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Abstract

We consider a nonlinear delay differential evolution inclusion sub-
jected to nonlocal implicit initial conditions and we prove an existence
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1 Introduction

The goal of this paper is to prove an existence result for bounded C0-
solutions to a class of nonlinear delay differential evolution inclusions sub-
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jected to nonlocal implicit initial conditions of the form
u′(t) ∈ Au(t) + f(t), t ∈ R+,

f(t) ∈ F (t, ut), t ∈ R+,

u(t) = g(u)(t), t ∈ [−τ, 0 ],

(1)

where X is a Banach space, τ ≥ 0, A : D(A) ⊆ X ↪→ X is the in-
finitesimal generator of a nonlinear semigroup of contractions, the multi-
function F : R+ × C([−τ, 0 ];D(A)) ↪→ X is nonempty, convex weakly
compact valued and strongly-weakly u.s.c., and g : Cb([−τ,+∞);D(A)) →
C([−τ, 0 ];D(A)) is nonexpansive and has affine growth, i.e. there exists
m0 ≥ 0 such that

∥g(u)∥C([−τ,0 ];X) ≤ ∥u∥Cb([ 0,+∞);X) +m0 (2)

for each u ∈ Cb([−τ,+∞);D(A)).
If I is an interval, Cb(I;X) denotes the space of all bounded and con-

tinuous functions from I, equipped with the sup-norm ∥ · ∥Cb(I;X), while

Cb(I;D(A)) denotes the closed subset in Cb(I;X) consisting of all elements
u ∈ Cb(I;X) satisfying u(t) ∈ D(A) for each t ∈ I. Let a ∈ R. On
the linear space Cb([ a,+∞);X) let us consider the family of seminorms
{∥ · ∥k; k ∈ N, k ≥ a}, defined by ∥u∥k = sup{∥u(t)∥; t ∈ [ a, k ]} for each
k ∈ N, k ≥ a. Endowed with this family of seminorms, Cb([ a,+∞);X)
is a separated locally convex space, denoted by C̃b([ a,+∞);X). Further,
C([ a, b ];X) stands for the space of all continuous functions from [ a, b ] to X
endowed with the sup-norm ∥ · ∥C([ a,b ];X) and C([ a, b ];D(A)) is the closed

subset of C([ a, b ];X) containing all u ∈ C([ a, b ];X) with u(t) ∈ D(A)
for each t ∈ [ a, b ]. Finally, if u ∈ Cb([−τ,+∞);X) and t ∈ R+, ut ∈
C([−τ, 0 ];X) is defined by

ut(s) := u(t+ s)

for each s ∈ [−τ, 0 ].
The existence problem on the standard compact interval [ 0, 2π ], in the

simplest case when τ = 0, i.e. when the delay is absent, was studied by
Paicu, Vrabie [41]. In this case C([−τ, 0 ];D(A)) identifies with D(A), F
identifies with a multifunction from [ 0, 2π ] × X to X. By using an inter-
play between compactness arguments and invariance techniques, they have
proved an existence result handling periodic, anti-periodic, mean-value evo-
lution inclusions subjected to initial condition expressed by an integral with
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respect to a Radon measure µ. A very important specific case concerns T -
periodic problems, which corresponds to the choice of g as g(u) = u(T ), was
studied by Paicu [39]. For F single-valued, this case was analyzed by Aiz-
icovici, Papageorgiou, Staicu [3], Caşcaval, Vrabie [18], Hirano, Shioji [34],
Paicu [40], Vrabie [44]. For a survey concerning: periodic, anti-periodic,
quasi-periodic and almost periodic solutions to differential inclusions, see
Andres [6]. As long as differential inclusions subjected to general nonlocal
initial conditions without delay are concerned, we mention the papers of
Aizicovici, Staicu [5] and Paicu, Vrabie [41]. The case of periodic retarded
equations and inclusions subjected to nonlocal initial conditions were stud-
ied by Vrabie [46], and Chen, Wang, Zhou [20], while the general delay
equations was considered by Burlică, Roşu [14] and Vrabie [48], [49] and
[50].

Existence results in the periodic abstract undelayed case were obtained
by Aizicovici, Papageorgiou, Staicu [3], Caşcaval, Vrabie [18], Hirano, Sh-
ioji [34], Paicu [40], Vrabie [44], while the anti-periodic case was considered
by Aizicovici, Pavel, Vrabie [4]. The semilinear case of undelayed differential
equations subjected to nonlocal initial data, was initiated by the pioneer-
ing work of Byszewski [15]. Further steps in this direction were made by
Byszewski [16], Byszewski, Lakshmikantham [17], Aizicovici, Lee [1], Aiz-
icovici, McKibben [2], Zhenbin Fan, Qixiang Dong, Gang Li [27], Garćıa-
Falset [29] and Garćıa-Falset, Reich [30]. All these studies are strongly mo-
tivated by the fact that specific problems of this kind describe the evolution
of various phenomena in Physics, Meteorology, Thermodynamics, Popula-
tion Dynamics. A model of the gas flow through a thin transparent tube,
expressed as a problem with nonlocal initial conditions, was analyzed in
Deng [24]. Some models in Pharmacokinetics were discussed in the mono-
graph of McKibben [35, Section 10.2, pp. 394–398]. Models arising from
Physics were analyzed by Olmstead, Roberts [38] and Shelukhin [43]. Linear
second order evolution equations subjected to linear nonlocal initial condi-
tions in Hilbert triples were considered in Avalishvili, Avalishvili [8] and
motivated by mathematical models for long-term reliable weather forecast-
ing as mentioned in Rabier, Courtier, Ehrendorfer [42]. For Navier-Stokes
equations subjected to initial nonlocal conditions see Gordeziani [32]. Clas-
sical nonlinear delay evolution initial-value problems, i.e. when g ≡ ψ with
ψ ∈ C([τ, 0 ];D(A)), were considered by Mitidieri, Vrabie [36] and [37], also
by using compactness arguments. It should be emphasized that in Mitidieri,
Vrabie [36] and [37] the general assumptions on the forcing term F are very
general allowing – in certain specific cases when A is a second order elliptic
operator – F to depend on Au as well.
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Our paper extends the main result in Vrabie [47] to cover the more
general case in which g has affine rather than linear growth. This case is
important in applications and does not follow by a simple modification of
the arguments used in Vrabie [47].

The paper is divided into 7 sections. In Section 2 we have included some
concepts and results widely used subsequently. In Section 3 we prove an
existence and uniqueness result for the unperturbed problem (1) which, al-
though auxiliary, is important by its own. Section 4 collects the hypotheses
used and provides some comments on several remarkable particular cases
handled by the general frame considered. Section 5 is devoted to the state-
ment of the main result, i.e. Theorem 7 and to a short description of the
idea of the proof. Section 6 is concerned with the proof of the main result
and the last Section 7 contains an example illustrating the possibilities of
the abstract developed theory.

2 Preliminaries

Although the paper is almost self-contained, some familiarity with the
basic concepts and results on nonlinear evolution equations governed by m-
dissipative operators, delay evolution equations and on multifunction theory
would be welcome. For details in these three topics, we refer the reader, in
order, to Barbu [11], Hale [33] and Vrabie [45]. However, we recall for easy
reference the most important notions and results we will use in the sequel.

