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Abstract

We consider a nonlinear delay differential evolution inclusion sub-
jected to nonlocal implicit initial conditions and we prove an existence
result for bounded C°-solutions.
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1 Introduction

The goal of this paper is to prove an existence result for bounded C°-
solutions to a class of nonlinear delay differential evolution inclusions sub-
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jected to nonlocal implicit initial conditions of the form

u'(t) € Au(t) + f(t), te Ry,
f(t) € F(t,u), teRy, (1)
u(t) = g(u)(t), te[-70],

where X is a Banach space, 7 > 0, A : D(A) € X — X is the in-
finitesimal generator of a nonlinear semigroup of contractions, the multi-
function F : Ry x C([—7,0]; D(A)) — X is nonempty, convex weakly
compact valued and strongly-weakly u.s.c., and g : Cp([—7, +00); D(A)) —
C([—7,0]; D(A)) is nonexpansive and has affine growth, i.e. there exists
mg > 0 such that

)
)

lg(w)le=r01:x) < llulleyo,400);x) + M0 (2)

for each u € Cy([ -7, +00); D(A)).
If I is an interval, Cy(I; X) denotes the space of all bounded and con-
tinuous functions from I, equipped with the sup-norm | - [|¢,(1,x), while

Cy(I; D(A)) denotes the closed subset in Cp(1; X) consisting of all elements
u € Cp(I; X) satisfying u(t) € D(A) for each t € I. Let a € R. On
the linear space Cp([a,+00); X) let us consider the family of seminorms
{Il-llx; ¥ € N, k > a}, defined by |Jul|z = sup{||u(t)|; t € [a,k]} for each
k € N, k > a. Endowed with this family of seminorms, Cy([a,+00); X)
is a separated locally convex space, denoted by 5’b([a, +00); X). Further,
C([a,b]; X) stands for the space of all continuous functions from [a,b] to X
endowed with the sup-norm || - [|¢([4,0);x) and C([a,b]; D(A)) is the closed
subset of C([a,b]; X) containing all v € C([a,b]; X) with u(t) € D(A)
for each t € [a,b]. Finally, if v € Cyp([—7,+00); X) and t € Ry, uy €
C([—7,0]; X) is defined by

ur(s) == u(t + s)

for each s € [—7,0].

The existence problem on the standard compact interval [0, 27 ], in the
simplest case when 7 = 0, i.e. when the delay is absent, was studied by
Paicu, Vrabie [41]. In this case C([—7,0]; D(A)) identifies with D(A), F
identifies with a multifunction from [0,27] x X to X. By using an inter-
play between compactness arguments and invariance techniques, they have
proved an existence result handling periodic, anti-periodic, mean-value evo-

lution inclusions subjected to initial condition expressed by an integral with
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respect to a Radon measure p. A very important specific case concerns T-
periodic problems, which corresponds to the choice of g as g(u) = u(T'), was
studied by Paicu [39]. For F single-valued, this case was analyzed by Aiz-
icovici, Papageorgiou, Staicu [3], Cagcaval, Vrabie [18], Hirano, Shioji [34],
Paicu [40], Vrabie [44]. For a survey concerning: periodic, anti-periodic,
quasi-periodic and almost periodic solutions to differential inclusions, see
Andres [6]. As long as differential inclusions subjected to general nonlocal
initial conditions without delay are concerned, we mention the papers of
Aizicovici, Staicu [5] and Paicu, Vrabie [41]. The case of periodic retarded
equations and inclusions subjected to nonlocal initial conditions were stud-
ied by Vrabie [46], and Chen, Wang, Zhou [20], while the general delay
equations was considered by Burlicd, Rosu [14] and Vrabie [48], [49] and
[50].

Existence results in the periodic abstract undelayed case were obtained
by Aizicovici, Papageorgiou, Staicu [3], Cagcaval, Vrabie [18], Hirano, Sh-
ioji [34], Paicu [40], Vrabie [44], while the anti-periodic case was considered
by Aizicovici, Pavel, Vrabie [4]. The semilinear case of undelayed differential
equations subjected to nonlocal initial data, was initiated by the pioneer-
ing work of Byszewski [15]. Further steps in this direction were made by
Byszewski [16], Byszewski, Lakshmikantham [17], Aizicovici, Lee [1], Aiz-
icovici, McKibben [2], Zhenbin Fan, Qixiang Dong, Gang Li [27], Garcia-
Falset [29] and Garcia-Falset, Reich [30]. All these studies are strongly mo-
tivated by the fact that specific problems of this kind describe the evolution
of various phenomena in Physics, Meteorology, Thermodynamics, Popula-
tion Dynamics. A model of the gas flow through a thin transparent tube,
expressed as a problem with nonlocal initial conditions, was analyzed in
Deng [24]. Some models in Pharmacokinetics were discussed in the mono-
graph of McKibben [35, Section 10.2, pp. 394-398]. Models arising from
Physics were analyzed by Olmstead, Roberts [38] and Shelukhin [43]. Linear
second order evolution equations subjected to linear nonlocal initial condi-
tions in Hilbert triples were considered in Avalishvili, Avalishvili [8] and
motivated by mathematical models for long-term reliable weather forecast-
ing as mentioned in Rabier, Courtier, Ehrendorfer [42]. For Navier-Stokes
equations subjected to initial nonlocal conditions see Gordeziani [32]. Clas-
sical nonlinear delay evolution initial-value problems, i.e. when g = 1 with
¢ € C([r,0]; D(A)), were considered by Mitidieri, Vrabie [36] and [37], also
by using compactness arguments. It should be emphasized that in Mitidieri,
Vrabie [36] and [37] the general assumptions on the forcing term F' are very
general allowing — in certain specific cases when A is a second order elliptic
operator — F' to depend on Au as well.
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Our paper extends the main result in Vrabie [47] to cover the more
general case in which ¢ has affine rather than linear growth. This case is
important in applications and does not follow by a simple modification of
the arguments used in Vrabie [47].

The paper is divided into 7 sections. In Section 2 we have included some
concepts and results widely used subsequently. In Section 3 we prove an
existence and uniqueness result for the unperturbed problem (1) which, al-
though auxiliary, is important by its own. Section 4 collects the hypotheses
used and provides some comments on several remarkable particular cases
handled by the general frame considered. Section 5 is devoted to the state-
ment of the main result, i.e. Theorem 7 and to a short description of the
idea of the proof. Section 6 is concerned with the proof of the main result
and the last Section 7 contains an example illustrating the possibilities of
the abstract developed theory.

