ISSN 2066-6594

NONLINEAR DELAY EVOLUTION INCLUSIONS WITH GENERAL NONLOCAL INITIAL CONDITIONS *

Mihai Necula[†] Ioan I. Vrabie[‡]

Dedicated to the memory of Prof. Dr. Viorel Arnăutu

Abstract

We consider a nonlinear delay differential evolution inclusion subjected to nonlocal implicit initial conditions and we prove an existence result for bounded C^0 -solutions.

MSC: 34K09; 34K13; 34K30; 34K40; 35K55; 35L60; 35K91; 47J35

keywords: differential delay evolution inclusion; nonlocal delay initial condition; bounded C^0 -solutions; periodic C^0 -solutions; anti-periodic C^0 -solutions; nonlinear diffusion equation.

1 Introduction

The goal of this paper is to prove an existence result for bounded C^0 solutions to a class of nonlinear delay differential evolution inclusions sub-

^{*}Accepted for publication on December 21-st, 2014

 $^{^\}dagger \texttt{necula@uaic.ro}$ Department of Mathematics, "Al. I. Cuza" University Iași 700506, Romania

[‡]ivrabie@uaic.ro Department of Mathematics, "Al. I. Cuza" University Iaşi 700506, Romania and Octav Mayer Mathematics Institute (Romanian Academy) Iaşi 700505, Romania

jected to nonlocal implicit initial conditions of the form

$$\begin{cases} u'(t) \in Au(t) + f(t), & t \in \mathbf{R}_+, \\ f(t) \in F(t, u_t), & t \in \mathbf{R}_+, \\ u(t) = g(u)(t), & t \in [-\tau, 0], \end{cases}$$
(1)

where X is a Banach space, $\tau \geq 0$, $A : D(A) \subseteq X \hookrightarrow X$ is the infinitesimal generator of a nonlinear semigroup of contractions, the multifunction $F : \mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)}) \hookrightarrow X$ is nonempty, convex weakly compact valued and strongly-weakly u.s.c., and $g : C_b([-\tau, +\infty); \overline{D(A)}) \to$ $C([-\tau, 0]; \overline{D(A)})$ is nonexpansive and has *affine growth*, i.e. there exists $m_0 \geq 0$ such that

$$\|g(u)\|_{C([-\tau,0];X)} \le \|u\|_{C_b([0,+\infty);X)} + m_0 \tag{2}$$

for each $u \in C_b([-\tau, +\infty); \overline{D(A)})$.

If I is an interval, $C_b(I; X)$ denotes the space of all bounded and continuous functions from I, equipped with the sup-norm $\|\cdot\|_{C_b(I;X)}$, while $C_b(I;\overline{D(A)})$ denotes the closed subset in $C_b(I;X)$ consisting of all elements $u \in C_b(I;X)$ satisfying $u(t) \in \overline{D(A)}$ for each $t \in I$. Let $a \in \mathbf{R}$. On the linear space $C_b([a, +\infty); X)$ let us consider the family of seminorms $\{\|\cdot\|_k; k \in \mathbf{N}, k \geq a\}$, defined by $\|u\|_k = \sup\{\|u(t)\|; t \in [a,k]\}$ for each $k \in \mathbf{N}, k \geq a$. Endowed with this family of seminorms, $C_b([a, +\infty); X)$ is a separated locally convex space, denoted by $\widetilde{C}_b([a, +\infty); X)$. Further, C([a,b];X) stands for the space of all continuous functions from [a,b] to Xendowed with the sup-norm $\|\cdot\|_{C([a,b];X)}$ and $C([a,b];\overline{D(A)})$ is the closed subset of C([a,b];X) containing all $u \in C([a,b];X)$ with $u(t) \in \overline{D(A)}$ for each $t \in [a,b]$. Finally, if $u \in C_b([-\tau, +\infty);X)$ and $t \in \mathbf{R}_+, u_t \in$ $C([-\tau,0];X)$ is defined by

$$u_t(s) := u(t+s)$$

for each $s \in [-\tau, 0]$.

The existence problem on the standard compact interval $[0, 2\pi]$, in the simplest case when $\tau = 0$, i.e. when the delay is absent, was studied by Paicu, Vrabie [41]. In this case $C([-\tau, 0]; \overline{D(A)})$ identifies with $\overline{D(A)}$, F identifies with a multifunction from $[0, 2\pi] \times X$ to X. By using an interplay between compactness arguments and invariance techniques, they have proved an existence result handling periodic, anti-periodic, mean-value evolution inclusions subjected to initial condition expressed by an integral with

respect to a Radon measure μ . A very important specific case concerns Tperiodic problems, which corresponds to the choice of g as g(u) = u(T), was studied by Paicu [39]. For F single-valued, this case was analyzed by Aizicovici, Papageorgiou, Staicu [3], Caşcaval, Vrabie [18], Hirano, Shioji [34], Paicu [40], Vrabie [44]. For a survey concerning: periodic, anti-periodic, quasi-periodic and almost periodic solutions to differential inclusions, see Andres [6]. As long as differential inclusions subjected to general nonlocal initial conditions without delay are concerned, we mention the papers of Aizicovici, Staicu [5] and Paicu, Vrabie [41]. The case of periodic retarded equations and inclusions subjected to nonlocal initial conditions were studied by Vrabie [46], and Chen, Wang, Zhou [20], while the general delay equations was considered by Burlică, Roşu [14] and Vrabie [48], [49] and [50].

Existence results in the periodic abstract undelayed case were obtained by Aizicovici, Papageorgiou, Staicu [3], Cascaval, Vrabie [18], Hirano, Shioji [34], Paicu [40], Vrabie [44], while the anti-periodic case was considered by Aizicovici, Pavel, Vrabie [4]. The semilinear case of undelayed differential equations subjected to nonlocal initial data, was initiated by the pioneering work of Byszewski [15]. Further steps in this direction were made by Byszewski [16], Byszewski, Lakshmikantham [17], Aizicovici, Lee [1], Aizicovici, McKibben [2], Zhenbin Fan, Qixiang Dong, Gang Li [27], García-Falset [29] and García-Falset, Reich [30]. All these studies are strongly motivated by the fact that specific problems of this kind describe the evolution of various phenomena in Physics, Meteorology, Thermodynamics, Population Dynamics. A model of the gas flow through a thin transparent tube, expressed as a problem with nonlocal initial conditions, was analyzed in Deng [24]. Some models in Pharmacokinetics were discussed in the monograph of McKibben [35, Section 10.2, pp. 394–398]. Models arising from Physics were analyzed by Olmstead, Roberts [38] and Shelukhin [43]. Linear second order evolution equations subjected to linear nonlocal initial conditions in Hilbert triples were considered in Avalishvili, Avalishvili [8] and motivated by mathematical models for long-term reliable weather forecasting as mentioned in Rabier, Courtier, Ehrendorfer [42]. For Navier-Stokes equations subjected to initial nonlocal conditions see Gordeziani [32]. Classical nonlinear delay evolution initial-value problems, i.e. when $g \equiv \psi$ with $\psi \in C([\tau, 0]; D(A))$, were considered by Mitidieri, Vrabie [36] and [37], also by using compactness arguments. It should be emphasized that in Mitidieri, Vrable [36] and [37] the general assumptions on the forcing term F are very general allowing - in certain specific cases when A is a second order elliptic operator -F to depend on Au as well.

Our paper extends the main result in Vrabie [47] to cover the more general case in which g has affine rather than linear growth. This case is important in applications and does not follow by a simple modification of the arguments used in Vrabie [47].