Definition 1 If X is a Banach space and C ⊆ X, the multifunction F :
C ↪→ X is said (strongly-weakly) upper semicontinuous (u.s.c.) at ξ ∈ C
if for every (weakly) open neighborhood V of F (ξ) there exists an open
neighborhood U of ξ such that F (η) ⊆ V for each η ∈ U ∩C. We say that F
is (strongly-weakly) u.s.c. on C if it is (strongly-weakly) u.s.c. at each ξ ∈ C.

Definition 2 A multifunction F : I ×C ↪→ X is said to be almost strongly-
weakly u.s.c. if for each γ > 0 there exists a Lebesgue measurable subset
Eγ ⊆ I whose Lebesgue measure λ(Eγ) ≤ γ and such that F it is strongly-
weakly u.s.c. from (I \ Eγ)× C to X.

Remark 1 If the sequence (εn)n is strictly decreasing to 0, we can always
choose the sequence (Eεn)n, where Eεn corresponds to εn as specified in
Definition 2, such that Eεn+1 ⊆ Eεn , for n = 0, 1, . . . .

We also need the following general fixed point theorem for multifunctions
obtained independently by Ky Fan [28] and Glicksberg [31].
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Theorem 1 (Ky Fan-Glicksberg) Let K be a nonempty, convex and com-
pact set in a separated locally convex space and let Γ : K ↪→ K be a
nonempty, closed and convex valued multifunction with closed graph. Then
Γ has at least one fixed point, i.e. there exists f ∈ K such that f ∈ Γ(f).

A very useful variant of Theorem 1, is

Theorem 2 Let K be a nonempty, convex and closed set in a separated
locally convex space and let Γ : K ↪→ K be a nonempty, closed and convex
valued multifunction with closed graph. If Γ(K) := ∪x∈KΓ(x) is relatively
compact, then Γ has at least one fixed point, i.e. there exists f ∈ K such
that f ∈ Γ(f).

Proof. Since K is closed, convex and Γ(K) ⊆ K, we have

convΓ(K) ⊆ convK = K.

So,
Γ( convΓ(K)) ⊆ Γ(K) ⊆ convΓ(K),

which shows that the set C := convΓ(K), which by Mazur’s Theorem, i.e.
Dunford, Schwartz [22, Theorem 6, p. 416] is compact, is nonempty, closed,
convex and Γ(C) ⊆ C. So, we are in the hypotheses of Theorem 1, with K
substituted by C ⊆ K, wherefrom the conclusion.

Since, by Edwards [23, Theorem 8.12.1, p. 549], the weak closure of a
weakly relatively compact set, in a Banach space, coincides with its weak
sequential closure, Theorem 2 implies:

Theorem 3 Let K be a nonempty, convex and weakly compact set in Ba-
nach space and let Γ : K ↪→ K be a nonempty, closed and convex valued
multifunction with sequentially closed graph. Then Γ has at least one fixed
point, i.e. there exists f ∈ K such that f ∈ Γ(f).

In the single-valued case, Theorem 3 is due to Arino, Gautier, Penot [7].
If x, y ∈ X, we denote by [x, y ]± the right (left) directional derivative of

the norm calculated at x in the direction y, i.e.

[x, y ]+ = lim
h↓0

∥x+ hy∥ − ∥x∥
h

(
[x, y ]− = lim

h↑0

∥x+ hy∥ − ∥x∥
h

)
.

We recall that:
[x, y + ax ]± = [x, y ]± + a∥x∥ (3)
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for a ∈ R. See Barbu [11, Proposition 3.7, p. 101].
We say that the operator A : D(A) ⊆ X ↪→ X is dissipative if

[x1 − x2, y1 − y2 ]− ≤ 0

for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2, andm-dissipative if it is dissipative
and, for each λ > 0, or equivalently for some λ > 0, R(I − λA) = X.

Let A : D(A) ⊆ X ↪→ X be an m-dissipative operator, let ξ ∈ D(A),
f ∈ L1(a, b;X) and let us consider the differential equation

u′(t) ∈ Au(t) + f(t). (4)

Theorem 4 (Benilan) Let ω ∈ R and let A : D(A) ⊆ X ↪→ X be an m-
dissipative operator such that A+ωI is dissipative. Then, for each ξ ∈ D(A)
and f ∈ L1(a, b ;X), there exists a unique C0-solution of (4) on [ a, b ] which
satisfies u(a) = ξ. Furthermore, if f, g ∈ L1(a, b ;X) and u, v are the two
C0-solutions of (4) corresponding to f and g respectively, then :

∥u(t)− v(t)∥ ≤ e−ω(t−s)∥u(s)− v(s)∥+
∫ t

s
e−ω(t−θ)∥f(θ)− g(θ)∥dθ (5)

for each a ≤ s ≤ t ≤ b.

See Benilan [12], or Barbu [11, Theorem 4.1, p. 128].
We denote by u(·, a, ξ, f) the unique C0-solution of the problem (4) sat-

isfying
u(a, a, ξ, f) = ξ

and we notice that u(t, 0, ξ, 0) = S(t)ξ, where {S(t); S(t) : D(A) → D(A)}
is the semigroup of nonexpansive mappings generated by A via the Crandall-
Liggett Exponential Formula. See Crandall, Liggett [21].

We recall that the semigroup {S(t); S(t) : D(A) → D(A)} is called
compact if, for each t > 0, S(t) is a compact operator.

We conclude this section with some compactness results concerning the
set of C0-solutions of the problem (4) whose initial data u(a) and forc-
ing terms f belong to some subsets B, in D(A), and respectively F , in
L1(a, b;X). First, we introduce:

Definition 3 Let (Ω,Σ, µ) be a complete measure space, µ(Ω) < +∞. A
subset F ⊆ L1(Ω, µ;X) is called uniformly integrable if for each ε > 0 there
exists δ(ε) > 0 such that ∫

E
∥f(t)∥ dµ(t) ≤ ε

for each f ∈ F and each E ∈ Σ satisfying µ(E) ≤ δ(ε).
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The next result is an extension of a compactness theorem due to Baras [10].

Theorem 5 Let X be a Banach space, let A : D(A) ⊆ X ↪→ X be an m-
dissipative operator and let us assume that A generates a compact semigroup.
Let B ⊆ D(A) be bounded and let F be uniformly integrable in L1(a, b;X).
Then, for each σ ∈ (a, b), the set {u(·, a, ξ, f) ; (ξ, f) ∈ B × F} is rela-
tively compact in C([σ, b ];X). If, in addition, B is relatively compact, then
{u(·, a, ξ, f) ; (ξ, f) ∈ B ×F} is relatively compact even in C([ a, b ];X).

See Vrabie [45, Theorems 2.3.2 and 2.3.3, pp. 46–47].

Definition 4 An m-dissipative operator A is called of complete continuous
type if for each a < b and each sequences (fn)n in L1(a, b;X) and (un)n
in C([ a, b ];X), with um a C0-solution on [ a, b ] of the problem u′m(t) ∈
Aum(t) + fm(t), m = 1, 2, . . . satisfying : lim

n
fn = f weakly in L1(a, b;X),

lim
n
un = u strongly in C([ a, b ];X),

it follows that u is a C0 solution on [ a, b ] of the limit problem u′(t) ∈
Au(t) + f(t).