2 Preliminaries

Although the paper is almost self-contained, some familiarity with the
basic concepts and results on nonlinear evolution equations governed by m-
dissipative operators, delay evolution equations and on multifunction theory
would be welcome. For details in these three topics, we refer the reader, in
order, to Barbu [11], Hale [33] and Vrabie [45]. However, we recall for easy
reference the most important notions and results we will use in the sequel.

Definition 1 If X is a Banach space and C C X, the multifunction F' :
C — X is said (strongly-weakly) upper semicontinuous (u.s.c.) at & € C
if for every (weakly) open neighborhood V' of F(§) there exists an open
neighborhood U of ¢ such that F(n) C V for each n € UNC. We say that F
is (strongly-weakly) u.s.c. on C if it is (strongly-weakly) u.s.c. at each £ € C.

Definition 2 A multifunction F' : I x C < X is said to be almost strongly-
weakly u.s.c. if for each v > 0 there exists a Lebesgue measurable subset
E., C I whose Lebesgue measure A\(E,) < v and such that F' it is strongly-
weakly u.s.c. from (I'\ E,) x C to X.

Remark 1 If the sequence (&), is strictly decreasing to 0, we can always
choose the sequence (E.,),, where E. corresponds to e, as specified in
Definition 2, such that E, CE,, ,forn=0,1,....

En+1 =

We also need the following general fixed point theorem for multifunctions
obtained independently by Ky Fan [28] and Glicksberg [31].
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Theorem 1 (Ky Fan-Glicksberg) Let K be a nonempty, conver and com-
pact set in a separated locally convexr space and let I' : K — K be a
nonempty, closed and convex valued multifunction with closed graph. Then
I has at least one fized point, i.e. there exists f € K such that f € T'(f).

A very useful variant of Theorem 1, is

Theorem 2 Let K be a nonempty, conver and closed set in a separated
locally conver space and let I : K — K be a nonempty, closed and convex
valued multifunction with closed graph. If T'(K) := Uyer'(x) is relatively
compact, then I' has at least one fized point, i.e. there exists f € K such
that f € T'(f).

Proof. Since K is closed, convex and I'(K) C K, we have

convI'(K) C convK = K.

So,
I'( convI'(K)) CT'(K) C convI'(K),

which shows that the set C := convI'(K), which by Mazur’s Theorem, i.e.
Dunford, Schwartz [22, Theorem 6, p. 416] is compact, is nonempty, closed,
convex and I'(C) C C. So, we are in the hypotheses of Theorem 1, with K
substituted by C C K, wherefrom the conclusion. O

Since, by Edwards [23, Theorem 8.12.1, p. 549], the weak closure of a
weakly relatively compact set, in a Banach space, coincides with its weak
sequential closure, Theorem 2 implies:

Theorem 3 Let K be a nonempty, convex and weakly compact set in Ba-
nach space and let I' : K — K be a nonempty, closed and convex valued
multifunction with sequentially closed graph. Then I' has at least one fized
point, i.e. there exists f € K such that f € T'(f).

In the single-valued case, Theorem 3 is due to Arino, Gautier, Penot [7].
If x,y € X, we denote by [,y |+ the right (left) directional derivative of
the norm calculated at x in the direction y, i.e.

Nz + hy| — [z
=1
[z, y]4 lim ) [2,y]

— Ll = o)
T hto h '

We recall that:
[,y +az]e = [z,y]x +allz| (3)
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for a € R. See Barbu [11, Proposition 3.7, p. 101].
We say that the operator A : D(A) C X — X is dissipative if

(21 — 22,1 —42]- <0

for each z; € D(A) and y; € Az;, i = 1,2, and m-dissipative if it is dissipative
and, for each A\ > 0, or equivalently for some A > 0, R(I — \A) = X.

Let A: D(A) C X < X be an m-dissipative operator, let £ € D(A),
f € L'(a,b; X) and let us consider the differential equation

u'(t) € Au(t) + f(t). (4)

Theorem 4 (Benilan) Let w € R and let A : D(A) C X — X be an m-
dissipative operator such that A+wl is dissipative. Then, for each & € D(A)
and f € L*(a,b; X), there exists a unique C°-solution of (4) on [a,b] which
satisfies u(a) = &. Furthermore, if f,g € L'(a,b;X) and u,v are the two
CP-solutions of (4) corresponding to f and g respectively, then:

t
lu(t) = v(®)]| < e u(s) — v(s)| +/ e 0|1 £(0) - g(O)[|do  (5)
for each a < s<t<b.

See Benilan [12], or Barbu [11, Theorem 4.1, p. 128].

We denote by u(-,a, &, f) the unique C%solution of the problem (4) sat-

isfying

u(a,a,f,f) =
and we notice that u(,0,&,0) = S(t)¢, where {S(t); S(t): D(A) — D(A)}
is the semigroup of nonexpansive mappings generated by A via the Crandall-
Liggett Exponential Formula. See Crandall, Liggett [21].

We recall that the semigroup {S(t); S(t) : D(A) — D(A)} is called
compact if, for each t > 0, S(t) is a compact operator.

We conclude this section with some compactness results concerning the
set of C%-solutions of the problem (4) whose initial data u(a) and forc-
ing terms f belong to some subsets B, in m, and respectively F, in
L'(a,b; X). First, we introduce:

Definition 3 Let (2,3, 1) be a complete measure space, () < +o00. A
subset F C L'(Q, u; X) is called uniformly integrable if for each ¢ > 0 there
exists () > 0 such that

[ 1r@ldut <
FE

for each f € F and each F € ¥ satisfying u(E) < d(¢).



Nonlinear delay evolution inclusions 73

The next result is an extension of a compactness theorem due to Baras [10].

Theorem 5 Let X be a Banach space, let A : D(A) C X < X be an m-
dissipative operator and let us assume that A generates a compact semigroup.
Let B C D(A) be bounded and let F be uniformly integrable in L'(a,b; X).
Then, for each o € (a,b), the set {u(-,a,&, f); (& f) € B x F} is rela-
tively compact in C([o,b]; X). If, in addition, B is relatively compact, then
{u(-ya,&, f); (&, f) € B x F} is relatively compact even in C([a,b]; X).

