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symmetric algebras∗
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Abstract

We consider ideals generated by linear forms in the variables X1 . . . , Xn

in the polynomial ring R[X1, . . . , Xn], being R a commutative, Noethe-
rian ring with identity. We investigate when a sequence a1, a2, . . . , am
of linear forms is an s−sequence, in order to compute algebraic invari-
ants of the symmetric algebra of the ideal I = (a1, a2, . . . , am).
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1 Introduction

Let M be a finitely generated module on a commutative ring R with
identity. Let A = (aij) be a n × m matrix, with entries in R, Ik(A) the
ideal generated by the k × k minors of A, 1 ≤ k ≤ min(m,n), and let
ϕ : Rm −→ Rn be a module homomorphism. We denote by Ik(ϕ) the
ideal Ik(A), where A = (aij) is the n × m matrix associated to ϕ, for an
appropriate choice of the bases.
Let

Rm ϕ−→ Rn →M → 0 (1)
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be a free presentation of the module M . If we consider the symmetric
algebras of the modules in (1), the presentation ideal J of SymR(M) is
generated by the linear forms in the variables Yj , 1 ≤ j ≤ n:

ai =
n∑
j=1

ajiYj , 1 ≤ i ≤ m

The theory of s−sequences has been recently introduced by Herzog, Restuc-
cia, Tang ([4]) and it permits to compute the invariants of SymR(M) start-
ing from the main algebraic invariants of quotients of R, via the initial ideal
in<(J), with respect to a suitable term order, introduced in R[Y1, . . . , Yn],
where n is the number of elements in a minimal system of generators of M .
In this paper we are interested to the case the ideal J is generated by an
s−sequence. The problem is part of a wider context, precisely:
Given an ideal I = (a1, . . . , am) ⊂ R[X1, . . . , Xn] generated by linear forms
in the variables X1, . . . , Xn, we want to study when I is generated by an
s−sequence and to compute the standard invariants of SymR(I) in terms of
the corresponding invariants of special quotients of the ring R.
Standard invariants of SymR(I) are Krull dimension, multiplicity, depth and
regularity, denoted respectively by dim(SymR(I)), e(SymR(I)), depth(SymR

(I)) with respect to the maximal graded ideal, reg(SymR(I)). The first three
invariants are classical. For the last invariant, we recall that reg(SymR(I))
is the Castelnuovo-Mumford regularity of the graded module I. Its impor-
tance is briefly explained in Einsenbud-Goto theorem which is an interesting
description of regularity in terms of graded Betti numbers of M ([3]). In
general the problem is hard, but if I is generated by an s−sequence, our
approach gives some interesting results. In Section 1, we recall some results
obtained about ideals generated by linear forms as relation ideals of spe-
cial symmetric algebras. At the end of the section, we consider some basic
properties about s−sequences and, additionally, we recall how to compute
the invariants ([7], [8]). In Section 2, for the classes of ideals studied in the
previous section, we find sufficient and necessary conditions so that they are
generated by s−sequences. In this direction a main result is:

Theorem Let J = (a1, . . . , am) ⊂ S = R[Y1, . . . , Yn], be an ideal gener-
ated by m linear forms, ai =

∑n
j=1 aijYj, aij ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n. If

depth(Ik(ϕ)) ≥ m− k + 1, 1 ≤ k ≤ m, then

(i) J is generated by an s−sequence of m elements;

(ii) SymS(J) ∼= S[Z1, . . . , Zm]/K, where K is an ideal generated by linear
forms in the variables Zj, 1 ≤ j ≤ m and in<K = (J1Z1, J2Z2, . . . ,
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JmZm), where J1, . . . , Jm are the annihilator ideals of the sequence
a1, . . . , am;

(iii) Ji−1 : (ai) = Ji−1 with Ji−1 = (a1, . . . , ai−1).

2 Notations and basic results

This section deals with ideals generated by linear forms of a polynomial
ring R[Y1, . . . , Yn] over a commutative, noetherian ring R with identity. We
are interested in ideals that are kernels of epimorphisms of symmetric al-
gebras, in particular they are ideals of relations of symmetric algebras of
finitely generated modules on R. We give a list of results that will be useful
in the following.

Definition 2.1. Let a = {a1, . . . , an} be a sequence of elements of R. The
sequence a is called a d−sequence if a is a minimal generating system for
the ideal (a1, . . . , an) and (a1, . . . , ai) : ai+1ak = (a1, . . . , ai) : ak for all
i = 0, . . . , n− 1, k ≥ i + 1.

Definition 2.2. Let I be an ideal of the ring R. I is an almost complete
intersection if the number of its generators is depth(I) + 1.