Remark 2 If the topological dual of X is uniformly convex and A generates
a compact semigroup, then A is of complete continuous type. See Vrabie [45,
Corollary 2.3.1, p. 49]. An m-dissipative operator of complete continuous
type in a nonreflexive Banach space (and, by consequence, whose dual is not
uniformly convex) is the nonlinear diffusion operator ∆φ in L1(Ω). See the
example below.

Example 1 Let ∆ be the Laplace operator in the sense of distributions
over Ω. Let φ : D(φ) ⊆ R ↪→ R, let u : Ω → D(φ) and let us denote by

Sφ(u) = {v ∈ L1(Ω); v(x) ∈ φ(u(x)), a.e. for x ∈ Ω}.

We recall that φ : D(φ) ⊆ R ↪→ R is said to be maximal monotone if
−φ is m-dissipative.

The (i) part in Theorem 6 below is due to Brezis, Strauss [13], the (ii)
part to Badii, Dı́az, Tesei [9] and the (iii) part to Cârjă, Necula, Vrabie [19].

Theorem 6 Let Ω be a nonempty, bounded and open subset in Rd with C1

boundary Σ and let φ : D(φ) ⊆ R ↪→ R be maximal monotone with 0 ∈ φ(0).
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(i) Then the operator ∆φ : D(∆φ) ⊆ L1(Ω) ↪→ L1(Ω), defined by{
D(∆φ) = {u ∈ L1(Ω); ∃v ∈ Sφ(u) ∩W 1,1

0 (Ω), ∆v ∈ L1(Ω)}
∆φ(u) = {∆v; v ∈ Sφ(u) ∩W 1,1

0 (Ω)} ∩ L1(Ω) for u ∈ D(∆φ),

is m-dissipative on L1(Ω).

(ii) If, in addition, φ : R → R is continuous on R and C1 on R \ {0} and
there exist two constants C > 0 and α > 0 if d ≤ 2 and α > (d− 2)/d
if d ≥ 3 such that

φ′(r) ≥ C|r|α−1

for each r ∈ R \ {0}, then ∆φ generates a compact semigroup.

(iii) In the hypotheses of (ii), ∆φ is of complete continuous type.

For the proof of (i) see Barbu [11, Theorem 3.5, p. 115], for the proof
of (ii) see Vrabie [45, Theorem 2.7.1, p. 70] and for proof of the (iii) –
which rests heavily on slight extension of a continuity result established
in Dı́az, Vrabie [26, Corollary 3.1, p. 527] which, in turn, follows from a
compactness result due to Dı́az, Vrabie [25] –, see Cârjă, Necula, Vrabie [19,
Theorem 1.7.9, p. 22].

3 An auxiliary lemma

We begin by considering the problem{
u′(t) ∈ Au(t) + f(t), t ∈ R+,

u(t) = g(u)(t), t ∈ [−τ, 0 ].
(6)

Lemma 1 Let us assume that A is m-dissipative, 0 ∈ D(A), 0 ∈ A0 and
there exists ω > 0 such that A + ωI is dissipative, too. Let us assume,
in addition, that there exists a > 0 such that g : Cb([−τ,+∞);D(A)) →
C([−τ, 0 ];D(A)) satisfies

∥g(v)− g(ṽ)∥
Cb([−τ,0 ];D(A))

≤ ∥v − ṽ∥
Cb([ a,+∞);D(A))

, (7)

for each v, ṽ ∈ Cb([−τ,+∞);D(A)) and has affine growth, i.e. satisfies (2).
Then, for each f ∈ L∞(R+;X) ∩ L1(R+;X), (6) has a unique C0-solution
u ∈ Cb([−τ,+∞);D(A)).
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Remark 3 If g : Cb([−τ,+∞);D(A)) → C([−τ, 0 ];D(A)) satisfies (7),
then g depends only on the restriction v|[ a,+∞) of v to [ a,+∞).

We can now pass to the proof of Lemma 1.

Proof. Let us observe first that, for each v ∈ Cb([−τ,+∞);D(A)), the
initial value problem for the delay equation{

u′(t) ∈ Au(t) + f(t), t ∈ R+,

u(t) = g(v)(t), t ∈ [−τ, 0 ]
(8)

has a unique C0-solution u : [−τ,+∞) → D(A). Clearly, u is bounded
on [−τ, 0 ] because it is continuous. Next, recalling that 0 ∈ A0, from
Theorem 4 we conclude that

∥u(t)∥ ≤ e−ωt∥u(0)∥+
∫ t

0
e−ω(t−θ)∥f(θ)∥dθ

≤ ∥u(0)∥+ 1

ω
∥f∥L∞(R+;X),

for each t ≥ 0. Finally, since u is bounded on both [−τ, 0 ] and [ 0,+∞), it
follows that u ∈ Cb([−τ,+∞);D(A)).

Now let us observe that, in view of Remark 3, g(v)(t) = g(ṽ)(t) for each
t ∈ [−τ, 0 ] whenever v and ṽ coincide on [ a,+∞) and so, g depends only
on the restriction of v on [ a,+∞) To conclude the proof, it suffices to show
that the operator

Q : Cb([ a,+∞);D(A)) → Cb([ a,+∞);D(A)),

defined by

Q(v) := u|[ a,+∞),

where u is the unique C0-solution of the problem (8), is a strict contraction.
Hence by the Banach Fixed Point Theorem, Q has a unique fixed point
v = u|[ a,+∞) and

u(t) =

{
u(t), t ∈ R+

g(v)(t), t ∈ [−τ, 0 ],

is the unique C0-solution of (6).

To this end, let v, ṽ ∈ Cb([ a,+∞);D(A)) and t ∈ [ a,+∞) be arbitrary.
We have

∥Q(v)(t)−Q(ṽ)(t)∥ ≤ e−ωt∥Q(v)(0)−Q(ṽ)(0)∥
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≤ e−ωa∥g(v)(0)− g(ṽ)(0)∥ ≤ e−ωa∥v − ṽ∥Cb([ a,+∞);X).

To complete the proof, we have merely to observe that

∥Q(v)−Q(ṽ)∥Cb([ a,+∞);X) ≤ e−ωa∥v − ṽ∥Cb([ a,+∞);X)

for each v, ṽ ∈ Cb([ a,+∞);D(A)).

4 The general frame and basic assumptions

In the sequel we shall denote by z : [−τ,+∞) → D(A) the unique
C0-solution of the unperturbed problem{

z′(t) ∈ Az(t), t ∈ R+,

z(t) = g(z)(t), t ∈ [−τ, 0 ].
(9)

which, in view of Lemma 1, belongs to Cb([−τ,+∞);D(A)).
The assumptions we need in that follows are listed below.

(HA) A : D(A) ⊆ X ↪→ X is an operator with the properties:

(A1) A is m-dissipative, there exists ω > 0 such that A + ωI is dissi-
pative too, 0 ∈ D(A), 0 ∈ A0 and D(A) is convex ;

(A2) the semigroup generated by A on D(A) is compact ;

(A3) A is of complete continuous type. See Definition 4.

(HF ) F : R+ × C([−τ, 0 ];D(A)) ↪→ X is a nonempty, convex and weakly
compact valued, almost strongly-weakly u.s.c. multifunction. See Def-
inition 2.

(HI) There exists r > 0 such that for each t ∈ R+, each v ∈ C([−τ, 0 ];D(A)),
with ∥v−zt∥C([−τ,0 ];X) = r and f ∈ F (t, v), we have [ v(0)−z(t), f ]+ ≤
0, where z is the unique C0-solution of the unperturbed problem (9).