See Vrabie [45, Theorems 2.3.2 and 2.3.3, pp. 46-47].

Definition 4 An m-dissipative operator A is called of complete continuous
type if for each a < b and each sequences (f,), in L'(a,b; X) and (u,)n
in C([a,b]; X), with u,, a C%solution on [a,b] of the problem u/, (t) €
At (t) + fr(t), m=1,2,... satisfying:

limf, = f weaklyin L'(a,b;X),

n

limu, =u strongly in C([a,b]; X),
n

it follows that u is a C? solution on [a,b] of the limit problem wu'(t) €

Au(t) + f(t).

Remark 2 If the topological dual of X is uniformly convex and A generates
a compact semigroup, then A is of complete continuous type. See Vrabie [45,
Corollary 2.3.1, p. 49]. An m-dissipative operator of complete continuous
type in a nonreflexive Banach space (and, by consequence, whose dual is not
uniformly convex) is the nonlinear diffusion operator Ay in L!(£2). See the
example below.

Example 1 Let A be the Laplace operator in the sense of distributions
over Q. Let ¢ : D(¢) CR — R, let u: Q — D(y) and let us denote by

S,(u) = {v e LY(Q); v(z) € p(u(x)), ae. for z € Q}.

We recall that ¢ : D(p) C R < R is said to be maximal monotone if
— is m-dissipative.

The (i) part in Theorem 6 below is due to Brezis, Strauss [13], the (i7)
part to Badii, Diaz, Tesei [9] and the (iii) part to Céarja, Necula, Vrabie [19].

Theorem 6 Let Q be a nonempty, bounded and open subset in R with C!
boundary ¥ and let ¢ : D(¢) € R < R be mazimal monotone with 0 € ¢(0).
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(i) Then the operator Ay : D(Ag) C LY(Q) — LY(Q), defined by

{ D(Ap) = {u € L}(Q); v e S,(u) N W' (), Ave LHQ)}
Ap(u) = {Av; v e S,(u) "Wy (D} NLYQ) for u e D(Ayp),

is m-dissipative on L' (€2).

(ii) If, in addition, ¢ : R — R is continuous on R and C' on R\ {0} and
there exist two constants C >0 and a >0 if d <2 and o > (d — 2)/d
if d > 3 such that

¢'(r) = Clr*™

for each r € R\ {0}, then Ag generates a compact semigroup.

(#i7) In the hypotheses of (ii), Ay is of complete continuous type.

For the proof of (i) see Barbu [11, Theorem 3.5, p. 115], for the proof
of (ii) see Vrabie [45, Theorem 2.7.1, p. 70] and for proof of the (iii) —
which rests heavily on slight extension of a continuity result established
in Diaz, Vrabie [26, Corollary 3.1, p. 527] which, in turn, follows from a
compactness result due to Diaz, Vrabie [25] —, see Carja, Necula, Vrabie [19,
Theorem 1.7.9, p. 22].

3 An auxiliary lemma

We begin by considering the problem

{ u/'(t) € Au(t) + f(t), te Ry,

(6)
u(t) = g(u)(t), te[—1,0].

Lemma 1 Let us assume that A is m-dissipative, 0 € D(A), 0 € A0 and

there exists w > 0 such that A + wl is dissipative, too. Let us assume,

in addition, that there exists a > 0 such that g : Cy([—T,+00); D(A)) —

C([—7,0]; D(A)) satisfies

l9(v) = 9@, —ro1p) = 1= Vleyaroe) D) (7)

for each v,v € Cy([—T,+00); D(A)) and has affine growth, i.e. satisfies (2).
Then, for each f € L®°(Ry; X) N LY (Ry; X), (6) has a unique C°-solution

u € Cyp([—T7,+00); D(A)).
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Remark 3 If g : Cy([—7,4+); D(A)) — C([—7,0]; D(A)) satisfies (7),
then g depends only on the restriction v|4 4o of v to [a, +00).

We can now pass to the proof of Lemma 1.
Proof. Let us observe first that, for each v € Cy([—7,+00); D(A)), the
initial value problem for the delay equation

{ u'(t) € Au(t) + f(t), t€ Ry,
u(t) = g(v)(), te[-0]

has a unique C-solution u : [—7,+00) — D(A). Clearly, u is bounded
on [—7,0] because it is continuous. Next, recalling that 0 € A0, from
Theorem 4 we conclude that

(8)

t
lu()Il < ™ [lu(0)] +/ e~ £(60))1d6
0

1
< [Ju(0)[| + ;|’fHL°°(R+;X)7

for each ¢t > 0. Finally, since u is bounded on both [—7,0] and [0, 4+00), it
follows that u € Cy([—7, +00); D(A)).

Now let us observe that, in view of Remark 3, g(v)(t) = g(v)(t) for each
t € [—7,0] whenever v and v coincide on [a,+00) and so, g depends only
on the restriction of v on [a,+0c0) To conclude the proof, it suffices to show
that the operator

Q : Cy([a, +00); D(A)) = Cy([a, +00); D(A)),
defined by
Q(V) = U[a,+o0);

where u is the unique C°-solution of the problem (8), is a strict contraction.
Hence by the Banach Fixed Point Theorem, () has a unique fixed point

) ou(), te Ry
u = { gw)(0), te[-7,0],

U = U|[q,400) a0d

is the unique C%-solution of (6).
To this end, let v,v € Cy([a,400); D(A)) and t € [a,+00) be arbitrary.
We have

IQ()(t) — Q@)W < e Qv)(0) — QE@)(V)]
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< e “g(v)(0) = g(@)(0)[| < e™**[v = Vllc, (1 a,+00):)-
To complete the proof, we have merely to observe that
1Q(v) — Q(V) ¢y ([ato0);x) < € v — V| ey ([arto0);x)

for each v,v € Cy([a, +0); D(A)). O

4 The general frame and basic assumptions

In the sequel we shall denote by z : [—7,400) — D(A) the unique
C%-solution of the unperturbed problem

{ Z(t) € Az(t), te Ry, o)
z(t) =g(2)(t), te][—1,0].

which, in view of Lemma 1, belongs to Cy([ —7, +00); D(A)).
The assumptions we need in that follows are listed below.