The paper is divided into 7 sections. In Section 2 we have included some concepts and results widely used subsequently. In Section 3 we prove an existence and uniqueness result for the unperturbed problem (1) which, although auxiliary, is important by its own. Section 4 collects the hypotheses used and provides some comments on several remarkable particular cases handled by the general frame considered. Section 5 is devoted to the statement of the main result, i.e. Theorem 7 and to a short description of the idea of the proof. Section 6 is concerned with the proof of the main result and the last Section 7 contains an example illustrating the possibilities of the abstract developed theory.

2 Preliminaries

Although the paper is almost self-contained, some familiarity with the basic concepts and results on nonlinear evolution equations governed by m-dissipative operators, delay evolution equations and on multifunction theory would be welcome. For details in these three topics, we refer the reader, in order, to Barbu [11], Hale [33] and Vrabie [45]. However, we recall for easy reference the most important notions and results we will use in the sequel.

Definition 1 If X is a Banach space and $C \subseteq X$, the multifunction $F : C \hookrightarrow X$ is said (strongly-weakly) upper semicontinuous (u.s.c.) at $\xi \in C$ if for every (weakly) open neighborhood V of $F(\xi)$ there exists an open neighborhood U of ξ such that $F(\eta) \subseteq V$ for each $\eta \in U \cap C$. We say that F is (strongly-weakly) u.s.c. on C if it is (strongly-weakly) u.s.c. at each $\xi \in C$.

Definition 2 A multifunction $F: I \times \mathcal{C} \hookrightarrow X$ is said to be *almost strongly-weakly u.s.c.* if for each $\gamma > 0$ there exists a Lebesgue measurable subset $E_{\gamma} \subseteq I$ whose Lebesgue measure $\lambda(E_{\gamma}) \leq \gamma$ and such that F it is strongly-weakly u.s.c. from $(I \setminus E_{\gamma}) \times \mathcal{C}$ to X.

Remark 1 If the sequence $(\varepsilon_n)_n$ is strictly decreasing to 0, we can always choose the sequence $(E_{\varepsilon_n})_n$, where E_{ε_n} corresponds to ε_n as specified in Definition 2, such that $E_{\varepsilon_{n+1}} \subseteq E_{\varepsilon_n}$, for $n = 0, 1, \ldots$

We also need the following general fixed point theorem for multifunctions obtained independently by Ky Fan [28] and Glicksberg [31].

Theorem 1 (Ky Fan-Glicksberg) Let K be a nonempty, convex and compact set in a separated locally convex space and let $\Gamma : K \hookrightarrow K$ be a nonempty, closed and convex valued multifunction with closed graph. Then Γ has at least one fixed point, i.e. there exists $f \in K$ such that $f \in \Gamma(f)$.

A very useful variant of Theorem 1, is

Theorem 2 Let K be a nonempty, convex and closed set in a separated locally convex space and let $\Gamma : K \hookrightarrow K$ be a nonempty, closed and convex valued multifunction with closed graph. If $\Gamma(K) := \bigcup_{x \in K} \Gamma(x)$ is relatively compact, then Γ has at least one fixed point, i.e. there exists $f \in K$ such that $f \in \Gamma(f)$.

Proof. Since K is closed, convex and $\Gamma(K) \subseteq K$, we have

$$\operatorname{conv} \Gamma(K) \subseteq \operatorname{conv} \overline{K} = K.$$

So,

$$\Gamma(\operatorname{conv}\Gamma(K)) \subseteq \Gamma(K) \subseteq \operatorname{conv}\Gamma(K),$$

which shows that the set $\mathcal{C} := \operatorname{conv} \Gamma(K)$, which by Mazur's Theorem, i.e. Dunford, Schwartz [22, Theorem 6, p. 416] is compact, is nonempty, closed, convex and $\Gamma(\mathcal{C}) \subseteq \mathcal{C}$. So, we are in the hypotheses of Theorem 1, with K substituted by $\mathcal{C} \subseteq K$, wherefrom the conclusion.

Since, by Edwards [23, Theorem 8.12.1, p. 549], the weak closure of a weakly relatively compact set, in a Banach space, coincides with its weak sequential closure, Theorem 2 implies:

Theorem 3 Let K be a nonempty, convex and weakly compact set in Banach space and let $\Gamma : K \hookrightarrow K$ be a nonempty, closed and convex valued multifunction with sequentially closed graph. Then Γ has at least one fixed point, i.e. there exists $f \in K$ such that $f \in \Gamma(f)$.

In the single-valued case, Theorem 3 is due to Arino, Gautier, Penot [7].

If $x, y \in X$, we denote by $[x, y]_{\pm}$ the right (left) directional derivative of the norm calculated at x in the direction y, i.e.

$$[x,y]_{+} = \lim_{h \downarrow 0} \frac{\|x+hy\| - \|x\|}{h} \qquad \left([x,y]_{-} = \lim_{h \uparrow 0} \frac{\|x+hy\| - \|x\|}{h} \right).$$

We recall that:

$$[x, y + ax]_{\pm} = [x, y]_{\pm} + a ||x||$$
(3)

for $a \in \mathbf{R}$. See Barbu [11, Proposition 3.7, p. 101].

We say that the operator $A: D(A) \subseteq X \hookrightarrow X$ is *dissipative* if

$$[x_1 - x_2, y_1 - y_2]_{-} \le 0$$

for each $x_i \in D(A)$ and $y_i \in Ax_i$, i = 1, 2, and *m*-dissipative if it is dissipative and, for each $\lambda > 0$, or equivalently for some $\lambda > 0$, $R(I - \lambda A) = X$.

Let $A : D(A) \subseteq X \hookrightarrow X$ be an *m*-dissipative operator, let $\xi \in D(A)$, $f \in L^1(a, b; X)$ and let us consider the differential equation

$$u'(t) \in Au(t) + f(t).$$
(4)

Theorem 4 (Benilan) Let $\omega \in \mathbf{R}$ and let $A : D(A) \subseteq X \hookrightarrow X$ be an *m*dissipative operator such that $A + \omega I$ is dissipative. Then, for each $\xi \in \overline{D(A)}$ and $f \in L^1(a, b; X)$, there exists a unique C^0 -solution of (4) on [a, b] which satisfies $u(a) = \xi$. Furthermore, if $f, g \in L^1(a, b; X)$ and u, v are the two C^0 -solutions of (4) corresponding to f and g respectively, then:

$$\|u(t) - v(t)\| \le e^{-\omega(t-s)} \|u(s) - v(s)\| + \int_s^t e^{-\omega(t-\theta)} \|f(\theta) - g(\theta)\| d\theta$$
 (5)

for each $a \leq s \leq t \leq b$.

See Benilan [12], or Barbu [11, Theorem 4.1, p. 128].

We denote by $u(\cdot, a, \xi, f)$ the unique C^0 -solution of the problem (4) satisfying

$$u(a, a, \xi, f) = \xi$$

and we notice that $u(t, 0, \xi, 0) = S(t)\xi$, where $\{S(t); S(t) : \overline{D(A)} \to \overline{D(A)}\}$ is the semigroup of nonexpansive mappings generated by A via the Crandall-Liggett Exponential Formula. See Crandall, Liggett [21].

We recall that the semigroup $\{S(t); S(t) : D(A) \to D(A)\}$ is called *compact* if, for each t > 0, S(t) is a compact operator.

We conclude this section with some compactness results concerning the set of C^0 -solutions of the problem (4) whose initial data u(a) and forcing terms f belong to some subsets B, in $\overline{D(A)}$, and respectively \mathcal{F} , in $L^1(a, b; X)$. First, we introduce:

Definition 3 Let (Ω, Σ, μ) be a complete measure space, $\mu(\Omega) < +\infty$. A subset $\mathcal{F} \subseteq L^1(\Omega, \mu; X)$ is called *uniformly integrable* if for each $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that

$$\int_E \|f(t)\| \, d\mu(t) \le \varepsilon$$

for each $f \in \mathcal{F}$ and each $E \in \Sigma$ satisfying $\mu(E) \leq \delta(\varepsilon)$.