(H ′
I) There exists r > 0 such that for each t ∈ R+, each v ∈ C([−τ, 0 ];D(A))

with ∥v(0)− z(t)∥ > r and f ∈ F (t, v), we have [ v(0)− z(t), f ]+ ≤ 0,
where z is the unique C0-solution of the unperturbed problem (9).

(HB) There exists ℓ ∈ L∞(R+;R+)∩L1(R+;R+) such that for almost every
t ∈ R+ and for each v ∈ C([−τ, 0 ];D(A)) satisfying ∥v(0)−z(t)∥ ≤ r,
where r > 0 is given by (HI), and each f ∈ F (t, v), we have

∥f∥ ≤ ℓ(t).
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(H ′
B) There exists ℓ ∈ L∞(R+;R+) ∩ L1(R+;R+) such that

∥f∥ ≤ ℓ(t)

for each v ∈ C([−τ, 0 ];D(A)), each f ∈ F (t, v) and a.e. for t ∈ R+.

(Hg) g : Cb([−τ,+∞);D(A)) → C([−τ, 0 ];D(A)) satisfies:

(g1) g has affine growth, i.e. there exists m0 ≥ 0 such that for each u
in Cb([−τ,+∞);D(A)), g satisfies (2) ;

(g2) there exists a > 0 such that for each u, v ∈ Cb([−τ,+∞);D(A)),
we have

∥g(u)− g(v)∥C([−τ,0 ];X) ≤ ∥u− v∥Cb([ a,+∞);X) ;

(g4) g is continuous from C̃b([−τ,+∞);D(A)) to C([−τ, 0 ];D(A)).

Remark 4 The hypothesis (HI) ensures the invariance of a certain moving
set with respect to the C0-solutions of the problem{

u′(t) ∈ Au(t) + f(t), t ∈ R+,
u(t) = g(v)(t), t ∈ [−τ, 0 ].

Namely, if a C0-solution u of the problem above satisfies the initial constraint
u(t)− z(t) ∈ D(0, r) for each t ∈ [−τ, 0 ], where z is the unique C0-solution
of (9), then (HI) implies that u satisfies the very same constraint for all t
belonging to domain of existence of u.

If ∥g(u)∥C([−τ,0 ];X) ≤ ∥u∥Cb([ 0,+∞);X) for each u ∈ Cb([−τ,+∞);X),
case in which we will say that g has linear growth, we have g(0) = 0 and,
accordingly, the unique C0-solution z of (9) is identically 0. So, in this case,
the invariance condition is nothing but a variant of the condition (H3) in
Vrabie [47].

Conditions (g1) ∼ (g2) and (g4) are satisfied by all functions g of the
general form specified in Remark 5 below.

Remark 5 Let 0 ≤ τ < T . If the function g is defined as

(i) g(u)(t) = u(T + t), t ∈ [−τ, 0 ] (T -periodicity condition);

(ii) g(u)(t) = −u(T + t), t ∈ [−τ, 0 ] (T -antiperiodicity condition);
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(iii) g(u)(t) =

∫ +∞

τ
k(θ)u(t+θ) dθ, t ∈ [−τ, 0 ], where k ∈ L1([ τ,+∞);R)

and

∫ +∞

τ
|k(θ)| dθ = 1 (mean condition);

(iv) g(u)(t) =

n∑
i=1

αiu(t + ti) for each t ∈ [−τ, 0 ], where
n∑

i=1

|αi| ≤ 1 and

τ < t1 < t2 < · · · < tn = T are arbitrary, but fixed (multi-point
discrete mean condition);

then g satisfies (g1) with m0 = 0 and (g2) with a = T − τ > 0. A more
general case is that in which the support of the measure µ is in (τ,+∞) and
the function is g given by

g(u)(t) =

∫ +∞

τ
N (u(t+ θ)) dµ(θ) + ψ(t), (10)

for each u ∈ Cb([−τ,+∞);D(A)) and t ∈ [−τ, 0 ]. Here N : X → X is
a (possible nonlinear) nonexpansive operator with N (0) = 0 and µ is a σ-
finite and complete measure on [ τ,+∞), for which there exists b > τ such
that supp µ = [ b,+∞), µ([ b,+∞)) = 1 and ψ ∈ C([−τ, 0 ];X) is such that
g(u)(t) ∈ D(A) for each t ∈ [−τ, 0 ]. Obviously, in this case, the constant
a > 0 in (g2) is exactly b− τ .

Remark 6 From (g2), (g4) and Remark 3, we conclude that, for each
convergent sequence (uk)k in C̃b([ a,+∞);D(A)) to some limit u we have
limk g(uk) = g(u) in C([−τ, 0 ];X).

5 The main result

We may now proceed to the statement of the main result in this paper.

Theorem 7 If (HA), (HF ), (HI), (HB) and (Hg) are satisfied, then (1) has

at least one C0-solution, u ∈ Cb([−τ,+∞);D(A)) satisfying u(t) − z(t) ∈
D(0, r) for each t ∈ R+, where z is the unique C0-solution of (9) and r > 0
is given by (HI).

We will prove our Theorem 7 with the help of :

Theorem 8 If (HA), (HF ), (H
′
I), (H

′
B) and (Hg) are satisfied, then (1) has

at least one C0-solution, u ∈ Cb([−τ,+∞);D(A)) and u(t)− z(t) ∈ D(0, r)
for each t ∈ R+, where z is the unique C0-solution of (9) and r > 0 is given
by (H ′

I).



Nonlinear delay evolution inclusions 79

The proof of Theorem 8 is divided into four steps.

The first step. We begin by showing that, for each ε ∈ (0, 1) and
f ∈ L1(R+;X), the problem{

u′(t) ∈ Au(t)− ε[u(t)− z(t) ] + f(t), t ∈ R+,

u(t) = g(u)(t), t ∈ [−τ, 0 ],
(11)

has a unique C0-solution ufε ∈ Cb([−τ,+∞);D(A)).

The second step. We show that for each fixed ε ∈ (0, 1), the operator

f 7→ ufε , which associates to f the unique C0-solution ufε of the problem
(11), is compact from L∞(R+;X) ∩ L1(R+;X) to C̃b([−τ,+∞);D(A)).

The third step. As F is almost strongly-weakly u.s.c. – see Defini-
tion 1 –, it follows that, for the very same ε > 0, there exists Eε ⊆ R+

whose Lebesgue measure λ(Eε) ≤ ε and such that F|(R+\Eε)×C([−τ,0 ];D(A))

is strongly-weakly u.s.c., we construct an approximation for F as follows.
Let

D(F ) = R+ × C([−τ, 0 ];D(A)),

Dε(F ) = (R+ \ Eε)× C([−τ, 0 ];D(A))

and let us define the multifunction Fε : R+ × C([−τ, 0 ];D(A)) ↪→ X, by

Fε(t, v) =

{
F (t, v), (t, v) ∈ Dε(F ),

{0}, (t, v) ∈ D(F ) \Dε(F ).
(12)

Further, we prove that the multifunction f 7→ SelFε(·, ufε (·)), where

SelFε(·, ufε (·)) = {h ∈ L1(R+;X); h(t) ∈ Fε(t, u
f
ε t) a.e. t ∈ R+},

maps some nonempty, convex and weakly compact set K ⊆ L1(R+;X) into
itself and has weakly×weakly sequentially closed graph. Then, we are in
the hypotheses of Theorem 3, wherefrom it follows that this mapping has
at least one fixed point which, by means of f 7→ ufε , produces a C0-solution
for the approximate problem

u′(t) ∈ Au(t)− ε[u(t)− z(t) ] + f(t), t ∈ R+,

f(t) ∈ Fε(t, ut), t ∈ R+,

u(t) = g(u)(t), t ∈ [−τ, 0 ],
(13)

where Fε is defined by (12).

