hypothesis 4.3. Let F : I x R> - P(R) and H : I x R — P(R)
be two set-valued maps with nonempty closed values, satisfying the following
assumptions

i) The set-valued maps t — F(t,u,v) and t — H(t,u) are measurable
for all u,v € R.

ii) There exists | € L*(I,R.y) such that, for every u,u’ € R,

D(H(t,u), H(t,u")) <1(t)|u —u| a.e. (I).

iii) There exist m € L*(I,Ry) and 6 € [0,1) such that, for every u, v, u’,
v eR,

D(F(t,u,v), F(t,u,v")) <m(t)|u — |+ 0lv —2| a.e.(I).
iv) There exist f,g € L*(I,Ry) such that
40, F(£,0,0)) < 1(t), d(0, H(t,0)) < g(t) a.e.(D)

For ¢ € R we denote by S(c) the solution set of (4.1)-(4.2).
In what follows N(t) := max{l(t),m(t)}, t € I.

Theorem 4.4. Assume that 1+ """ a; # 0, Hypothesis 4.3 is satisfied
and 2M fol N(s)ds +6 < 1. Then

1) For every c € R, the solution set S(c) of (4.1)-(4.2) is nonempty and
arcwise connected in the space C(I,R).

2) For any ¢; € R and any u; € S(¢;), i = 1,...,p, there exists a con-
tinuous function s : R — C(I,R) such that s(c) € S(c) for any c € R and
s(¢) =ui=1,...,p.

3) The set S = U.crS(c) is arcwise connected in C(I,R).

Proof. 1) For ¢ € R and u € L'(I,R), set
1
uc(t) = ac +/ G(t,s)u(s)ds, tel.
0

We prove that the multifunctions ¢ : R x L'(I,R) — P(L'(I,R)) and
YR x LY(I,R) x LY(I,R) — P(LY(I,R)) given by

d(c,u) = {ve LNIL,R); o(t) € H(t,u.(t)) a.e. (I)},

d(e,u,0) ={w e LNIL,R);  w(t) € F(t,uc(t),v(t)) ae. ()},
c € R, u,v € L'(I,R) satisfy the hypotheses of Lemma 4.1.
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Since u. is measurable and H satisfies Hypothesis 4.3 i) and ii), the
multifunction ¢ — H (¢, u.(t)) is measurable and nonempty closed valued,
hence it has a measurable selection. Therefore due to Hypothesis 4.3 iv),
the set ¢(c,u) is nonempty. The fact that the set ¢(c,u) is closed and
decomposable follows by simple computation. In the same way we obtain
that ¢ (c, u,v) is a nonempty closed decomposable set.

Pick (¢, u), (c1,u1) € Rx LY(I,R) and choose v € ¢(c,u). For each e > 0
there exists v; € ¢(c1,u1) such that, for every t € I, one has

[0(t) = v (8)] < DUt ue(t)), H(t, ey (£))) + 2 <
N()lalle - erl + J 1G(t, )] Ju(s) — ui(s)|ds] + <.

Therefore,
1 1
[lv—vilp < |ch—c1]./ N(t)dt+M/ N(t)dt||u — up||y + €T
0 0

for any € > 0.
This implies

1 1
dLl(LR)(v,qS(cl,ul)) < |a|\c—cll./ N(t)dt—l—M/ N(t)dt||u — url|1
0 0

for all v € ¢(c,u). Consequently,

1 1
D ry(9(e,u), ¢(er,ur)) < |CLHC—C1./0 N(t)dt+M/0 N (t)dt||u — |1

which shows that ¢ is Hausdorff continuous and satisfies the assumptions of
Lemma 4.1.

Pick (c,u,v), (c1,u1,v1) € R x LY(I,R) x L'(I,R) and choose w €
¥ (c,u,v). Then, as before, for each £ > 0 there exists w1 € ¥(c1,u1,v1)
such that for every t € T

[w(t) —wi(t)] < D(F(t,uc(t),v(t)), F(t ue (t),v1(t)) + € <
< N(8)|ue(t) = ue, )] + 0lv(t) —v1(t)[ + € <
1
N(t)[|lac — aci| + /0 |G(t,s)|.|u(s) —ui(s)|ds] + O|v(t) —vi(t)| + &