The next result is an extension of a compactness theorem due to Baras [10].

Theorem 5 Let X be a Banach space, let $A : D(A) \subseteq X \hookrightarrow X$ be an mdissipative operator and let us assume that A generates a compact semigroup. Let $B \subseteq \overline{D(A)}$ be bounded and let \mathcal{F} be uniformly integrable in $L^1(a, b; X)$. Then, for each $\sigma \in (a, b)$, the set $\{u(\cdot, a, \xi, f); (\xi, f) \in B \times \mathcal{F}\}$ is relatively compact in $C([\sigma, b]; X)$. If, in addition, B is relatively compact, then $\{u(\cdot, a, \xi, f); (\xi, f) \in B \times \mathcal{F}\}$ is relatively compact even in C([a, b]; X).

See Vrabie [45, Theorems 2.3.2 and 2.3.3, pp. 46–47].

Definition 4 An *m*-dissipative operator A is called of *complete continuous* type if for each a < b and each sequences $(f_n)_n$ in $L^1(a,b;X)$ and $(u_n)_n$ in C([a,b];X), with u_m a C^0 -solution on [a,b] of the problem $u'_m(t) \in Au_m(t) + f_m(t)$, $m = 1, 2, \ldots$ satisfying:

$$\begin{cases} \lim_{n} f_n = f & \text{weakly in } L^1(a,b;X), \\ \lim_{n} u_n = u & \text{strongly in } C([a,b];X), \end{cases}$$

it follows that u is a C^0 solution on [a, b] of the limit problem $u'(t) \in Au(t) + f(t)$.

Remark 2 If the topological dual of X is uniformly convex and A generates a compact semigroup, then A is of complete continuous type. See Vrabie [45, Corollary 2.3.1, p. 49]. An *m*-dissipative operator of complete continuous type in a nonreflexive Banach space (and, by consequence, whose dual is not uniformly convex) is the nonlinear diffusion operator $\Delta \varphi$ in $L^1(\Omega)$. See the example below.

Example 1 Let Δ be the Laplace operator in the sense of distributions over Ω . Let $\varphi : D(\varphi) \subseteq \mathbf{R} \hookrightarrow \mathbf{R}$, let $u : \Omega \to D(\varphi)$ and let us denote by

$$\mathcal{S}_{\varphi}(u) = \{ v \in L^1(\Omega); v(x) \in \varphi(u(x)), \text{ a.e. for } x \in \Omega \}.$$

We recall that $\varphi : D(\varphi) \subseteq \mathbf{R} \hookrightarrow \mathbf{R}$ is said to be *maximal monotone* if $-\varphi$ is *m*-dissipative.

The (i) part in Theorem 6 below is due to Brezis, Strauss [13], the (ii) part to Badii, Díaz, Tesei [9] and the (iii) part to Cârjă, Necula, Vrabie [19].

Theorem 6 Let Ω be a nonempty, bounded and open subset in \mathbf{R}^d with C^1 boundary Σ and let $\varphi : D(\varphi) \subseteq \mathbf{R} \to \mathbf{R}$ be maximal monotone with $0 \in \varphi(0)$.

(i) Then the operator $\Delta \varphi : D(\Delta \varphi) \subseteq L^1(\Omega) \hookrightarrow L^1(\Omega)$, defined by

$$\begin{cases} D(\Delta\varphi) = \{ u \in L^1(\Omega); \exists v \in \mathcal{S}_{\varphi}(u) \cap W_0^{1,1}(\Omega), \Delta v \in L^1(\Omega) \} \\ \Delta\varphi(u) = \{ \Delta v; v \in \mathcal{S}_{\varphi}(u) \cap W_0^{1,1}(\Omega) \} \cap L^1(\Omega) \text{ for } u \in D(\Delta\varphi), \end{cases}$$

is m-dissipative on $L^1(\Omega)$.

(ii) If, in addition, $\varphi : \mathbf{R} \to \mathbf{R}$ is continuous on \mathbf{R} and C^1 on $\mathbf{R} \setminus \{0\}$ and there exist two constants C > 0 and $\alpha > 0$ if $d \le 2$ and $\alpha > (d-2)/d$ if $d \ge 3$ such that

 $\varphi'(r) \ge C|r|^{\alpha - 1}$

for each $r \in \mathbf{R} \setminus \{0\}$, then $\Delta \varphi$ generates a compact semigroup.

(iii) In the hypotheses of (ii), $\Delta \varphi$ is of complete continuous type.

For the proof (i) see Barbu [11, Theorem 3.5, p. 115], for the proof of (ii) see Vrabie [45, Theorem 2.7.1, p. 70] and for proof of the (iii) – which rests heavily on slight extension of a continuity result established in Díaz, Vrabie [26, Corollary 3.1, p. 527] which, in turn, follows from a compactness result due to Díaz, Vrabie [25] –, see Cârjă, Necula, Vrabie [19, Theorem 1.7.9, p. 22].

3 An auxiliary lemma

We begin by considering the problem

$$\begin{cases} u'(t) \in Au(t) + f(t), & t \in \mathbf{R}_+, \\ u(t) = g(u)(t), & t \in [-\tau, 0]. \end{cases}$$
(6)

Lemma 1 Let us assume that A is m-dissipative, $0 \in D(A)$, $0 \in A0$ and there exists $\omega > 0$ such that $A + \omega I$ is dissipative, too. Let us assume, in addition, that there exists a > 0 such that $g : C_b([-\tau, +\infty); \overline{D(A)}) \rightarrow C([-\tau, 0]; \overline{D(A)})$ satisfies

$$\|g(v) - g(\widetilde{v})\|_{C_b([-\tau,0];\overline{D(A)})} \le \|v - \widetilde{v}\|_{C_b([a,+\infty);\overline{D(A)})},\tag{7}$$

for each $v, \tilde{v} \in C_b([-\tau, +\infty); \overline{D(A)})$ and has affine growth, i.e. satisfies (2). Then, for each $f \in L^{\infty}(\mathbf{R}_+; X) \cap L^1(\mathbf{R}_+; X)$, (6) has a unique C^0 -solution $u \in C_b([-\tau, +\infty); \overline{D(A)})$. Nonlinear delay evolution inclusions

Remark 3 If $g : C_b([-\tau, +\infty); \overline{D(A)}) \to C([-\tau, 0]; \overline{D(A)})$ satisfies (7), then g depends only on the restriction $v_{|[a, +\infty)}$ of v to $[a, +\infty)$.

We can now pass to the proof of Lemma 1.

Proof. Let us observe first that, for each $v \in C_b([-\tau, +\infty); \overline{D(A)})$, the initial value problem for the delay equation

$$\begin{cases} u'(t) \in Au(t) + f(t), & t \in \mathbf{R}_+, \\ u(t) = g(v)(t), & t \in [-\tau, 0] \end{cases}$$
(8)

has a unique C^0 -solution $u : [-\tau, +\infty) \to \overline{D(A)}$. Clearly, u is bounded on $[-\tau, 0]$ because it is continuous. Next, recalling that $0 \in A0$, from Theorem 4 we conclude that

$$\|u(t)\| \le e^{-\omega t} \|u(0)\| + \int_0^t e^{-\omega(t-\theta)} \|f(\theta)\| d\theta$$

$$\le \|u(0)\| + \frac{1}{\omega} \|f\|_{L^{\infty}(\mathbf{R}_+;X)},$$

for each $t \ge 0$. Finally, since u is bounded on both $[-\tau, 0]$ and $[0, +\infty)$, it follows that $u \in C_b([-\tau, +\infty); \overline{D(A)})$.