The fourth step. For each ε ∈ (0, 1), we fix a C0-solution uε of the
problem (13), and we show that there exists a sequence εn ↓ 0 such that
(uεn)n converges in C̃b([ 0,+∞);D(A)) to a C0-solution of the problem (1).
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6 Proofs of Theorems 7 and 8

We begin with the proofs of the four steps outlined above which are
labeled here as four lemmas.

Lemma 2 Let us assume that (A1) in (HA), and (g1) ∼ (g2) in (Hg) are
satisfied. Then, for each ε > 0 and each f ∈ L∞(R+;X) ∩ L1(R+;X), the

problem (11) has a unique C0-solution ufε : [−τ,+∞) → X which belongs

to Cb([−τ,+∞);D(A)). Moreover, ufε satisfies

∥ufε − z∥Cb([−τ,+∞);X) ≤
1

ε
∥f∥L∞(R+;X), (14)

where z is the unique C0-solution of the problem (9).

Proof. First, let us observe that the problem (11) has the form{
u′(t) ∈ Aεu(t) + fε(t), t ∈ R+,

u(t) = g(u)(t), t ∈ [−τ, 0 ],
(15)

where Aε = A−εI and fε(t) = f(t)+εz(t) for t ∈ R+. Clearly, Aε+εI ism-
dissipative, 0 ∈ D(Aε) and 0 ∈ Aε0. Since z ∈ Cb([ 0,+∞);D(A)) we have
fε ∈ L∞(R+;X) ∩L1(R+;X) and so Lemma 1 applies with ω = ε and this

implies the existence and uniqueness of solution ufε ∈ Cb([−τ,+∞);D(A)).
Next, using the very same operator Aε = A− εI, we rewrite the unper-

turbed problem (9) as{
z′(t) ∈ Aεz(t) + hε(t), t ∈ R+,

z(t) = g(z)(t), t ∈ [−τ, 0 ],
(16)

with hε(t) = εz(t), for t ∈ R+. Then, for each t ∈ (0,+∞), the unique

C0-solution ufε of (15) and the unique solution z of (16) satisfy

∥ufε (t)− z(t)∥ ≤ e−εt∥ufε (0)− z(0)∥+
∫ t

0
e−ε(t−s)∥f(s)∥ ds

≤ e−εt∥ufε − z∥Cb([ a,+∞);X) +
1− e−εt

ε
∥f∥L∞(R+;X),

for each t ∈ (0,+∞).
Clearly, there exists a sequence (αn) in (0, a) such that

lim
n

∥ufε − z∥Cb([αn,+∞);X) = ∥ufε − z∥Cb([ 0,+∞);X). (17)
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From the last inequality it follows that, for every n ∈ N, we have

∥ufε (t)− z(t)∥ ≤ e−εαn∥ufε − z∥Cb([αn,+∞);X)+
1− e−εαn

ε
∥f∥L∞(R+;X) (18)

for each t ∈ [αn,+∞), and so

∥ufε − z∥Cb([αn,+∞);X) ≤
1

ε
∥f∥L∞(R+;X),

for every n ∈ N. From (17), it readily follows that

∥ufε − z∥Cb([ 0,+∞);X) ≤
1

ε
∥f∥L∞(R+;X).

Next, if t ∈ [−τ, 0 ], from (g2) in (Hg), we get

∥ufε (t)− z(t)∥ = ∥g(ufε )(t)− g(z)(t)∥

≤ ∥ufε − z∥Cb([ a,+∞);X) ≤ ∥ufε − z∥Cb([ 0,+∞);X)

and thus (14) holds true, and this completes the proof.

Lemma 3 Let us assume that (A1), (A2) in (HA) and (Hg) are satisfied,
let ε > 0 be fixed and let ℓ ∈ L∞(R+;R+)∩L1(R+;R+). Then the operator

f 7→ ufε , where u
f
ε is the unique solution of the problem (11) corresponding

to f , maps the set

F = {f ∈ L∞([ 0,+∞);X) ∩ L1(R+;X); ∥f(t)∥ ≤ ℓ(t) a.e. for t ∈ R+},

into a relatively compact set in C̃b([−τ,+∞);D(A)).

Proof. By (14), {ufε ; f ∈ F} is bounded in Cb([ 0,+∞);D(A)) and thus

{ufε (0); f ∈ F} is bounded in D(A). Since F is uniformly integrable in
L1(0, k;X) for k = 1, 2, . . . – see Definition 3 –, from (A2) and Theorem 5,

we conclude that, for every k = 1, 2, . . . , and σ ∈ (0, k), {ufε ; f ∈ F} is
relatively compact in C([σ, k ];D(A)). Thanks to (g2), (g4) in (Hg) and to

Remark 6, we deduce that the set {g(ufε ); f ∈ F} is relatively compact

in C([−τ, 0 ];D(A)), and therefore
{
g(ufε )(0); f ∈ F

}
= {ufε (0); f ∈ F}

is relatively compact in D(A). Again, from (g1) and the second part of

Theorem 5, it follows that the set {ufε ; f ∈ F)} is relatively compact in
C̃b([−τ,+∞);D(A)). The proof is complete.
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Lemma 4 Let us assume that (HA), (HF ), (H ′
B) and (Hg) are satisfied.

Then, for each ε > 0, the problem (13) has at least one solution uε.

Since the proof follows the very same lines as those in the proof of
Lemma 4.3 in Vrabie [47], we do not give details.

Lemma 5 If (HA), (HF ), (H
′
I), (H

′
B) and (Hg) are satisfied, then, for each

ε ∈ (0, 1), each C0-solution uε of the problem (13) satisfies

∥uε − z∥Cb([ 0,+∞);X) ≤ r, (19)

where r > 0 is given by (H ′
I).

Proof. Let us observe that, if 0 ≤ t < t̃, we have

∥uε(t̃)− z(t̃)∥ ≤ ∥uε(t)− z(t)∥ (20)

+

∫ t̃

t
[uε(s)− z(s), f(s) ]+ ds− ε

∫ t̃

t
∥uε(s)− z(s)∥ ds.

Let us assume by contradiction that there exists t ∈ R+ such that

∥uε(t)− z(t)∥ > r.

We distinguish between two cases.

Case 1. There exists tm ∈ R+ such that

r < ∥uε − z∥Cb([ 0,+∞);X) = ∥uε(tm)− z(tm)∥. (21)

If tm = 0, then

r < ∥uε − z∥Cb([ 0,+∞);X) = ∥uε(0)− z(0)∥ = ∥g(uε)(0)− g(z)(0)∥

≤ ∥uε − z∥Cb([ a,+∞);X) ≤ ∥uε − z∥Cb([ 0,+∞);X)

and so

∥uε − z∥Cb([ 0,+∞);X) = ∥uε − z∥Cb([ a,+∞);X).