(Hy) A:D(A) C X — X is an operator with the properties:

(A7) A is m-dissipative, there exists w > 0 such that A + wI is dissi-
pative too, 0 € D(A), 0 € A0 and D(A) is convex;

(Az) the semigroup generated by A on D(A) is compact ;
(A3) A is of complete continuous type. See Definition 4.

(Hr) F : Ry x C([—7,0]; D(A)) — X is a nonempty, convex and weakly
compact valued, almost strongly-weakly u.s.c. multifunction. See Def-
inition 2.

(Hy) There exists 7 > 0 such that for each t € Ry, eachv € C([—7,0]; D(A)),
with [[v—2¢[|c(—r0)x) = rand f € F(t,v), we have [v(0)—2(?), f ]+ <
0, where z is the unique C-solution of the unperturbed problem

(H}) There exists 7 > 0 such that for each ¢t € Ry, eachv € C([—7,0]; D(A))
with [|v(0) — 2(t)|| > r and f € F(t,v), we have [v(0) — 2(¢), f]+ <0,
where z is the unique C%-solution of the unperturbed problem (9).

(Hp) There exists £ € L (R, ; R, )NLY(Ry; R, ) such that for almost every
t € Ry and for each v € C([—7,0]; D(A)) satisfying ||v(0) — z(t)|| < r,
where r > 0 is given by (Hy), and each f € F(t,v), we have

IFII < £(t).
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(HJ;) There exists £ € L®(Ry;Ry) N L' (Ry;R4) such that

IFIF < £(2)

for each v € C([—7,0]; D(A)), each f € F(t,v) and a.e. for t € R.

(Hy) g:Cp(]|—7,+00); D(A)) — C’([—T,O];m) satisfies:

(g1) g has affine growth, i.e. there exists mg > 0 such that for each u
in Cy([—7,+00); D(A)), g satisfies (2);

(g92) there exists a > 0 such that for each u,v € Cy([—7, +00); D(A)),
we have

l9(u) = g()lle((—ro1) < llu = vlley(ato)ix) ;

(94) g is continuous from Cy([ -, +00); D(A)) to C([—7,0]; D(A)).

Remark 4 The hypothesis (H;) ensures the invariance of a certain moving
set with respect to the CY-solutions of the problem

{ u'(t) € Au(t) + f(t), te€ Ry,
u(t) = g(v)(t), te[—-r,0].

Namely, if a C?-solution u of the problem above satisfies the initial constraint
u(t) — 2(t) € D(0,r) for each t € [—7,0], where z is the unique C°-solution
of (9), then (Hy) implies that u satisfies the very same constraint for all ¢
belonging to domain of existence of w.

I Jlg(w) e —ropx) < Nullcy(o oy for each u € Cy([—r,+50); X),
case in which we will say that g has linear growth, we have g(0) = 0 and,
accordingly, the unique C%-solution z of (9) is identically 0. So, in this case,
the invariance condition is nothing but a variant of the condition (Hs) in
Vrabie [47].

Conditions (g1) ~ (g2) and (g4) are satisfied by all functions g of the
general form specified in Remark 5 below.

Remark 5 Let 0 < 7 < T. If the function g is defined as
(i) g(u)(t) =u(T +1t), t € [—7,0] (T-periodicity condition);

(73) g(u)(t) = —u(T +1),t € [—7,0] (T-antiperiodicity condition);
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(7i1) g(u)(t) = /+00 k(0)u(t+60)db, t € [—7,0], where k € L*([7,+00); R)

+oo
and / |k(0)] dd = 1 (mean condition);

n n
(v) g(u)(t) = Zaiu(t +t;) for each t € [—7,0], where Z lai] < 1 and
i=1 i=1
T <t <ty <. <ty, =T are arbitrary, but fixed (multi-point
discrete mean condition);

then g satisfies (g1) with mo = 0 and (g2) with a =T —7 > 0. A more
general case is that in which the support of the measure y is in (7, +00) and
the function is g given by

+o0

g(u)(t) = (u(t +0)) dp(0) + ¢ (1), (10)
for each u € Cy([—7,400); D(A)) and t € [—7,0]. Here N : X — X is
a (possible nonlinear) nonexpansive operator with AN'(0) = 0 and p is a o-
finite and complete measure on [T, +00), for which there exists b > 7 such
that supp = [b, +00), pu([b,+00)) =1 and ¢ € C([—7,0]; X) is such that
g(u)(t) € D(A) for each t € [—7,0]. Obviously, in this case, the constant
a > 0in (g2) is exactly b — 7.

Remark 6 From (g2), (94) and Remark 3, we conclude that, for each
convergent sequence (ug)r in Cy([a,+00); D(A)) to some limit u we have
limy, g(ur) = g(u) in C([—7,0]; X).

5 The main result

We may now proceed to the statement of the main result in this paper.

Theorem 7 If(Ha), (Hp), (Hy), (Hp) and (Hy) are satisfied, then (1) has
at least one C°-solution, u € Cy([—7,+00); D(A)) satisfying u(t) — z(t) €
D(0,r) for each t € R, where z is the unique CV-solution of (9) and r > 0
is given by (Hr).

We will prove our Theorem 7 with the help of:

Theorem 8 If (H,), (Hr), (Hy), (Hg) and (Hy) are satisfied, then (1) has
at least one C-solution, u € Cy([—7,+00); D(A)) and u(t) — z(t) € D(0,r)
for each t € R, where z is the unique C°-solution of (9) and r > 0 is given
by (H}).
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The proof of Theorem 8 is divided into four steps.

The first step. We begin by showing that, for each ¢ € (0,1) and
f € LY(R; X), the problem

{ u'(t) € Au(t) —e[u(t) — z(t) | + f(t), te€ R4,
u(t) = g(u)(t), te[-70]

has a unique C-solution uf € Cy([—7, +00); D(A)).

(11)

The second step. We show that for each fixed ¢ € (0, 1), the operator

f— uéf , which associates to f the unique C?-solution ug of the problem

(11), is compact from L*®(R; X) N LY (R ; X) to Cy([—7, +00); D(A)).