Now let us observe that, in view of Remark 3, $g(v)(t) = g(\tilde{v})(t)$ for each $t \in [-\tau, 0]$ whenever v and \tilde{v} coincide on $[a, +\infty)$ and so, g depends only on the restriction of v on $[a, +\infty)$ To conclude the proof, it suffices to show that the operator

$$Q: C_b([a, +\infty); \overline{D(A)}) \to C_b([a, +\infty); \overline{D(A)}),$$

defined by

$$Q(v) := u_{|[a,+\infty)},$$

where u is the unique C^0 -solution of the problem (8), is a strict contraction. Hence by the Banach Fixed Point Theorem, Q has a unique fixed point $v = u_{|[a,+\infty)}$ and

$$u(t) = \begin{cases} u(t), & t \in \mathbf{R}_+ \\ g(v)(t), & t \in [-\tau, 0], \end{cases}$$

is the unique C^0 -solution of (6).

To this end, let $v, \tilde{v} \in C_b([a, +\infty); \overline{D(A)})$ and $t \in [a, +\infty)$ be arbitrary. We have

$$||Q(v)(t) - Q(\widetilde{v})(t)|| \le e^{-\omega t} ||Q(v)(0) - Q(\widetilde{v})(0)||$$

 $\leq e^{-\omega a} \|g(v)(0) - g(\widetilde{v})(0)\| \leq e^{-\omega a} \|v - \widetilde{v}\|_{C_b([a, +\infty); X)}.$

To complete the proof, we have merely to observe that

$$\|Q(v) - Q(\widetilde{v})\|_{C_b([a,+\infty);X)} \le e^{-\omega a} \|v - \widetilde{v}\|_{C_b([a,+\infty);X)}$$

for each $v, \tilde{v} \in C_b([a, +\infty); \overline{D(A)})$.

4 The general frame and basic assumptions

In the sequel we shall denote by $z : [-\tau, +\infty) \to \overline{D(A)}$ the unique C^0 -solution of the unperturbed problem

$$\begin{cases} z'(t) \in Az(t), & t \in \mathbf{R}_{+}, \\ z(t) = g(z)(t), & t \in [-\tau, 0]. \end{cases}$$
(9)

which, in view of Lemma 1, belongs to $C_b([-\tau, +\infty); \overline{D(A)})$.

The assumptions we need in that follows are listed below.

- (H_A) $A: D(A) \subseteq X \hookrightarrow X$ is an operator with the properties:
 - (A₁) A is m-dissipative, there exists $\omega > 0$ such that $A + \omega I$ is dissipative too, $0 \in D(A)$, $0 \in A0$ and $\overline{D(A)}$ is convex;
 - (A_2) the semigroup generated by A on $\overline{D(A)}$ is compact;
 - (A_3) A is of complete continuous type. See Definition 4.
- (H_F) $F : \mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)}) \hookrightarrow X$ is a nonempty, convex and weakly compact valued, almost strongly-weakly u.s.c. multifunction. See Definition 2.
- (*H_I*) There exists r > 0 such that for each $t \in \mathbf{R}_+$, each $v \in C([-\tau, 0]; \overline{D(A)})$, with $||v-z_t||_{C([-\tau, 0]; X)} = r$ and $f \in F(t, v)$, we have $[v(0)-z(t), f]_+ \leq 0$, where z is the unique C^0 -solution of the unperturbed problem (9).
- (H'_I) There exists r > 0 such that for each $t \in \mathbf{R}_+$, each $v \in C([-\tau, 0]; D(A))$ with ||v(0) - z(t)|| > r and $f \in F(t, v)$, we have $[v(0) - z(t), f]_+ \le 0$, where z is the unique C^0 -solution of the unperturbed problem (9).
- (*H_B*) There exists $\ell \in L^{\infty}(\mathbf{R}_+; \mathbf{R}_+) \cap L^1(\mathbf{R}_+; \mathbf{R}_+)$ such that for almost every $t \in \mathbf{R}_+$ and for each $v \in C([-\tau, 0]; \overline{D(A)})$ satisfying $||v(0) z(t)|| \leq r$, where r > 0 is given by (*H_I*), and each $f \in F(t, v)$, we have

$$\|f\| \le \ell(t).$$

76

 (H'_B) There exists $\ell \in L^{\infty}(\mathbf{R}_+; \mathbf{R}_+) \cap L^1(\mathbf{R}_+; \mathbf{R}_+)$ such that

 $\|f\| \le \ell(t)$

for each $v \in C([-\tau, 0]; \overline{D(A)})$, each $f \in F(t, v)$ and a.e. for $t \in \mathbf{R}_+$.

$$(H_g) \ g: C_b([-\tau, +\infty); \overline{D(A)}) \to C([-\tau, 0]; \overline{D(A)})$$
 satisfies:

- (g₁) g has affine growth, i.e. there exists $m_0 \ge 0$ such that for each u in $C_b([-\tau, +\infty); \overline{D(A)})$, g satisfies (2);
- (g₂) there exists a > 0 such that for each $u, v \in C_b([-\tau, +\infty); \overline{D(A)})$, we have

$$||g(u) - g(v)||_{C([-\tau,0];X)} \le ||u - v||_{C_b([a,+\infty);X)};$$

 (g_4) g is continuous from $\widetilde{C}_b([-\tau, +\infty); \overline{D(A)})$ to $C([-\tau, 0]; \overline{D(A)})$.

Remark 4 The hypothesis (H_I) ensures the invariance of a certain moving set with respect to the C^0 -solutions of the problem

$$\begin{cases} u'(t) \in Au(t) + f(t), & t \in \mathbf{R}_+, \\ u(t) = g(v)(t), & t \in [-\tau, 0]. \end{cases}$$

Namely, if a C^0 -solution u of the problem above satisfies the initial constraint $u(t) - z(t) \in D(0, r)$ for each $t \in [-\tau, 0]$, where z is the unique C^0 -solution of (9), then (H_I) implies that u satisfies the very same constraint for all t belonging to domain of existence of u.

If $||g(u)||_{C([-\tau,0];X)} \leq ||u||_{C_b([0,+\infty);X)}$ for each $u \in C_b([-\tau,+\infty);X)$, case in which we will say that g has linear growth, we have g(0) = 0 and, accordingly, the unique C^0 -solution z of (9) is identically 0. So, in this case, the invariance condition is nothing but a variant of the condition (H_3) in Vrabie [47].

Conditions $(g_1) \sim (g_2)$ and (g_4) are satisfied by all functions g of the general form specified in Remark 5 below.