Therefore, we can always confine ourselves to analyze the case when, in (21),
either tm ∈ (0,+∞) or there is no tm ∈ (0,+∞) satisfying the equality in
(21).
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So, if there exists tm ∈ (0,+∞) such that (21) holds true, then the
mapping

t 7→ ∥uε(t)− z(t)∥

cannot be constant on (0, tm). Indeed, if we assume that

∥uε(s)− z(s)∥ = ∥uε(tm)− z(tm)∥

for each s ∈ (0, tm), then, taking t ∈ (0, tm) and t̃ = tm in (20) and using
(H ′

I) with v(0) = uεs(0) = uε(s), we get

r < r − ε(tm − t)r < r (22)

which is impossible. Consequently, there exists t0 ∈ (0, tm) such that

r < ∥uε(t0)−z(t0)∥ < ∥uε(s)−z(s)∥ ≤ ∥uε(tm)−z(tm)∥ = ∥uε−z∥Cb([ 0,+∞);X)

for each s ∈ (t0, tm). Since

∥uε(s)− z(s)∥ ≤ ∥uεs − zs∥C([−τ,0 ];X),

for each s ∈ R+, we have

r < ∥uεs − zs∥C([−τ,0 ];X)

for each s ∈ (t0, tm) and then, using again (20) and (H ′
I), we get

r < ∥uε(tm)− z(tm)∥ ≤ ∥uε(t0)− z(t0)∥ − ε(tm − t0)r

which implies the very same contradiction as before, i.e. (22).
It remains only to analyze

Case 2. There is no tm ∈ R+ such that (21) holds true. Then, there
exists at least one sequence (tk)k such that lim

k
tk = +∞,

lim
k

∥uε(tk)− z(tk)∥ = ∥uε − z∥Cb([ 0,+∞);X).

If there exists t̃ ∈ R+ such that ∥uε(t̃)−z(t̃)∥ = r, then ∥uε(t)−z(t)∥ ≤ r
for each t ∈ [ t̃,+∞). Indeed, if we assume the contrary, there would exists
[ t, t̃ ] ⊆ [ 0,+∞) such that

∥uε(t)− z(t)∥ = r
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and
r < ∥uε(s)− z(s)∥

for each s ∈ (t, t̃ ]. Then, using once again (20) and (H ′
I), we get

r < ∥uε(t̃)− z(t̃)∥ ≤ ∥uε(t)− z(t)∥ − ε(t̃− t)r

≤ r − ε(t̃− t)r

leading to (22) which is impossible.
So, when both

r < ∥uε − z∥Cb([ 0,+∞);X)

and
∥uε(t)− z(t)∥ < ∥uε − z∥Cb([ 0,+∞);X)

hold true for each t ∈ R+, we necessarily have

∥uε(t)− z(t)∥ > r

for each t ∈ R+. If this is the case, let us remark that we may assume with
no loss of generality, by extracting a subsequence if necessary, that

tk+1 − tk ≥ 1

for k = 0, 1, 2, . . . . Then, by (3) and (H ′
I), we have

r < ∥uε(tk+1)− z(tk+1)∥

≤ ∥uε(tk)− z(tk)∥+
∫ tk+1

tk

[uε(s)− z(s), f(s)− ε(uε(s)− z(s)) ]+ ds

≤ ∥uε(tk)− z(tk)∥ − ε

∫ tk+1

tk

∥uε(s)− z(s)∥ ds

≤ ∥uε(tk)− z(tk)∥ − ε(tk+1 − tk)r ≤ ∥uε(tk)− z(tk)∥ − εr

for each k ∈ N. Passing to the limit for k → +∞ in the inequalities

∥uε(tk+1)− z(tk+1)∥ ≤ ∥uε(tk)− z(tk)∥ − εr, k = 1, 2, . . .

we get
∥uε − z∥Cb([ 0,+∞);X) ≤ ∥uε − z∥Cb([ 0,+∞);X) − εr.

But, in view of Lemma 2, ∥uε − z∥Cb([ 0,+∞);X) is finite and thus we get a
contradiction. This contradiction can be eliminated only if Case 2 cannot
hold. Thus, both Case 1 and Case 2 are impossible. In turn, this is a
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contradiction too, because at least one of these two cases should hold true.
So, the initial supposition, that ∥uε−z∥Cb([ 0,+∞);X) > r, is necessarily false.
It then follows that (19) holds true and this completes the proof.

Now, we can pass to the proof of Theorem 8.

Proof. Let (εn)n be a sequence with εn ↓ 0, let (un)n be the sequence
of the C0-solutions of the problem (13) corresponding to ε = εn for n ∈ N,
and let (fn)n be such that

u′n(t) ∈ Aun(t)− εn[un(t)− z(t) ] + fn(t), t ∈ R+,
fn(t) ∈ Fεn(t, unt), t ∈ R+,
un(t) = g(un)(t), t ∈ [−τ, 0 ].

In view of Remark 1, we may assume without loss of generality that Eεn+1 ⊂
Eεn for n = 0, 1, . . . . This means that

Fεn(t, v) = Fεn+1(t, v) (23)

for each t ∈ R+ \ Eεn and v ∈ C([−τ, 0 ];D(A)).

From (H ′
B), we deduce that, for k = 1, 2, . . . , the set {fn; n ∈ N} is

uniformly integrable in L1(0, k;X). Then, from Lemma 5, (A2) in (HA)
and Theorem 5, it follows that, for k = 1, 2, . . . , and each σ ∈ (0, k),
the set {un; n ∈ N} is relatively compact in C([σ, k ];D(A)). In view
of (g4) in (Hg), we deduce that the set {un; n ∈ N} is relatively compact

in C([−τ, 0 ];D(A)). In particular, the set

{un(0) = g(un)(0); n ∈ N}

is relatively compact in D(A). From the second part of Theorem 5, we
conclude that {un; n ∈ N} is relatively compact in C([ 0, k ];D(A)) for
k = 1, 2, . . . and thus in C([−τ, k ];D(A)). So, {un; n ∈ N} is relatively
compact in C̃b([−τ,+∞);D(A)). Accordingly, for each k = 1, 2, . . . ,

Ck = {un(t); n ∈ N, t ∈ [ 0, k ]}

is compact in D(A). Let γ ∈ (0, 1) be arbitrary, let Eγ be the Lebesgue
measurable set in [ 0,+∞) given by Definition 2 and, for each k = 1, 2, . . . ,
let us define the set

Dγ,k =
∪
n∈N

{(t, uεn t); t ∈ [ 0, k ] \ Eγ}.
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Clearly, Dγ,k is compact in R+×C([−τ, 0 ];D(A)). Next, for each γ ∈ (0, 1)
and each k = 1, 2, . . . , let us define

Cγ,k = Fγ(Dγ,k) = F (Dγ,k) ∪ {0}

which is weakly compact since Dγ,k is compact and F|Dγ,k
is strongly-weakly

u.s.c. See Lemma 2.6.1, p. 47 in Cârjă, Necula, Vrabie [19]. Further, the
family F = {fεn ; n = 0, 1, . . . } ⊆ L1(R+;X) satisfies the hypotheses of
Theorem 4.1 in Vrabie [46]. So, on a subsequence at least, we have

lim
n
fn = f weakly in L1(R+;X),

lim
n
un = u in C̃b([−τ,+∞);D(A)),

lim
n
unt = ut in C([−τ, 0 ];D(A)) for each t ∈ R+.