Let A = (aij) be a m× n matrix, Ik(A) the ideal generated by all k × k
minors of the matrix A, 1 ≤ k ≤ min(m,n). By definition, we have

I0(A) = R and Ik(A) = 0 for k > min(m,n)

Let Rm ϕ=(aij)−→ Rn an homomorphism between free modules. We denote by
Ik(ϕ) the ideal Ik(A), where A is the matrix associated to ϕ, for a convenient
choice of the bases. Let

Rm ϕ=(aij)−→ Rn −→M −→ 0

be a free presentation of the module M .
The following results are known. The kernel of the canonical epimorphism

S = SymR(Rn)→ SymR(M)→ 0

is a complete intersection if and only if

depth(Ik(ϕ)) ≥ m− k + 1, 1 ≤ k ≤ m
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Proof. See [1], Proposition 3.

The kernel of the canonical epimorphism

S = SymR(Rn)→ SymR(M)→ 0

is an almost complete intersection with depth(a1, . . . , am−1) = m− 1 if and
only if

depth(Ik(ϕ
′)) ≥ (m− 1)− k + 1, 1 ≤ k ≤ m− 1

where

ϕ = ϕ′ + ϕ
′′
, ϕ′ : Rm−1 → Rm

such that

ϕ′(f1) = a1, . . . , ϕ
′(fm−1) = am−1,

where f1, . . . , fm−1 form a standard basis for Rm−1. Moreover, the kernel
can be generated by a d−sequence if and only if

Z1 ∩ IK = B1

where Z1 and B1 are respectively the 1-cycle and the 1-boundary of the
Koszul complex K over a1, . . . , am and I is an ideal of R.

Proof. See [8], Theorem 6.

Let M be a finitely generated module on R, with generators f1, f2, . . . , fn.
We denote by (aij) i=1,...,m

j=1,...,n
the relation matrix, by Symi (M) the i-th sym-

metric power of M , and by SymR (M) =
⊕

i≥0 Symi (M) the symmetric
algebra of M . Note that

SymR (M) = R [Y1, . . . , Yn] /J,

where

J = (g1, . . . , gm), and gi =
n∑
j=1

aijYj .

We consider S = R [Y1, . . . , Yn] a graded ring by assigning to each variable
Yi the degree 1 and to the elements of R the degree 0. Then J is a graded
ideal and the natural epimorphism S → SymR (M) is a homomorphism of
graded R−algebras.
Let < be a monomial order on monomials in Y1, . . . , Yn with Y1 < Y2 <
. . . < Yn. We call admissible such an order. For any polynomial f ∈
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R [Y1, . . . , Yn] , f =
∑

α aαY
α, we put in< (f) = aαY

α where Y α is the
largest monomial in f with respect to < with aα 6= 0, and we set

in< (J) = (in< (f) : f ∈ J).

For i = 1, . . . , n we set Mi =
∑i

j=1Rfj , and let Ii be the colon ideal
Mi−1 : 〈fi〉. In other words, Ii is the annihilator of the cyclic module
Mi/Mi−1 and so Mi/Mi−1 ∼= R/Ii. For convenience we also set M0 = 0.

Definition 2.3. The colon ideals Ii, 1 ≤ i ≤ n, are called annihilator ideals
of the sequence f1, . . . , fn.

Notice that (I1Y1, I2Y2, . . . , InYn) ⊆ in< (J), and the ideals coincide in
degree 1.

Definition 2.4. The generators f1, . . . , fn of M are called an s−sequence
(with respect to an admissible order <), if

in< (J) = (I1Y1, I2Y2, . . . , InYn)

If in addition I1 ⊂ I2 ⊂ . . . ⊂ In, then f1, . . . , fn is called a strong s−sequence.

The invariants of the symmetric algebra of a module which is generated by
an s−sequence can be computed by the corresponding invariants of quotients
of R. We have

Proposition 2.1. Let M be generated by an s−sequence f1, . . . , fn, with
annihilator ideals I1, . . . , In. Then

1. d := dim(SymR(M)) = max
0≤r≤n,

1≤i1<...<ir≤n

{dim(R/(Ii1 + . . . + Iir)) + r};

2. e(SymR(M)) =
∑

0≤r≤n,1≤i1<...<ir≤n
dim(R/(Ii1+...+Iir ))=d−r

e(R/(Ii1 + . . . + Iir)).

and, if f1, . . . , fn is a strong s−sequence, then

1’. d = max
0≤r≤n

{dim(R/Ir) + r};

2’. e(SymR(M)) =
∑
r

dim(R/Ir)=d−r

e(R/Ir).

If R = K[X1, . . . , Xm] and we assume that M is generated by a strong
s-sequence of elements of the same degree, with annihilator ideals I1 ⊂
· · · ⊂ In, we have
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3. reg(SymR(M)) ≤ max{reg(Ii) : i = 1, . . . , n};

4. depth(SymR(M)) ≥ min{depth(R/Ii) + i : i = 0, 1, . . . , n}.