Remark 5 Let $0 \le \tau < T$. If the function g is defined as

- (i) $g(u)(t) = u(T+t), t \in [-\tau, 0]$ (*T*-periodicity condition);
- (*ii*) $g(u)(t) = -u(T+t), t \in [-\tau, 0]$ (*T*-antiperiodicity condition);

(*iii*)
$$g(u)(t) = \int_{\tau}^{+\infty} k(\theta)u(t+\theta) d\theta, t \in [-\tau, 0], \text{ where } k \in L^{1}([\tau, +\infty); \mathbf{R})$$

and $\int_{\tau}^{+\infty} |k(\theta)| d\theta = 1 \text{ (mean condition);}$

(iv) $g(u)(t) = \sum_{i=1}^{n} \alpha_i u(t+t_i)$ for each $t \in [-\tau, 0]$, where $\sum_{i=1}^{n} |\alpha_i| \le 1$ and $\tau < t_1 < t_2 < \cdots < t_n = T$ are arbitrary, but fixed (multi-point discrete mean condition);

then g satisfies (g_1) with $m_0 = 0$ and (g_2) with $a = T - \tau > 0$. A more general case is that in which the support of the measure μ is in $(\tau, +\infty)$ and the function is g given by

$$g(u)(t) = \int_{\tau}^{+\infty} \mathcal{N}(u(t+\theta)) \, d\mu(\theta) + \psi(t), \tag{10}$$

for each $u \in C_b([-\tau, +\infty); \overline{D(A)})$ and $t \in [-\tau, 0]$. Here $\mathcal{N} : X \to X$ is a (possible nonlinear) nonexpansive operator with $\mathcal{N}(0) = 0$ and μ is a σ finite and complete measure on $[\tau, +\infty)$, for which there exists $b > \tau$ such that supp $\mu = [b, +\infty), \mu([b, +\infty)) = 1$ and $\psi \in C([-\tau, 0]; X)$ is such that $g(u)(t) \in \overline{D(A)}$ for each $t \in [-\tau, 0]$. Obviously, in this case, the constant a > 0 in (g_2) is exactly $b - \tau$.

Remark 6 From (g_2) , (g_4) and Remark 3, we conclude that, for each convergent sequence $(u_k)_k$ in $\widetilde{C}_b([a, +\infty); \overline{D(A)})$ to some limit u we have $\lim_k g(u_k) = g(u)$ in $C([-\tau, 0]; X)$.

5 The main result

We may now proceed to the statement of the main result in this paper.

Theorem 7 If (H_A) , (H_F) , (H_I) , (H_B) and (H_g) are satisfied, then (1) has at least one C^0 -solution, $u \in C_b([-\tau, +\infty); \overline{D(A)})$ satisfying $u(t) - z(t) \in D(0, r)$ for each $t \in \mathbf{R}_+$, where z is the unique C^0 -solution of (9) and r > 0is given by (H_I) .

We will prove our Theorem 7 with the help of:

Theorem 8 If (H_A) , (H_F) , (H'_I) , (H'_B) and (H_g) are satisfied, then (1) has at least one C^0 -solution, $u \in C_b([-\tau, +\infty); \overline{D(A)})$ and $u(t) - z(t) \in D(0, r)$ for each $t \in \mathbf{R}_+$, where z is the unique C^0 -solution of (9) and r > 0 is given by (H'_I) .

The proof of Theorem 8 is divided into four steps.

The first step. We begin by showing that, for each $\varepsilon \in (0,1)$ and $f \in L^1(\mathbf{R}_+; X)$, the problem

$$\begin{cases} u'(t) \in Au(t) - \varepsilon[u(t) - z(t)] + f(t), & t \in \mathbf{R}_+, \\ u(t) = g(u)(t), & t \in [-\tau, 0], \end{cases}$$
(11)

has a unique C^0 -solution $u_{\varepsilon}^f \in C_b([-\tau, +\infty); \overline{D(A)}).$

The second step. We show that for each fixed $\varepsilon \in (0, 1)$, the operator $f \mapsto u_{\varepsilon}^{f}$, which associates to f the unique C^{0} -solution u_{ε}^{f} of the problem (11), is compact from $L^{\infty}(\mathbf{R}_{+}; X) \cap L^{1}(\mathbf{R}_{+}; X)$ to $\widetilde{C}_{b}([-\tau, +\infty); \overline{D(A)})$.

The third step. As F is almost strongly-weakly u.s.c. – see Definition 1 –, it follows that, for the very same $\varepsilon > 0$, there exists $E_{\varepsilon} \subseteq \mathbf{R}_+$ whose Lebesgue measure $\lambda(E_{\varepsilon}) \leq \varepsilon$ and such that $F_{|(\mathbf{R}_+ \setminus E_{\varepsilon}) \times C([-\tau, 0]; \overline{D(A)})}$ is strongly-weakly u.s.c., we construct an approximation for F as follows. Let

$$D(F) = \mathbf{R}_{+} \times C([-\tau, 0]; \overline{D(A)}),$$

$$D_{\varepsilon}(F) = (\mathbf{R}_{+} \setminus E_{\varepsilon}) \times C([-\tau, 0]; \overline{D(A)})$$

and let us define the multifunction $F_{\varepsilon}: \mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)}) \hookrightarrow X$, by

$$F_{\varepsilon}(t,v) = \begin{cases} F(t,v), & (t,v) \in D_{\varepsilon}(F), \\ \{0\}, & (t,v) \in D(F) \setminus D_{\varepsilon}(F). \end{cases}$$
(12)

Further, we prove that the multifunction $f \mapsto \operatorname{Sel} F_{\varepsilon}(\cdot, u^{f}_{\varepsilon}(\cdot))$, where

$$\operatorname{Sel} F_{\varepsilon}(\cdot, u_{\varepsilon(\cdot)}^{f}) = \{ h \in L^{1}(\mathbf{R}_{+}; X); \ h(t) \in F_{\varepsilon}(t, u_{\varepsilon t}^{f}) \text{ a.e. } t \in \mathbf{R}_{+} \},$$

maps some nonempty, convex and weakly compact set $\mathcal{K} \subseteq L^1(\mathbf{R}_+; X)$ into itself and has weakly×weakly sequentially closed graph. Then, we are in the hypotheses of Theorem 3, wherefrom it follows that this mapping has at least one fixed point which, by means of $f \mapsto u_{\varepsilon}^f$, produces a C^0 -solution for the approximate problem

$$\begin{cases} u'(t) \in Au(t) - \varepsilon[u(t) - z(t)] + f(t), & t \in \mathbf{R}_+, \\ f(t) \in F_{\varepsilon}(t, u_t), & t \in \mathbf{R}_+, \\ u(t) = g(u)(t), & t \in [-\tau, 0], \end{cases}$$
(13)

where F_{ε} is defined by (12).

The fourth step. For each $\varepsilon \in (0, 1)$, we fix a C^0 -solution u_{ε} of the problem (13), and we show that there exists a sequence $\varepsilon_n \downarrow 0$ such that $(u_{\varepsilon_n})_n$ converges in $\widetilde{C}_b([0, +\infty); \overline{D(A)})$ to a C^0 -solution of the problem (1).

6 Proofs of Theorems 7 and 8

We begin with the proofs of the four steps outlined above which are labeled here as four lemmas.

Lemma 2 Let us assume that (A_1) in (H_A) , and $(g_1) \sim (g_2)$ in (H_g) are satisfied. Then, for each $\varepsilon > 0$ and each $f \in L^{\infty}(\mathbf{R}_+; X) \cap L^1(\mathbf{R}_+; X)$, the problem (11) has a unique C^0 -solution $u_{\varepsilon}^f : [-\tau, +\infty) \to X$ which belongs to $C_b([-\tau, +\infty); \overline{D(A)})$. Moreover, u_{ε}^f satisfies

$$\|u_{\varepsilon}^{f} - z\|_{C_{b}([-\tau, +\infty);X)} \leq \frac{1}{\varepsilon} \|f\|_{L^{\infty}(\mathbf{R}_{+};X)},$$
(14)

where z is the unique C^0 -solution of the problem (9).