From Lemma 2.6.2, p. 47 in Cârjă, Necula, Vrabie [19] combined with
(23), we get

f(t) ∈ Fεn(t, ut)

for each n ∈ R and a.e. t ∈ R+ \Eεn . Since limn λ(Eεn) = 0, it follows that

f(t) ∈ F (t, ut)

a.e. t ∈ R+. But A is of complete continuous type, wherefrom it follows
that u is a C0-solution of the problem (1) corresponding to the selection f
of t 7→ F (t, ut). Finally, it suffices to observe that, from (19) in Lemma 5,
it follows that u(t)− z(t) ∈ D(0, r) for each t ∈ R+.

We can now proceed to the proof of Theorem 7.
Proof. Let r > 0 be given by (HI) and let us define the set

Kr = {(t, v) ∈ R+ × C([−τ, 0 ];D(A)); ∥v(0)− z(t)∥ ≤ r}.

Clearly, Kr is nonempty and closed in R+ × C([−τ, 0 ];X), In addition,
since by (A1) in (HA), D(A) is convex, it follows that for each t ∈ R+, the
cross-section of Kr at t, i.e.

Kr(t) = {v ∈ C([−τ, 0 ];D(A)); (t, v) ∈ Kr}

is convex. Let π : R+×C([−τ, 0 ];D(A)) → R+×C([−τ, 0 ];X) be defined
by

π(t, v) =


(t, v) if ∥v(0)− z(t)∥ ≤ r,(

t,
r

∥v − zt∥C([−τ,0 ];X)
(v − zt) + zt

)
if ∥v(0)− z(t)∥ > r.
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We observe that π is continuous, π restricted to Kr is the identity operator
and π maps R+ × C([−τ, 0 ];D(A)) into Kr. The first two properties men-
tioned are obvious. To prove the fact that π maps R+ × C([−τ, 0 ];D(A))
into Kr, we have merely to observe that if ∥v(0)− z(t)∥ > r then, inasmuch
as D(A) is convex and v, zt ∈ C([−τ, 0 ];D(A), it follows that their convex
combination

r

∥v − zt∥C([−τ,0 ];X)
(v − zt) + zt − zt ∈ C([−τ, 0 ];D(A)).

Moreover ∥∥∥∥ r

∥v − zt∥C([−τ,0 ];X)
(v − zt) + zt − zt

∥∥∥∥
C([−τ,0 ];X)

= r

and so, in this case, π(t, v) ∈ Kr. If ∥v(0) − z(t)∥ ≤ r, then π(t, v) = (t, v)
and thus, π maps R+ × C([−τ, 0 ];D(A)) into Kr.

Then, we can define the multifunction Fπ : R+×C([−τ, 0 ];D(A)) ↪→ X
by

Fπ(t, v) = F (π(t, v)),

for each (t, v) ∈ R+ × C([−τ, 0 ];D(A)). As π is continuous, it follows that
Fπ satisfies (HF ). Moreover, one can easily verify that it satisfies (H ′

B).
Moreover, since

π(R+ × C([−τ, 0 ];D(A))) ⊆ Kr,

we conclude that Fπ satisfies (H ′
I) too. Indeed, let (t, v) ∈ R+×C([−τ, 0 ];

D(A)) be arbitrary and satisfying

∥v(0)− z(t)∥ > r (24)

and let f ∈ F (π(t, v)).
From the definition of π, it follows that the projection P2 of π(t, v) on

the second component, i.e.

P2(π(t, v)) =


v if ∥v(0)− z(t)∥ ≤ r,

r

∥v − zt∥C([−τ,0 ];X)
(v − zt) + zt if ∥v(0)− z(t)∥ > r.

satisfies:

∥P2(π(t, v))− zt∥C([−τ,0 ];X) =

{
r if ∥v(0)− z(t)∥ > r,

∥v − zt∥C([−τ,0 ];X) if ∥v(0)− z(t)∥ ≤ r.
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Therefore, if (t, v) satisfies (24), it follows that

∥P2(π(t, v))− zt∥C([−τ,0 ];X) = r.

So, by (HI), we have

[ v(0)− z(t), f ]+ = [P2(π(t, v))(0)− z(t), f ]+ ≤ 0

which proves that Fπ satisfies (H ′
I).

Hence, by virtue of Theorem 8, the problem
u′(t) = Au(t) + f(t), t ∈ R+,

f(t) ∈ Fπ(t, ut), t ∈ R+,

u(t) = g(u)(t), t ∈ [−τ, 0 ]

has at least one C0-solution u ∈ Cb([−τ,+∞);D(A)).

By (19), we have ∥ut(0) − z(t)∥ ≤ r for each t ∈ R+. So, (t, ut) ∈ Kr,
which shows that

Fπ(t, ut) = F (t, ut)

for each t ∈ R+. Thus u is a C0-solution of (1) and this completes the proof
of Theorem 7.

7 Nonlinear diffusion in L1(Ω)

Let Ω be a nonempty, bounded and open subset in Rd, d ≥ 1, with C1

boundary Σ, let φ : D(φ) ⊆ R ↪→ R be maximal monotone with 0 ∈ φ(0)
and let ω > 0. Let us consider the porous medium equation subjected to
nonlocal initial conditions

∂u

∂t
(t, x) ∈ ∆φ(u(t, x))− ωu(t, x) + f(t, x), in Q+,

f(t, x) ∈ F

(
t, u(t),

∫ 0

−τ
u(t+ s, x) ds

)
, in Q+,

φ(u(t, x)) = 0, on Σ+,

u(t, x) =

∫ +∞

τ
N (u(θ + t))(x) dµ(θ) + ψ(t)(x), in Qτ .

(25)
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Let us consider the auxiliary problem

∂z

∂t
(t, x) ∈ ∆φ(z(t, x))− ωz(t, x), in Q+,

φ(z(t, x)) = 0, on Σ+,

z(t, x) =

∫ +∞

τ
N (z(θ + t))(x) dµ(θ) + ψ(t)(x), in Qτ

(26)

and let us denote by z ∈ Cb([−τ,+∞);L1(Ω)) the unique C0-solution of
(26).

Before passing to the statement of the main existence result concerning
(25), we need to introduce some notation and to explain the exact definition
of F .

Let fi : R+ ×R×R → R be two functions with f1(t, u, v) ≤ f2(t, u, v)
for each (t, u, v) ∈ R+ ×R×R and let

F : R+ × C([−τ, 0 ];L1(Ω)) ↪→ L1(Ω)

be given by

F := F0 + F1,

where

F0(t, v) =
{
f ∈ L1(Ω); f(x) ∈ [ f̃1(t, v)(x), f̃1(t, v)(x) ], a.e. for x ∈ Ω

}
and

F1(t, v)(x) := {σ(t)h(x)}

for each (t, v) ∈ R+ × C([−τ, 0 ];L1(Ω)). Here

f̃i : R+ × Ω× C([−τ, 0 ];L1(Ω)) → R, i = 1, 2,

are defined as:
f̃1(t, x, v) := f1

(
t, v(0)(x),

∫ 0

−τ
v(s)(x) ds

)
f̃2(t, x, v) := f2

(
t, v(0)(x),

∫ 0

−τ
v(s)(x) ds

) (27)

for each (t, v) ∈ R+ × C([−τ, 0 ];L1(Ω)), a.e. in Ω, h ∈ L1(Ω) is a fixed
element satisfying ∥h∥L1(Ω) ̸= 0 and σ ∈ L1(R+;R).
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Theorem 9 Let Ω be a nonempty, bounded and open subset in Rd with C1

boundary Σ, let ω > 0 and let φ : R → R be continuous on R and C1 on
R \ {0} with φ(0) = 0 and for which there exist two constants C > 0 and
α > 0 if d ≤ 2 and α > (d− 2)/d if d ≥ 3 such that

φ′(r) ≥ C|r|α−1

for each r ∈ R \ {0}. Let fi : R+ × R × R → R be two given functions,
h ∈ L1(Ω), ∥h∥L1(Ω) > 0, σ ∈ L1(R+;R) and let F be defined as above.