Proof. See [4], Proposition 2.4., 2.6.

3 Relation ideals generated by d-sequences

The aim of this section is to study ideals generated by linear forms that
are relation ideals of symmetric algebras and to describe their invariants via
the s−sequence theory. Let J be the ideal of relations of the symmetric
algebra SymR(M) of a module M .

Let J = (a1, . . . , am) ⊂ S = R[Y1, . . . , Yn] be an ideal generated by m
linear forms ai =

∑n
j=1 ajiYj on the variables Yj . If depth(Ik(ϕ)) ≥ m−k+1,

1 ≤ k ≤ m, then

(i) J is generated by an s−sequence of m elements;

(ii) SymS(J) ∼= S[Z1, . . . , Zm]/K, where K is an ideal generated by linear
forms on the variables Zj and in<(K) = (J1Z1, . . . , JmZm), where
J1, . . . , Jm are the annihilator ideals of the s−sequence generating the
ideal J ;

(iii) Ji−1 : (ai) = Ji−1, Ji = (a1, . . . , ai−1), i = 2, . . . ,m and J is generated
by a strong s-sequence.

Proof. (i) By Theorem 2, J is generated by a regular sequence, then it is
generated by an s−sequence with respect to the reverse lexicographic order
on the monomials in the variables Yj with Yn > . . . > Y1.
(ii) Since J is generated by a strong s−sequence, the ideal K has a Gröbner
basis that is linear in the variables Z1, . . . , Zm, then in<(K)=(J1Z1, J2Z2, . . . ,
JmZm).
(iii) Since a1, . . . , am is a regular sequence, by definition we have

J1 = 0 : (a1) = (0),

Ji = (a1, a2, . . . , ai−1) : (ai) = (a1, a2, . . . , ai−1) i = 2, . . . ,m

then the assertion holds. Now, it results Ji−1 ( Ji, i = 2, . . . ,m, and the
s−sequence is strong.

The assertion (ii) of the theorem 3 gives information about the initial
ideal of the relation ideal of the first syzygy module of the ideal J .

Let J = (a1, . . . , am) ⊂ R[Y1, . . . , Yn] = S be an ideal generated by linear
forms in the variables Yi that form a regular sequence. Then:
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(i) dim(SymS(J)) = dimR+n+ 1; If R = K[X1, . . . , Xt] and we suppose
that degai = a for all i, then

(ii) e(SymS(J)) =
∑m

i=1 a
i−1.

(iii) If R is the polynomial ring reg(SymS(J)) ≤ (m− 1)(a− 1) + 1;

(iv) depth(SymS(J)) = depth(S) + 1, if R is Cohen-Macaulay.

Proof. Since J is generated by a strong s−sequence, we can compute the
standard invariants, using Proposition 2.1, then

(i) dim(SymS(J)) = max0≤r≤m{dim(S/Jr) + r, r = 0, . . . ,m} =
dim(S/(a1, . . . , am−1)) + m = dim(S)−m + 1 + m = dim(S) + 1.

(ii) e(SymR(J)) =
∑

0≤r≤m e(R/Jr),
being Jr generated by a regular sequence. It follows that e(SymS(J)) =∑m

i=1 a
i−1, where a is the degree of the generators of Ji.

(iii) depth(SymS(J)) ≥ min0≤r≤m{depth(S/Jr) + r, r = 0, . . . ,m} =
= min{depth(S)−m + 1 + m} = depth(S) + 1.
If R is Cohen-Macaulay, dim(S) = depth(S), then

depth(S) + 1 ≤ depth(SymS(J)) ≤ dim(SymS(J)) = dim(S) + 1 =
depth(S) + 1.

(iv) reg(SymS(J)) ≤ (m−1)(a−1)+1, being a the degree of any generator
of J ([7], Proposition 1).

(i) follows from SymR(J) = R(J), since J is generated by a regular
sequence and dim(R(J)) = dim(R[Y1, . . . , Yn]) + 1 ([2], [9]).

Let J = (a1, . . . , am−1, am) ⊂ S = R[Y1, . . . , Yn] be an ideal generated
by m linear forms. Suppose that:

depth(a1, . . . , am−1) = m− 1, Z1 ∩ JK = B1, J = (a1, . . . , am−1)

Then we have

(i) J is generated by a d−sequence;

(ii) SymS(J) ∼= S[Z1, . . . , Zm]/K, where K is an ideal generated by linear
forms in the variables Zj , in<K = (J1Z1, . . . , JmZm), J1, . . . , Jm are
the annihilator ideals of the sequence a1, . . . , am;
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(iii) The annihilator ideals of J are such that

Ji−1 : (ai) = Ji−1, i = 1, . . . ,m− 1

and Jm−1 : (am) = Jm, the last annihilator ideal.