Proof. First, let us observe that the problem (11) has the form

$$\begin{cases} u'(t) \in A_{\varepsilon}u(t) + f_{\varepsilon}(t), & t \in \mathbf{R}_{+}, \\ u(t) = g(u)(t), & t \in [-\tau, 0], \end{cases}$$
(15)

where $A_{\varepsilon} = A - \varepsilon I$ and $f_{\varepsilon}(t) = f(t) + \varepsilon z(t)$ for $t \in \mathbf{R}_+$. Clearly, $A_{\varepsilon} + \varepsilon I$ is *m*dissipative, $0 \in D(A_{\varepsilon})$ and $0 \in A_{\varepsilon}0$. Since $z \in C_b([0, +\infty); \overline{D(A)})$ we have $f_{\varepsilon} \in L^{\infty}(\mathbf{R}_+; X) \cap L^1(\mathbf{R}_+; X)$ and so Lemma 1 applies with $\omega = \varepsilon$ and this implies the existence and uniqueness of solution $u_{\varepsilon}^f \in C_b([-\tau, +\infty); \overline{D(A)})$.

Next, using the very same operator $A_{\varepsilon} = A - \varepsilon I$, we rewrite the unperturbed problem (9) as

$$\begin{cases} z'(t) \in A_{\varepsilon} z(t) + h_{\varepsilon}(t), & t \in \mathbf{R}_{+}, \\ z(t) = g(z)(t), & t \in [-\tau, 0], \end{cases}$$
(16)

with $h_{\varepsilon}(t) = \varepsilon z(t)$, for $t \in \mathbf{R}_+$. Then, for each $t \in (0, +\infty)$, the unique C^0 -solution u_{ε}^f of (15) and the unique solution z of (16) satisfy

$$\begin{aligned} \|u_{\varepsilon}^{f}(t) - z(t)\| &\leq e^{-\varepsilon t} \|u_{\varepsilon}^{f}(0) - z(0)\| + \int_{0}^{t} e^{-\varepsilon (t-s)} \|f(s)\| \, ds \\ &\leq e^{-\varepsilon t} \|u_{\varepsilon}^{f} - z\|_{C_{b}([a,+\infty);X)} + \frac{1 - e^{-\varepsilon t}}{\varepsilon} \|f\|_{L^{\infty}(\mathbf{R}_{+};X)}, \end{aligned}$$

for each $t \in (0, +\infty)$.

Clearly, there exists a sequence (α_n) in (0, a) such that

$$\lim_{n} \|u_{\varepsilon}^{f} - z\|_{C_{b}([\alpha_{n}, +\infty); X)} = \|u_{\varepsilon}^{f} - z\|_{C_{b}([0, +\infty); X)}.$$
(17)

From the last inequality it follows that, for every $n \in \mathbf{N}$, we have

$$\|u_{\varepsilon}^{f}(t) - z(t)\| \leq e^{-\varepsilon\alpha_{n}} \|u_{\varepsilon}^{f} - z\|_{C_{b}([\alpha_{n}, +\infty); X)} + \frac{1 - e^{-\varepsilon\alpha_{n}}}{\varepsilon} \|f\|_{L^{\infty}(\mathbf{R}_{+}; X)}$$
(18)

for each $t \in [\alpha_n, +\infty)$, and so

$$\|u_{\varepsilon}^{f} - z\|_{C_{b}([\alpha_{n}, +\infty); X)} \leq \frac{1}{\varepsilon} \|f\|_{L^{\infty}(\mathbf{R}_{+}; X)},$$

for every $n \in \mathbf{N}$. From (17), it readily follows that

$$\|u_{\varepsilon}^{f} - z\|_{C_{b}([0,+\infty);X)} \leq \frac{1}{\varepsilon} \|f\|_{L^{\infty}(\mathbf{R}_{+};X)}$$

Next, if $t \in [-\tau, 0]$, from (g_2) in (H_g) , we get

$$\|u_{\varepsilon}^{f}(t) - z(t)\| = \|g(u_{\varepsilon}^{f})(t) - g(z)(t)\|$$
$$\leq \|u_{\varepsilon}^{f} - z\|_{C_{b}([a, +\infty); X)} \leq \|u_{\varepsilon}^{f} - z\|_{C_{b}([0, +\infty); X)}$$

and thus (14) holds true, and this completes the proof.

Lemma 3 Let us assume that (A_1) , (A_2) in (H_A) and (H_g) are satisfied, let $\varepsilon > 0$ be fixed and let $\ell \in L^{\infty}(\mathbf{R}_+; \mathbf{R}_+) \cap L^1(\mathbf{R}_+; \mathbf{R}_+)$. Then the operator $f \mapsto u_{\varepsilon}^f$, where u_{ε}^f is the unique solution of the problem (11) corresponding to f, maps the set

$$\mathcal{F} = \{ f \in L^{\infty}([0, +\infty); X) \cap L^{1}(\mathbf{R}_{+}; X); \| f(t) \| \le \ell(t) \text{ a.e. for } t \in \mathbf{R}_{+} \},\$$

into a relatively compact set in $\widetilde{C}_b([-\tau, +\infty); \overline{D(A)})$.

Proof. By (14), $\{u_{\varepsilon}^{f}; f \in \mathcal{F}\}$ is bounded in $C_{b}([0, +\infty); \overline{D(A)})$ and thus $\{u_{\varepsilon}^{f}(0); f \in \mathcal{F}\}$ is bounded in $\overline{D(A)}$. Since \mathcal{F} is uniformly integrable in $L^{1}(0, k; X)$ for $k = 1, 2, \ldots$ – see Definition 3 –, from (A_{2}) and Theorem 5, we conclude that, for every $k = 1, 2, \ldots$, and $\sigma \in (0, k), \{u_{\varepsilon}^{f}; f \in \mathcal{F}\}$ is relatively compact in $C([\sigma, k]; \overline{D(A)})$. Thanks to $(g_{2}), (g_{4})$ in (H_{g}) and to Remark 6, we deduce that the set $\{g(u_{\varepsilon}^{f}); f \in \mathcal{F}\}$ is relatively compact in $C([-\tau, 0]; \overline{D(A)})$, and therefore $\{g(u_{\varepsilon}^{f})(0); f \in \mathcal{F}\} = \{u_{\varepsilon}^{f}(0); f \in \mathcal{F}\}$ is relatively compact in $\overline{D(A)}$. Again, from (g_{1}) and the second part of Theorem 5, it follows that the set $\{u_{\varepsilon}^{f}; f \in \mathcal{F}\}$ is relatively compact in $\overline{C}_{b}([-\tau, +\infty); \overline{D(A)})$. The proof is complete.

Lemma 4 Let us assume that (H_A) , (H_F) , (H'_B) and (H_g) are satisfied. Then, for each $\varepsilon > 0$, the problem (13) has at least one solution u_{ε} .

Since the proof follows the very same lines as those in the proof of Lemma 4.3 in Vrabie [47], we do not give details.

Lemma 5 If (H_A) , (H_F) , (H'_I) , (H'_B) and (H_g) are satisfied, then, for each $\varepsilon \in (0, 1)$, each C^0 -solution u_{ε} of the problem (13) satisfies

$$\|u_{\varepsilon} - z\|_{C_b([0,+\infty);X)} \le r,\tag{19}$$

where r > 0 is given by (H'_I) .

Proof. Let us observe that, if $0 \le t < \tilde{t}$, we have

$$\|u_{\varepsilon}(\tilde{t}) - z(\tilde{t})\| \leq \|u_{\varepsilon}(t) - z(t)\|$$

$$+ \int_{t}^{\tilde{t}} [u_{\varepsilon}(s) - z(s), f(s)]_{+} ds - \varepsilon \int_{t}^{\tilde{t}} \|u_{\varepsilon}(s) - z(s)\| ds.$$
(20)

Let us assume by contradiction that there exists $t \in \mathbf{R}_+$ such that

$$||u_{\varepsilon}(t) - z(t)|| > r.$$

We distinguish between two cases.