The third step. As F is almost strongly-weakly u.s.c. — see Defini-
tion 1 —, it follows that, for the very same € > 0, there exists F. C R4
Whose Lebesgue measure A(E.) < ¢ and such tha.t F\(B+\E5)x0([—r,0};m)
is strongly-weakly u.s.c., we construct an approximation for F' as follows.
Let

D(F) =R x O([-r, 01 D{A)),
De(F) = (Ry \ Ec) x C([—7,0]; D(A4))
and let us define the multifunction F. : Ry x C([—7,0]; D(A)) < X, by

{ F(t,v), (t,v) € D(F),

F.(t,v) = (12)

{0}, (t,v) € D(F)\ Dc(F).
Further, we prove that the multifunction f — Sel F.(-, ul (y), where
SelFs(-,ug(.)) ={h e LY(R4; X); h(t) € Fe(t,ul,) ae. t € Ry},

maps some nonempty, convex and weakly compact set X C L'(R; X) into
itself and has weakly xweakly sequentially closed graph. Then, we are in
the hypotheses of Theorem 3, wherefrom it follows that this mapping has
at least one fixed point which, by means of f +— ug , produces a C%-solution

for the approximate problem
u'(t) € Au(t) —e[u(t) — z(t) | + f(t), te€ R4,
£(t) € Fult,u), teR., (13)
u(t) = g(u)(t), te[-70],

where Fy is defined by (12).

The fourth step. For each € € (0,1), we fix a C%solution u. of the
problem (13), and we show that there exists a sequence €, | 0 such that
(ue, )n converges in Cy([0, +00); D(A)) to a C%-solution of the problem (1).
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6 Proofs of Theorems 7 and 8

We begin with the proofs of the four steps outlined above which are
labeled here as four lemmas.

Lemma 2 Let us assume that (Aq) in (Ha), and (g1) ~ (g2) in (Hy) are
satisfied. Then, for each e > 0 and each f € L°(Ry; X) N LY (Ry; X), the
problem (11) has a unique C°-solution ul : [—7,+00) — X which belongs
to Cy([ —7,400); D(A)). Moreover, ul satisfies

1
[ul — 2|y ([ —rrt00)x) < g||f||L°°(R+;X)7 (14)
where z is the unique C°-solution of the problem (9).

Proof. First, let us observe that the problem (11) has the form

{ u'(t) € Acult) + fo(t), te€ Ry, (15)

u(t) = g(u)(t), te[-70],
where A, = A—el and f.(t) = f(t)+ez(t) for t € Ry. Clearly, Ac+¢el is m-
dissipative, 0 € D(A;) and 0 € A.0. Since z € Cp([0,4+00); D(A)) we have
fo € L®(Ry; X) N LY(Ry; X) and so Lemma 1 applies with w = ¢ and this
implies the existence and uniqueness of solution uf € Cy([—7,+00); D(A)).

Next, using the very same operator A. = A — eI, we rewrite the unper-
turbed problem (9) as

{ 2(t) € Aez(t) + he(t), t€ Ry, (16)

z(t) = g(2)(t), te[-70]
with h.(t) = ez(t), for t € Ry. Then, for each t € (0,+00), the unique

C-solution uf of (15) and the unique solution z of (16) satisfy

lul (2) = 2()]| < e™[|uf(0) — 2(0)| +/0 e f(s)ll ds

1 — e—st

S e*EtHug — z”ob([a’Jroo)’X) + HfHLOQ(R-HX)’

€
for each t € (0,400).
Clearly, there exists a sequence (o) in (0, a) such that

lim [ul = 2| ey ([amoo)x) = Ul = zllcy([0,100):)- (17)
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From the last inequality it follows that, for every n € N, we have

o 1—e %
lul(t) —2(t)]| < e™® ”IIU!—lecb([an,+oo);X)+f||f||Loo(R+;x> (18)

for each t € [ay, +00), and so

1
||Ug - ZHCb([om,-i-oo);X) < ngHLOO(RJr;X)a

for every n € N. From (17), it readily follows that

1
lul — 2l 6, ([0, 400):x) < g”fHLOO(RJr;X)-
Next, if t € [—7,0], from (g2) in (Hy), we get
Jul (t) — 2(t)]] = llg(ul)(t) — g(2)(1)]]

< lud = 2ll6y (o +00)x) < N1l = 2]y ([0,400): )

and thus (14) holds true, and this completes the proof. O

Lemma 3 Let us assume that (A1), (A2) in (Ha) and (Hy) are satisfied,
let ¢ > 0 be fived and let £ € L°(R,;Ry)NLY(R4;Ry). Then the operator

fe ug, where ug is the unique solution of the problem (11) corresponding

to f, maps the set

F = {f € L%([0,400); X) N LX(Ry; X); [If()]] < (1) a.e. fort € Ry},

into a relatively compact set in Cy([ —T,+00); D(A)).

Proof. By (14), {uf; f € F} is bounded in Cy([0,+00); D(A)) and thus
{u(0); f € F} is bounded in D(A). Since F is uniformly integrable in
LY(0,k; X) for k = 1,2,... — see Definition 3 —, from (As) and Theorem 5,
we conclude that, for every k = 1,2,..., and o € (0,k), {ug,f € F}is
relatively compact in C([o,k]; D(A)). Thanks to (g2), (g4) in (H,) and to
Remark 6, we deduce that the set {g(ug ); f € F} is relatively compact
in C([—7,0]; D(A)), and therefore {g(ug)(O), [ e ]-"} = {ul(0); f e F}

is relatively compact in D(A). Again, from (g;) and the second part of
Theorem 5, it follows that the set {ul: f € F)} is relatively compact in
Cy([—T,+00); D(A)). The proof is complete. O
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Lemma 4 Let us assume that (Ha), (Hp), (Hp) and (Hy) are satisfied.
Then, for each € > 0, the problem (13) has at least one solution wu..

Since the proof follows the very same lines as those in the proof of
Lemma 4.3 in Vrabie [47], we do not give details.
|

Lemma 5 If (Ha), (Hr), (H}), (Hg) and (Hg) are satisfied, then, for each
e €(0,1), each C°-solution u. of the problem (13) satisfies

e = 2]y (10,400);x) < 75 (19)
where r > 0 is given by (Hp).