Proof. (i) By theorem 2, the elements a1, . . . , am form a d−sequence and
then a strong s−sequence with respect to the reverse lexicographic
order on the monomials in the variables Zi and with Zm > Zm−1 >
. . . > Z1.

(ii) SymS(J) = S[Z1, . . . , Zm]/K and in<(K) = (J2Y2, J3Y3, . . . ,
Jm−1Ym−1, JmYm) and Ji = (a1, . . . , ai−1) for i = 2, . . . ,m− 1.

Let J = (a1, . . . , am−1, am) ⊂ S = R[Y1, . . . , Ym] be an ideal generated
by linear forms that are an almost complete intersection d−sequence. Put
Jm = (a1, . . . , am−1) : (am). Then

(i) dim(SymS(J)) = max{dimS + 1, dim(S/Jm) + m};

(ii) depth(SymS(J)) ≥ min{depth(S/Jm),depth(R) + n + 1}, with the
equality if S is Cohen-Macaulay; If R = K[X1, . . . , Xt] and degai = a
for all i, then

(iii) e(SymS(J)) =
∑m−1

i=1 ai−1 + e(S/Jm);

(iv)
reg(SymS(J)) ≤ max{(m− 2)(a− 1) + 1, reg(S/Jm)}.

Proof. (i) The ideal J is generated by a strong s−sequence, because it is
generated by a d−sequence and

(0) = J1 ⊂ J2 ⊂ . . . ⊂ Jm−1 ⊂ Jm.

(ii) The assertion follows by [4].

(iii) dim(SymS(J))=dim(S[Z1, . . . , Zm]/J)=dim(S[Z1, . . . , Zm]/in<(J))=

= max{dim(S/Jr) + r, r = 0, . . . ,m}

= max{dim(S/Jm−1) + m− 1,dim(S/Jm + m)} =

= max{dim(S)−m + 2 + m− 1,dim(S/Jm) + m}

= max{dim(S) + 1, dim(S/Jm) + m}.
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(iv) Since reg(SymS(J)) ≤ max{(m− 2)(a− 1) + 1, reg(S/Jm)}, the asser-
tion follows from [7], Proposition 1.

Let f =
∑n

i=1 aiYi be a linear form, f ∈ R[Y1, . . . , Yn]. Suppose that (0 :
f) = (0 : f2), then we have:

(i) I = (f) is generated by an s−sequence;

(ii) SymS(I) = S[Z]/J , and in<(J) = (I1Z), I1 = (0 : f) the annihilator
ideal of the sequence {f};

Proof. By the condition (0 : f) = (0 : f2), the sequence {f} is a d−sequence,
then {f} is an s−sequence ([4], Corollary 3.3.), using the reverse lexico-
graphic order on the monomials in the unique variable Y . In this case
I0 = (0), I1 = (0 : f) = (0 : f2) is the unique annihilator ideal of I.

Let f =
∑n

i=1 aiYi be a linear form, f ∈ R[Y1, . . . , Yn] = S, (0 : f) = (0 : f2)
and let I = (f). We have:

(i) dim(SymS(I)) = dim(R) + n + 1;

(ii) e(SymS(I)) = e(S/(0 : f));

(iii) If R = K[X1, X2, . . . , Xm], then

depth(SymS(I)) ≥ depth (S/(0 : f)) + 1;

(iv) If R = K[X1, X2, . . . , Xm], then

reg(SymS(I)) ≤ reg(S/(0 : f)) + 1.

Proof. (i) dim(S/I0) = dim(S) and dim(S/(0 : f)) = dim(S), hence
dim(SymS(I)) = dim(S) + 1, by Proposition 2.1.

(ii) Using Proposition 2.1, the sum in (ii) has only one summand e(S/I1)

(iii) depth(S/I0) = depth(S), and depth(S/(0 : f)) ≤ depth(S), by Propo-
sition 2.1.

(iv) See [7], Theorem 2.
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Sequences of linear forms that are d-sequences are the simplest examples
besides the regular sequences, that generate relation ideals of symmetric
algebras and provide a fertile testing ground for general results. In particu-
lar, if R = K[X1, . . . , Xn] and I = (Xa

1 , . . . , X
a
n), then Sym(I) = R(I) =

K[X1, . . . ,
Xn]/J , where J is the ideal generated by all 2× 2 minors [i, j], i = 1, . . . , n,

j = 1, 2, . . ., of the matrix

(
Xa

1 . . . Xa
n

Y1 . . . Yn

)
, a integer, a ≥ 1, that are lin-

ear forms in the variables Y1, . . . , Yn. Therefore: Let J be as before and let
the minors be ordered lexicographically [1, 2] > [1, 3] > . . . > [n−1, n]. Then
J is generated by an s-sequence of linear forms in the variables Y1, . . . , Yn
with respect to the reverse lexicographic order.

Proof. Any d-sequence is an s-sequence, then the assertion follows.
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