Case 1. There exists $t_m \in \mathbf{R}_+$ such that

$$r < \|u_{\varepsilon} - z\|_{C_b([0, +\infty); X)} = \|u_{\varepsilon}(t_m) - z(t_m)\|.$$
(21)

If $t_m = 0$, then

$$r < \|u_{\varepsilon} - z\|_{C_b([0,+\infty);X)} = \|u_{\varepsilon}(0) - z(0)\| = \|g(u_{\varepsilon})(0) - g(z)(0)\|$$

 $\leq \|u_{\varepsilon} - z\|_{C_b([a,+\infty);X)} \leq \|u_{\varepsilon} - z\|_{C_b([0,+\infty);X)}$

and so

$$\|u_{\varepsilon} - z\|_{C_b([0,+\infty);X)} = \|u_{\varepsilon} - z\|_{C_b([a,+\infty);X)}$$

Therefore, we can always confine ourselves to analyze the case when, in (21), either $t_m \in (0, +\infty)$ or there is no $t_m \in (0, +\infty)$ satisfying the equality in (21).

So, if there exists $t_m \in (0, +\infty)$ such that (21) holds true, then the mapping

$$t \mapsto \|u_{\varepsilon}(t) - z(t)\|$$

cannot be constant on $(0, t_m)$. Indeed, if we assume that

$$||u_{\varepsilon}(s) - z(s)|| = ||u_{\varepsilon}(t_m) - z(t_m)||$$

for each $s \in (0, t_m)$, then, taking $t \in (0, t_m)$ and $\tilde{t} = t_m$ in (20) and using (H'_I) with $v(0) = u_{\varepsilon s}(0) = u_{\varepsilon}(s)$, we get

$$r < r - \varepsilon (t_m - t)r < r \tag{22}$$

which is impossible. Consequently, there exists $t_0 \in (0, t_m)$ such that

$$r < \|u_{\varepsilon}(t_0) - z(t_0)\| < \|u_{\varepsilon}(s) - z(s)\| \le \|u_{\varepsilon}(t_m) - z(t_m)\| = \|u_{\varepsilon} - z\|_{C_b([0, +\infty); X)}$$

for each $s \in (t_0, t_m)$. Since

$$\|u_{\varepsilon}(s) - z(s)\| \le \|u_{\varepsilon s} - z_s\|_{C([-\tau,0];X)},$$

for each $s \in \mathbf{R}_+$, we have

$$r < \|u_{\varepsilon s} - z_s\|_{C([-\tau,0];X)}$$

for each $s \in (t_0, t_m)$ and then, using again (20) and (H'_I) , we get

$$r < \|u_{\varepsilon}(t_m) - z(t_m)\| \le \|u_{\varepsilon}(t_0) - z(t_0)\| - \varepsilon(t_m - t_0)r$$

which implies the very same contradiction as before, i.e. (22).

It remains only to analyze

Case 2. There is no $t_m \in \mathbf{R}_+$ such that (21) holds true. Then, there exists at least one sequence $(t_k)_k$ such that

$$\begin{cases} \lim_{k} t_k = +\infty, \\ \lim_{k} \|u_{\varepsilon}(t_k) - z(t_k)\| = \|u_{\varepsilon} - z\|_{C_b([0, +\infty); X)}. \end{cases}$$

If there exists $\tilde{t} \in \mathbf{R}_+$ such that $||u_{\varepsilon}(\tilde{t}) - z(\tilde{t})|| = r$, then $||u_{\varepsilon}(t) - z(t)|| \leq r$ for each $t \in [\tilde{t}, +\infty)$. Indeed, if we assume the contrary, there would exists $[t, \tilde{t}] \subseteq [0, +\infty)$ such that

$$\|u_{\varepsilon}(t) - z(t)\| = r$$

and

$$r < \|u_{\varepsilon}(s) - z(s)\|$$

for each $s \in (t, \tilde{t}]$. Then, using once again (20) and (H'_I) , we get

$$r < \|u_{\varepsilon}(\widetilde{t}) - z(\widetilde{t})\| \le \|u_{\varepsilon}(t) - z(t)\| - \varepsilon(\widetilde{t} - t)r$$
$$\le r - \varepsilon(\widetilde{t} - t)r$$

leading to (22) which is impossible.

So, when both

$$||u_{\varepsilon}(t) - z(t)|| < ||u_{\varepsilon} - z||_{C_b([0,+\infty);X)}$$

 $r < \|u_{\varepsilon} - z\|_{C_b([0, +\infty); X)}$

hold true for each $t \in \mathbf{R}_+$, we necessarily have

$$\|u_{\varepsilon}(t) - z(t)\| > r$$

for each $t \in \mathbf{R}_+$. If this is the case, let us remark that we may assume with no loss of generality, by extracting a subsequence if necessary, that

 $t_{k+1} - t_k \ge 1$

for k = 0, 1, 2, ... Then, by (3) and (H'_I) , we have

$$\begin{aligned} r &< \|u_{\varepsilon}(t_{k+1}) - z(t_{k+1})\| \\ &\leq \|u_{\varepsilon}(t_k) - z(t_k)\| + \int_{t_k}^{t_{k+1}} [u_{\varepsilon}(s) - z(s), f(s) - \varepsilon(u_{\varepsilon}(s) - z(s))]_+ \, ds \\ &\leq \|u_{\varepsilon}(t_k) - z(t_k)\| - \varepsilon \int_{t_k}^{t_{k+1}} \|u_{\varepsilon}(s) - z(s)\| \, ds \\ &\leq \|u_{\varepsilon}(t_k) - z(t_k)\| - \varepsilon(t_{k+1} - t_k)r \leq \|u_{\varepsilon}(t_k) - z(t_k)\| - \varepsilon r \end{aligned}$$

for each $k \in \mathbf{N}$. Passing to the limit for $k \to +\infty$ in the inequalities

$$||u_{\varepsilon}(t_{k+1}) - z(t_{k+1})|| \le ||u_{\varepsilon}(t_k) - z(t_k)|| - \varepsilon r, \ k = 1, 2, \dots$$

we get

$$|u_{\varepsilon} - z||_{C_b([0,+\infty);X)} \le ||u_{\varepsilon} - z||_{C_b([0,+\infty);X)} - \varepsilon r.$$

But, in view of Lemma 2, $||u_{\varepsilon} - z||_{C_b([0,+\infty);X)}$ is finite and thus we get a contradiction. This contradiction can be eliminated only if **Case 2** cannot hold. Thus, both **Case 1** and **Case 2** are impossible. In turn, this is a

contradiction too, because at least one of these two cases should hold true. So, the initial supposition, that $||u_{\varepsilon} - z||_{C_b([0,+\infty);X)} > r$, is necessarily false. It then follows that (19) holds true and this completes the proof.

Now, we can pass to the proof of Theorem 8.

Proof. Let $(\varepsilon_n)_n$ be a sequence with $\varepsilon_n \downarrow 0$, let $(u_n)_n$ be the sequence of the C^0 -solutions of the problem (13) corresponding to $\varepsilon = \varepsilon_n$ for $n \in \mathbf{N}$, and let $(f_n)_n$ be such that

$$\begin{cases} u'_n(t) \in Au_n(t) - \varepsilon_n[u_n(t) - z(t)] + f_n(t), & t \in \mathbf{R}_+, \\ f_n(t) \in F_{\varepsilon_n}(t, u_{nt}), & t \in \mathbf{R}_+, \\ u_n(t) = g(u_n)(t), & t \in [-\tau, 0]. \end{cases}$$

In view of Remark 1, we may assume without loss of generality that $E_{\varepsilon_{n+1}} \subset E_{\varepsilon_n}$ for $n = 0, 1, \ldots$ This means that

$$F_{\varepsilon_n}(t,v) = F_{\varepsilon_{n+1}}(t,v) \tag{23}$$

for each $t \in \mathbf{R}_+ \setminus E_{\varepsilon_n}$ and $v \in C([-\tau, 0]; \overline{D(A)})$.