Proof. Let us observe that, if 0 < ¢t < ¢, we have

lue () = 2@ < Jlu=(t) = ()| (20)

T i
b [ el = 20, £9) L ds = < [ ucls) — 2(5) s
t t
Let us assume by contradiction that there exists ¢ € Ry such that
Jue(t) — z(E)]| > r.
We distinguish between two cases.
Case 1. There exists ¢, € Ry such that
r < lue = 2|y ((0,400):x) = ue(tm) — 2(tm)]]- (21)

If ¢t,, =0, then

r < lue = zlley (10, 400):x) = lue(0) = 2(0)[| = llg(uc)(0) — g(2)(0)]

< lue = zlloy((ato0)ix) < llue = 2l ey ([0,4-00):%)
and so
[lue = zllcy ([0,4+00);%) = lltte = 2llcy ([a,+00);%)-
Therefore, we can always confine ourselves to analyze the case when, in (21),

either ¢,, € (0,+00) or there is no t,, € (0,+00) satisfying the equality in
(21).
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So, if there exists t,, € (0,+00) such that (21) holds true, then the

mapping
t = [lue(t) — 2(t)]]

cannot be constant on (0, ¢,,). Indeed, if we assume that
[ue(s) = 2(s)[| = [|ue(tm) — 2(tm)||

for each s € (0,t,,), then, taking t € (0,t,,) and t = t,, in (20) and using
(H}) with v(0) = uz5(0) = us(s), we get

r<r—ce(t,—tr<r (22)
which is impossible. Consequently, there exists tg € (0, t,,) such that
r < ue(to) =z(to) || < llue(s)=2(s)|| < flue(tm)=2(tm)|| = llue=2llc,(10.400):x)
for each s € (to, tm,). Since
[ue(s) — 2(s)|| < llues = zslle-r055x)
for each s € R, we have
7 < |lues = zsllo=r07:x)

for each s € (to,ty,) and then, using again (20) and (H}), we get

r < ue(tm) = 2(tm)l| < [luc(to) — z(to) | = e(tm — to)r

which implies the very same contradiction as before, i.e. (22).
It remains only to analyze

Case 2. There is no t,, € Ry such that (21) holds true. Then, there
exists at least one sequence (tx)x such that

h]gntk = +o00,
lim e (tr) = 2(te)ll = llue = 2lloy (10, 4+00):%)-

If there exists ¢ € Ry such that |Juc(t)—z(2)|| = r, then |luc(t)—z(t)|| < r
for each t € [t,+00). Indeed, if we assume the contrary, there would exists

[t,t] € [0,400) such that

Jue(t) = 2(B)]| = r
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and
r <lus(s) — z(s)]|

for each s € (t,1]. Then, using once again (20) and (H}), we get
r < ue(®) = 2 (@) < llu(t) = ()] — e~ t)r

<r—e(t—t)r

leading to (22) which is impossible.
So, when both
7 < [Jue = zllcy ([0,400):%)

and
[ue(t) — 2| < llue — 2lloy ([0, +00);x)

hold true for each ¢t € R, we necessarily have
[ue(t) = 2z(B)]] > r

for each t € R4. If this is the case, let us remark that we may assume with
no loss of generality, by extracting a subsequence if necessary, that

tet1 —t =1
for k =0,1,2,.... Then, by (3) and (H}), we have

r < ue(tera) = 2(trr) |

< \an(tk)—Z(tk)H+/k+1[ue(8)—Z(S),f(S)—E(Ua(S)—Z(S))]+d8

tet1
< lue(te) — 2(tx)|| €/t [ue(s) — z(s)| ds
< lue(te) = 2(te)l| — e(terr — te)r < [luc(te) — 2(te)|| —er

for each k € IN. Passing to the limit for k¥ — 400 in the inequalities

e (th1) = 2(era) | < [lue(te) = 2(te)l| —er, k=1,2,...

we get
lue = 2|y ([0, 100);%) < Nlte = 2llcy ((0,400)x) — €T
But, in view of Lemma 2, [[u: — z||¢,((0,400);x) I8 finite and thus we get a

contradiction. This contradiction can be eliminated only if Case 2 cannot
hold. Thus, both Case 1 and Case 2 are impossible. In turn, this is a
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contradiction too, because at least one of these two cases should hold true.
So, the initial supposition, that |lu: — 2||c,([0,4-00):x) > 7, is necessarily false.
It then follows that (19) holds true and this completes the proof. O
Now, we can pass to the proof of Theorem 8.
Proof. Let (e,), be a sequence with €, | 0, let (u,), be the sequence
of the C%solutions of the problem (13) corresponding to € = ¢, for n € N,
and let (f,)n be such that

(1) € Aup(t) — enun(t) — 2(8)] + fult), t€ Ry,

fn(t) € F;, (t,uny), te Ry,
un(t) = g(uy)(t), te|[—1,0].
In view of Remark 1, we may assume without loss of generality that E. ., C
E., forn=0,1,.... This means that
F, (t’ U) = FEn+1 (t’ U) (23)

for each t € Ry \ E., and v € C([—7,0]; D(A)).

From (HJ), we deduce that, for k¥ = 1,2,..., the set {f,; n € N} is
uniformly integrable in L!(0,k; X). Then, from Lemma 5, (As) in (Ha)
and Theorem 5, it follows that, for ¥ = 1,2,..., and each o € (0,k),
the set {u,; n € N} is relatively compact in C([o,k]; D(A)). In view
of (g4) in (Hy), we deduce that the set {u,; n € N} is relatively compact

in C([—7,0]; D(A)). In particular, the set

{un(0) = g(un)(0); n €N}
is relatively compact in D(A). From the second part of Theorem 5, we
conclude that {u,; n € N} is relatively compact in C([0,k]; D(A)) for
k=1,2,... and thus in C([—7,k]; D(A)). So, {un; n € N} is relatively
compact in Cy([—7,400); D(A)). Accordingly, for each k =1,2,...,

Cr ={un(t); neN, te[0,k]}
is compact in D(A). Let v € (0,1) be arbitrary, let E, be the Lebesgue
measurable set in [0, +00) given by Definition 2 and, for each k = 1,2, ...,
let us define the set

Dok = U {(t,ue,y); t€[0,k]\ Ey}.
neN
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Clearly, D., j, is compact in Ry x C([—7,0]; D(A)). Next, for each v € (0,1)
and each £k = 1,2,..., let us define

Oy = Fy(Dy i) = F(D, ) U {0}

which is weakly compact since D. i is compact and F| D, 18 strongly-weakly
u.s.c. See Lemma 2.6.1, p. 47 in CarJa Necula, Vrabie [19]. Further, the
family F = {f.,; n = 0,1,...} € L'(R,;X) satisfies the hypotheses of
Theorem 4.1 in Vrabie [46]. So, on a subsequence at least, we have

lim f, = f weakly in L'(R;X),

4)),
limuy; =u; in C([—7,0]; D(A)) for each t € Ry.