< N(#)llalle = er] + M|u — w[h] + 6o (t) = vi(t)] + &
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Hence

lw —wili < lalle — el [y N(@t)dt + M [} N(t)dt]|u —ui]s
+0|[v — vi||1 + €T < lalle — el fyf N(t)dt + (M [, N(t)dt+
0)drr 1 ryxrt (1) (W, v), (u1,v1)) + €T

As above, we deduce that

1
Driry(¥(c,u,v),¥(c1,u1,v1)) < lallc — Cl~/ N(t)dt+
0

1
(M/o N(t)dt + 0)dri (1 ryxrr(1,R)((u,v), (u1,v1)),

namely, the multifunction v is Hausdorff continuous and satisfies the hy-
pothesis of Lemma 4.1.

Define T'(c,u) = 9(c,u, ¢(c,u)),(c,u) € R x LY(I,R). According to
Lemma 4.1, the set Fiz(['(c,.)) = {u € L*(I,R);u € T'(c,u)} is nonempty
and arcwise connected in L'(I,R). Moreover, for fixed ¢; € R and v; €
Fiz(T(c;,.)),i = 1,..., p, there exists a continuous function v : R — L!(I,R)
such that

v(c) € Fiz(I'(c,.)), VeeR, (4.3)

i) =vi, i=1,mp. (4.4)

We shall prove that

Fiz(T(c,.)) = {u € L"(I,R); u(t) € F(t,u.(t), H(t,uc.(t))) a.e. (Iz} |
4.5
Denote by A(c) the right-hand side of (4.5). If u € Fiz(I'(c,.)) then
there is v € ¢(c,v) such that v € (¢, u,v). Therefore, v(t) € H(t,u.(t))
and
u(t) € F(t,uc(t),v(t)) C F(t,uc(t), H(t,uc(t)) a.e. (I),

so that Fiz(T'(c,.)) C A(e).
Let now u € A(c). By Lemma 4.2, there exists a selection v € L'(I,R)
of the multifunction ¢t — H (¢, u.(t))) satisfying

u(t) € F(t,uc(t),v(t)) a.e. (I).

Hence, v € ¢(c,v), u € ¥(c,u,v) and thus u € I'(c,u), which completes the
proof of (4.5).
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We next note that the function 7 : L'(I,R) — C(I,R),

1
T (u)(t) := /0 G(t,s)u(s)ds, tel
is continuous and one has
S(c) =ac+ T(Fiz(I'(c,.))), ceR. (4.6)

Since Fiz(T(c,.)) is nonempty and arcwise connected in L*(I,R), the
set S(c) has the same properties in C(I,R).

2) Let ¢; € R and let u; € S(¢),74 = 1,...,p be fixed. By (4.6) there
exists v; € Fiz(T' (¢, .)) such that

u; =ac; + T (v;), i=1,...,p.

If v : R — L'Y(I,R) is a continuous function satisfying (4.3) and (4.4) we
define, for every ¢ € R,

s(c) = ac+ T (v(c)).

Obviously, the function s : R — C(I,R) is continuous, s(c) € S(c) for all
c € R, and

s(e;)) = aci + T(v(ei)) = aci + T(vi) =wj, i=1,...,p.

3) Let ui,ug € S = UeerS(c) and choose ¢; € R, i = 1,2 such that
u; € S(¢), i = 1,2. From the conclusion of 2) we deduce the existence of
a continuous function s : R — C(I,R) satisfying s(¢;) = w;, i = 1,2 and
s(c) € S(c), c € R. Let h : [0,1] — R be a continuous mapping such that
h(0) = ¢; and h(1) = c2. Then the function soh : [0,1] — C(I,R) is
continuous and verifies

soh(0) =uj, soh(l)=wuz, soh(r)eS(h(r)cCsS, tel0,1].

As an example we consider problem (4.1) defined by F(.,.,.) : [0,1] x
R xR — P(R), H(.,.) : [0,1] x R — P(R) with
1|z 1yl

F(t S E— -

B

H(t,x) = {W(H\xl)} and with any nonlocal conditions (4.2). A straight-
forward computation shows that m(t) = 117, 0 = 1,1(t) = 7. In this case,
2M fol N(s)ds+ 60 =2M fol 1t7ds + 3 < 1. Then, if for every ¢ € R we de-
note by S(c) the solution set of (4.1)-(4.2), by Theorem 4.4, S(c) is arcwise
connected in the space C(I,R).
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