Let N : L1(Ω) → L1(Ω), ψ ∈ C([−τ, 0 ];L1(Ω)) and let µ be a σ-finite
and complete measure on [ τ,+∞). Let us assume that :

(σ1) ∥σ(t)∥ ≤ 1 for each t ∈ R+ ;

(F1) f1(t, u, v) ≤ f2(t, u, v) for each (t, u, v) ∈ R+ ×R×R ;

(F2) f1 is l.s.c. and f2 is u.s.c. and, for each (t, u, v), (t, u, w) ∈ R+×R×R
with v ≤ w, we have {

f1(t, u, v) ≤ f1(t, u, w),

f2(t, u, v) ≥ f2(t, u, w) ;

(F3) there exists c > 0 such that, for every (t, x, v) ∈ D(f1, f2) with

∥v(0)(·)− z(t, ·)∥L1(Ω) ≤ c−1∥h∥L1(Ω)

we have

sign [ v(0)(x)− z(t, x) ]f0(x) ≤ −c|v(0)(x)− z(t, x)|

for each f0(x) ∈ [ f1(t, x, v), f2(t, x, v) ], z being the unique C0-solution
of the problem (26) ;

(F4) there exists a nonnegative function ℓ̃ ∈ L1(R+;R) ∩ L∞(R+;R) such
that

|fi(t, u, v)| ≤ ℓ̃(t)

for i = 1, 2 and for each (t, u, v) ∈ R+ ×R×R ;

(F5) for each t ∈ R+ and each v ∈ C([−τ, 0];L1(Ω)), we have

fi(t, z(t, x), v) = 0

for i = 1, 2 and a.e. for x ∈ Ω ;
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(µ1) there exists b > τ such that suppµ ⊆ [ b,+∞) ;

(µ2) µ([ b,∞)) = 1 ;

(N1) ∥N (u)−N (v)∥L1(Ω) ≤ ∥u− v∥L1(Ω) for each u, v ∈ L1(Ω) ;

(N2) N (0) = 0.

Then, the problem (25) has at least one C0-solution u ∈ Cb([−τ,+∞);L1(Ω))
satisfying

∥u− z∥Cb(R+;L1(Ω)) ≤ c−1∥h∥L1(Ω).

Remark 7 Condition (F5) is satisfied, for instance, if

fi(t, u, v) = ψ(t, u) · f i(t, u, v),

where ψ is positive, continuous and bounded and ψ(t, z(t, x)) = 0, while f i
satisfy (F1) ∼ (F4), i = 1, 2. In the particular case in which ψ ≡ 0, it follows
that z ≡ 0 and so, (F5) reduces to

fi(t, 0, v) = 0

for each (t, v) ∈ R+ ×R.

Proof. Let X = L1(Ω) and let us define A : D(A) ⊆ L1(Ω) → L1(Ω), by

Au := ∆φ(u)− ωu

for each u ∈ D(A), where

D(A) =
{
u ∈ L1(Ω); φ(u) ∈W 1,1

0 (Ω), ∆φ(u) ∈ L1(Ω)
}
.

As φ(0) = 0, C∞
0 (Ω) is dense in D(A) and so D(A) = L1(Ω).

Theorem 6 implies that A is m-dissipative and A + ωI is dissipative
in L1(Ω), A0 = 0, A generates a compact semigroup and is of complete
continuous type on D(A) = L1(Ω). Hence, A satisfies (HA). Let F be
defined as above and

g : Cb([−τ,+∞);L1(Ω)) → C([−τ, 0 ];L1(Ω))

be defined by

g(u)(t)(x) =

∫ +∞

τ
N (u(t+ θ))(x) dµ(θ) + ψ(t)(x)
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for each u ∈ Cb([−τ,+∞);L1(Ω)), each t ∈ [−τ, 0 ] and a.e. for x ∈ Ω.
From (σ1), (F1), (F2), (F4) and Lemma 5.1 in Vrabie [47], using a similar

arguments as in the proof of the corresponding part in the preceding section,
we conclude that F satisfies (HF ). From (F2) and (F3), we conclude that F
satisfies (HI) and (HB) with

r = c−1∥h∥L1(Ω).

Indeed, we will show that for each (t, v) ∈ R+ × C([−τ, 0 ];L1(Ω)), with

∥v(0)(·)− z(t, ·)∥L1(Ω) = r,

and every f ∈ F (t, v), we have

[ v(0)(·)− z(t, ·), f ]+ ≤ 0.

Let us observe that in our case, i.e. X = L1(Ω), we have

[ v(0)(·)− z(t, ·), f ]+ =

∫
{y∈Ω;v(0)(y)−z(t,y)>0}

f(x) dx

−
∫
{y∈Ω;v(0)(y)−z(t,y)<0}

f(x) dx+

∫
{y∈Ω;v(0)(y)−z(t,y)=0}

|f(x)| dx.

Let f ∈ F (t, v). Clearly f is of the form f = f0 + h, where f0 ∈ L1(Ω)
satisfies f1(t, x, v) ≤ f0(x) ≤ f2(t, x, v) a.e. for x ∈ Ω. From the definition
of [ ·, · ]+ in L1(Ω), we deduce

[ v(0)(·)− z(t, ·), f ]+

≤
∫
{y∈Ω;v(0)(y)−z(t,y)>0}

f0(x) dx−
∫
{y∈Ω;v(0)(y)−z(t,y)<0}

f0(x) dx

+

∫
{y∈Ω;v(0)(y)−z(t,y)=0}

|f0(x)| dx+

∫
{y∈Ω;v(0)(y)−z(t,y)>0}

α(t)h(x) dx

−
∫
{y∈Ω;v(0)(y)−z(t,y)<0}

h(x) dx+

∫
{y∈Ω;v(0)(y)−z(t,y)=0}

|α(t)| · |h(x)| dx.

Next, taking into account that, from (F5), we have f0(x) = 0 a.e. for
those x ∈ Ω for which v(0)(x) = z(t, x), the last inequality, conjunction with
(F4), yields

[ v(0)(·)−z(t, ·), f ]+ ≤
∫
Ω

sign [ v(0)(x)−z(t, x) ]f0(x) dx+
∫
Ω
|α(t)|·|h(x)| dx
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≤ −c
∫
Ω
|v(0)(x)− z(t, x)| dx+

∫
Ω
|h(x)| dx ≤ 0.

So, F satisfies (HI). As (H4) follows from (F3), we deduce that F satisfies
(HB). Since the proof of (Hg) is very simple, we do not enter into details.
So, we are in the hypotheses of Theorem 7 wherefrom the conclusion.
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