limu, =u in Cy([—, +00); D

From Lemma 2.6.2, p. 47 in Carja, Necula, Vrabie [19] combined with
(23), we get
f(t) € Fe,, (¢, ur)
for each n € R and a.e. t € R} \ E;,,. Since lim, A\(E;, ) = 0, it follows that
f@t) € F(t,u)

a.e. t € Ry. But A is of complete continuous type, wherefrom it follows
that u is a C%-solution of the problem (1) corresponding to the selection f
of t — F(t,us). Finally, it suffices to observe that, from (19) in Lemma 5,
it follows that u(t) — z(t) € D(0,r) for each t € Ry. O

We can now proceed to the proof of Theorem 7.
Proof. Let r > 0 be given by (H;) and let us define the set

Ky ={(t,v) € Re x O([~7,0]; D(A)); [[0(0) — 2(1)]| < 7}

Clearly, K, is nonempty and closed in Ry x C([—7,0]; X), In addition,
since by (A1) in (Ha), D(A) is convex, it follows that for each ¢t € Ry, the
cross-section of K, at ¢, i.e.

Ko(t) = {v € C([=7,0]; D(A)); (t,v) € K;}
is convex. Let 7 : Ry x C([—7,0]; D(A)) — Ry x C([—7,0]; X) be defined

(t,v) if [lv(0) = 2()] <,
(v—2z) + zt> if ||v(0) — 2(t)|| > r.

m(t,v) = ( | .

v = 2l -r01x)
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We observe that 7 is continuous, 7 restricted to I, is the identity operator
and 7 maps Ry x C([—7,0]; D(A)) into K,. The first two properties men-
tioned are obvious. To prove the fact that 7 maps Ry x C([—7,0]; D(A))
into KC,., we have merely to observe that if ||[v(0) — z(¢)|| > r then, inasmuch
as D(A) is convex and v, z; € C([—7,0]; D(A), it follows that their convex
combination

r

(v—2z)+ 2t —2 € C([—7,0]; D(A)).

v = 2tllo(=r07:x)
Moreover

r

=r
C([—7,0];X)

(U—Zt)+2t—zt

v = ztllo—r01:x)

and so, in this case, 7w(t,v) € IC. If ||v(0) — 2(t)|| < 7, then 7(t,v) = (¢,v)
and thus, m maps Ry x C([—7,0]; D(A)) into ;.

Then, we can define the multifunction Fy : Ry x C([—7,0]; D(4)) — X
by

Fw(t7v) = F(ﬂ-(tﬂ)))v

for each (t,v) € Ry x C([—7,0]; D(A)). As 7 is continuous, it follows that
F, satisfies (Hp). Moreover, one can easily verify that it satisfies (Hp).
Moreover, since

r(Ry % C(|—7,0]: D)) € K.

we conclude that F satisfies (H}) too. Indeed, let (¢,v) € Ry x C([—7,0];
D(A)) be arbitrary and satisfying

[0(0) = 2(8)[| >~ (24)

and let f € F(m(t,v)).
From the definition of , it follows that the projection P, of m(t,v) on
the second component, i.e.

v if |lv(0) —z(t)| <,
Py(n(t,v)) = r
v = 2tlle=r07:x)

(v—2z)+ 2z if ||v(0)—z(t)| > r.

satisfies:

| Pa(r(t, ) { " it [0(0) — =(1)]| > .
2t v) = zllo(—ro)x) = .
lv — ZtHC([—ﬁO};X) if |Jv(0) — 2(t)| < 7.
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Therefore, if (t,v) satisfies (24), it follows that

[ Pa(7(t,v)) = 2tllo—ro0)x) = T

So, by (Hr), we have

[0(0) = 2(t), f ]+ = [ Pa(m(t,0))(0) — 2(t), f ]+ <O

which proves that Fy satisfies (H}).
Hence, by virtue of Theorem 8, the problem

u'(t) = Au(t) + f(t), t€ Ry,
f(t) € Fr(t,ur), te Ry,
u(t) = g(u)(t), te[-7,0]

has at least one C%-solution u € Cy([ —7, +00); D(A)).
By (19), we have [|u:(0) — z(¢)|| < r for each t € Ry. So, (t,uz) € K,
which shows that

Fw(t, Ut) = F(t, Ut)

for each t € Ry. Thus u is a C?-solution of (1) and this completes the proof
of Theorem 7. O

7 Nonlinear diffusion in L'(Q)

Let Q be a nonempty, bounded and open subset in R¢, d > 1, with C!
boundary X, let ¢ : D(¢) € R < R be maximal monotone with 0 € ¢(0)
and let w > 0. Let us consider the porous medium equation subjected to
nonlocal initial conditions

E(‘;1:(1‘/,313) € Ap(u(t,z)) —wu(t,z) + f(t,x), in Qy,
0
ft,x) € F |t u(t), u(t+s,x)ds |, in Q4,
()E(()/T( >) S
o(ut, z)) = 0, on ..
+oo
ut) = [ N+ 0)(@)du(6) + v(6)(o), in Q.
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Let us consider the auxiliary problem

212 € Ap(a(t, ) el 2), n Q.

(p(Z(t,[B)) =0, on E-‘,—v (26)
“+o0o

dta) = [ NGO+ 0)@) du®) + (0, Qr

T

and let us denote by z € Cy([—7,+00); L}(2)) the unique C%-solution of
(26).

Before passing to the statement of the main existence result concerning
(25), we need to introduce some notation and to explain the exact definition
of F.

Let f; : Rt x R x R — R be two functions with fi(¢,u,v) < fo(t,u,v)
for each (t,u,v) € Ry x R x R and let

F:Ry xCO([—7,0]; LY(Q)) — LY(Q)

be given by
F = FQ + Fl,

where
Fo(t,v) = {f € LY(Q); f(z) € [ fu(t,0)(@), ilt,v)(z)], ae. for z € Q}
and

Fi(t,0)(x) == {o(t)h(z)}
for each (t,v) € Ry x C([—7,0]; L' (). Here

fii Ry xQxC([—-7,0;LYQ) = R, i=1,2,

are defined as:

it zv) = f (taU(O)(l’)»/_OT

0

v(s)(x) ds)
(27)

—T

Rt = o (100)0). [ o)w)as)

for each (t,v) € Ry x C([—7,0]; L (), a.e. in Q, h € LY(Q) is a fixed
element satisfying [|h[|1q) # 0 and o € L'(R4;R).
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Theorem 9 Let Q be a nonempty, bounded and open subset in R with C*
boundary ¥, let w > 0 and let ¢ : R — R be continuous on R and C* on
R\ {0} with ¢(0) = 0 and for which there exist two constants C > 0 and
a>0ifd<2anda>(d—2)/d if d> 3 such that

¢'(r) > Ol

for each r € R\ {0}. Let f; : Rt x R xR — R be two given functions,
he LY(Q), [kl >0, 0 € LY(R1;R) and let F be defined as above.

Let N : LY(Q) — LY(Q), v € C([—7,0]; LY () and let u be a o-finite
and complete measure on [T,+00). Let us assume that:

(o1) llo@®)|| <1 for eacht € Ry ;
(F1) fi(t,u,v) < fa(t,u,v) for each (t,u,v) € Ry x R x R;

(Fy) f1isls.c. and fais u.s.c. and, for each (t,u,v), (t,u,w) € Ry xRxR
with v < w, we have

{ fl(tauvv) S fl(ta u,w),
fQ(tvuvv) Zf?(t7u7w)§

(F3) there exists ¢ > 0 such that, for every (t,2,v) € D(f1, f2) with
[0(0)() = 2(t, )Ly < ¢ Al
we have
sign[v(0)(z) — 2(t, z) | fo(x) < —clv(0)(x) — 2(t, z)|

for each fo(x) € [ f1(t,7,v), fa(t,z,v)], 2 being the unique C°-solution
of the problem (26);

(Fy) there exists a nonnegative function £ € L'(R4;R) N L®(Ry; R) such
that

|fi(t,u,v)| < (1)
fori=1,2 and for each (t,u,v) € Ry x R x R;

(Fs5) for each t € Ry and each v € C([—7,0]; LY(Q)), we have
fi(t,z(t,x),v) =0

fori=1,2 and a.e. for x € Q;
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(u1) there exists b > T such that suppu C [b,4+00);

(n2) p([b,00)) =1;

(M) [N (u) = N()ll 1) < llu—vllpq) for each u,v € L'();
(N2) N(0) =0

Then, the problem (25) has at least one C°-solution u € Cy([ -7, +00); L1 (£2))
satisfying
= zlley®myrr) < ¢ Rl

Remark 7 Condition (F5) is satisfied, for instance, if
fi(ta u, U) = ¢(t7 u) ’ 71'(75) u, ’U),

where 1 is positive, continuous and bounded and (¢, z(t,x)) = 0, while f;
satisfy (F1) ~ (Fy), i = 1,2. In the particular case in which ¢ = 0, it follows
that z = 0 and so, (F5) reduces to

fi(t,0,v) =0
for each (t,v) € R4 x R.
Proof. Let X = L'(Q) and let us define A : D(A) C L*(Q) — L'(Q), by
Au = Ap(u) —wu
for each u € D(A), where

D(A) = {u € LXQ); w(u) € W3 (), Ap(u) € LH(Q)] .
As ©(0) = 0, C§°(R) is dense in D(A) and so D(A) = L'(Q).

Theorem 6 implies that A is m-dissipative and A + wl is dissipative
in L'(Q), A0 = 0, A generates a compact semigroup and is of complete
continuous type on D(A) = L'(2). Hence, A satisfies (H4). Let F be
defined as above and

g+ Cy([ =7, +00); LY(Q)) = C([~7,0]; L1(2))

be defined by

g(u)(t)(z) = (u(t +0))(x) du(0) + ¥ (t)(x)

T
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for each u € Cy([ -7, 4+00); L(Q)), each t € [—7,0] and a.e. for z € Q.

From (01), (F1), (F2), (Fy) and Lemma 5.1 in Vrabie [47], using a similar
arguments as in the proof of the corresponding part in the preceding section,
we conclude that F satisfies (Hp). From (F») and (F3), we conclude that F
satisfies (Hy) and (Hp) with

r=c bl i)
Indeed, we will show that for each (t,v) € Ry x C([—7,0]; LY(9)), with
[0(0)(-) = 2(t, )l L1 @) =7,
and every f € F(t,v), we have
[v(0)(-) = 2(t,-), f]+ < 0.

Let us observe that in our case, i.e. X = L}(Q), we have

[v(0)() = 2(t,-), flv = f(z)dx

/{yGQ;v(U) (y)—=(t,y)>0}

—/ () dx—i—/ 1 (2)] da.
{y€v(0)(y)—2(t,y) <0} {yeQ;v(0)(y)—=(t,y)=0}

Let f € F(t,v). Clearly f is of the form f = fo + h, where fy € L'()
satisfies f1(t,z,v) < fo(x) < fa(t,z,v) a.e. for x € Q. From the definition
of [-,-]4+ in LY(2), we deduce

[v(0)() = 2(t, ), f ]+

< / fo(z)dx — / fo(x) dx
{yev(0)(y)—=(t.y)>0} {yev(0)(y)—=(t,y) <0}

—I-/ ]fo(ac)\dw—l—/ a(t)h(z) dx

{y€Q;v(0)(y) —=(t,y)=0} {y€Qv(0)(y)—=(t,y) >0}

—/ h() dx+/ ()] - |h(x)]| da.
{yev(0)(y)—=(t,y) <0} {yev(0)(y) —=(t,y)=0}

Next, taking into account that, from (F5), we have fo(x) = 0 a.e. for
those z € Q for which v(0)(x) = z(t, z), the last inequality, conjunction with
(Fy), yields

[U(O)(')—z(tw),fhéfﬂ Sign[U(O)(w)—Z(tx)]fo(w)dﬂ?+/ﬂ!a(t)!'!h(w)!dx
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< —C/Q\U(O)(x) —z(t,x)]dw—i—/ﬂh(w)]dw <0,

So, F' satisfies (Hy). As (Hy4) follows from (F3), we deduce that F' satisfies
(Hp). Since the proof of (Hy) is very simple, we do not enter into details.
So, we are in the hypotheses of Theorem 7 wherefrom the conclusion.
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