From (H'_B) , we deduce that, for k = 1, 2, ..., the set $\{f_n; n \in \mathbf{N}\}$ is uniformly integrable in $L^1(0, k; X)$. Then, from Lemma 5, (A_2) in (H_A) and Theorem 5, it follows that, for k = 1, 2, ..., and each $\sigma \in (0, k)$, the set $\{u_n; n \in \mathbf{N}\}$ is relatively compact in $C([\sigma, k]; \overline{D(A)})$. In view of (g_4) in (H_g) , we deduce that the set $\{u_n; n \in \mathbf{N}\}$ is relatively compact in $C([-\tau, 0]; \overline{D(A)})$. In particular, the set

$$\{u_n(0) = g(u_n)(0); n \in \mathbf{N}\}\$$

is relatively compact in D(A). From the second part of Theorem 5, we conclude that $\{u_n; n \in \mathbf{N}\}$ is relatively compact in $C([0, k]; \overline{D(A)})$ for $k = 1, 2, \ldots$ and thus in $C([-\tau, k]; \overline{D(A)})$. So, $\{u_n; n \in \mathbf{N}\}$ is relatively compact in $\widetilde{C}_b([-\tau, +\infty); \overline{D(A)})$. Accordingly, for each $k = 1, 2, \ldots$,

$$C_k = \overline{\{u_n(t); n \in \mathbf{N}, t \in [0,k]\}}$$

is compact in D(A). Let $\gamma \in (0,1)$ be arbitrary, let E_{γ} be the Lebesgue measurable set in $[0, +\infty)$ given by Definition 2 and, for each $k = 1, 2, \ldots$, let us define the set

$$D_{\gamma,k} = \bigcup_{n \in \mathbf{N}} \{ (t, u_{\varepsilon_n t}); t \in [0, k] \setminus E_{\gamma} \}.$$

Clearly, $D_{\gamma,k}$ is compact in $\mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)})$. Next, for each $\gamma \in (0, 1)$ and each $k = 1, 2, \ldots$, let us define

$$C_{\gamma,k} = F_{\gamma}(D_{\gamma,k}) = F(D_{\gamma,k}) \cup \{0\}$$

which is weakly compact since $D_{\gamma,k}$ is compact and $F_{|D_{\gamma,k}}$ is strongly-weakly u.s.c. See Lemma 2.6.1, p. 47 in Cârjă, Necula, Vrabie [19]. Further, the family $\mathcal{F} = \{f_{\varepsilon_n}; n = 0, 1, ...\} \subseteq L^1(\mathbf{R}_+; X)$ satisfies the hypotheses of Theorem 4.1 in Vrabie [46]. So, on a subsequence at least, we have

$$\lim_{n} f_n = f \quad \text{weakly in} \quad L^1(\mathbf{R}_+; X),$$
$$\lim_{n} u_n = u \quad \text{in} \quad \widetilde{C}_b([-\tau, +\infty); \overline{D(A)}),$$
$$\lim_{n} u_{nt} = u_t \quad \text{in} \quad C([-\tau, 0]; \overline{D(A)}) \quad \text{for each } t \in \mathbf{R}_+.$$

From Lemma 2.6.2, p. 47 in Cârjă, Necula, Vrabie [19] combined with (23), we get

$$f(t) \in F_{\varepsilon_n}(t, u_t)$$

for each $n \in \mathbf{R}$ and a.e. $t \in \mathbf{R}_+ \setminus E_{\varepsilon_n}$. Since $\lim_n \lambda(E_{\varepsilon_n}) = 0$, it follows that

$$f(t) \in F(t, u_t)$$

a.e. $t \in \mathbf{R}_+$. But A is of complete continuous type, wherefrom it follows that u is a C^0 -solution of the problem (1) corresponding to the selection f of $t \mapsto F(t, u_t)$. Finally, it suffices to observe that, from (19) in Lemma 5, it follows that $u(t) - z(t) \in D(0, r)$ for each $t \in \mathbf{R}_+$. \Box

We can now proceed to the proof of Theorem 7.

Proof. Let r > 0 be given by (H_I) and let us define the set

$$\mathcal{K}_r = \{(t, v) \in \mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)}); \|v(0) - z(t)\| \le r\}.$$

Clearly, \mathcal{K}_r is nonempty and closed in $\mathbf{R}_+ \times C([-\tau, 0]; X)$, In addition, since by (A_1) in (H_A) , $\overline{D(A)}$ is convex, it follows that for each $t \in \mathbf{R}_+$, the cross-section of \mathcal{K}_r at t, i.e.

$$\mathcal{K}_r(t) = \{ v \in C([-\tau, 0]; \overline{D(A)}); (t, v) \in \mathcal{K}_r \}$$

is convex. Let $\pi : \mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)}) \to \mathbf{R}_+ \times C([-\tau, 0]; X)$ be defined by

$$\pi(t,v) = \begin{cases} (t,v) & \text{if } \|v(0) - z(t)\| \le r, \\ \left(t, \frac{r}{\|v - z_t\|_{C([-\tau,0];X)}} (v - z_t) + z_t\right) & \text{if } \|v(0) - z(t)\| > r. \end{cases}$$

We observe that π is continuous, π restricted to \mathcal{K}_r is the identity operator and π maps $\mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)})$ into \mathcal{K}_r . The first two properties mentioned are obvious. To prove the fact that π maps $\mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)})$ into \mathcal{K}_r , we have merely to observe that if ||v(0) - z(t)|| > r then, inasmuch as $\overline{D(A)}$ is convex and $v, z_t \in C([-\tau, 0]; \overline{D(A)})$, it follows that their convex combination

$$\frac{r}{\|v-z_t\|_{C([-\tau,0];X)}}(v-z_t)+z_t-z_t\in C([-\tau,0];\overline{D(A)}).$$

Moreover

$$\left\|\frac{r}{\|v-z_t\|_{C([-\tau,0];X)}}(v-z_t)+z_t-z_t\right\|_{C([-\tau,0];X)}=r$$

and so, in this case, $\pi(t,v) \in \mathcal{K}_r$. If $||v(0) - z(t)|| \leq r$, then $\pi(t,v) = (t,v)$ and thus, π maps $\mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)})$ into \mathcal{K}_r .

Then, we can define the multifunction $F_{\pi} : \mathbf{R}_{+} \times C([-\tau, 0]; \overline{D(A)}) \hookrightarrow X$ by

$$F_{\pi}(t,v) = F(\pi(t,v)),$$

for each $(t, v) \in \mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)})$. As π is continuous, it follows that F_{π} satisfies (H_F) . Moreover, one can easily verify that it satisfies (H'_B) . Moreover, since

$$\pi(\mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)})) \subseteq \mathcal{K}_r,$$

we conclude that F_{π} satisfies (H'_I) too. Indeed, let $(t, v) \in \mathbf{R}_+ \times C([-\tau, 0]; \overline{D(A)})$ be arbitrary and satisfying

$$\|v(0) - z(t)\| > r \tag{24}$$

and let $f \in F(\pi(t, v))$.

From the definition of π , it follows that the projection P_2 of $\pi(t, v)$ on the second component, i.e.

$$P_2(\pi(t,v)) = \begin{cases} v & \text{if } \|v(0) - z(t)\| \le r, \\ \frac{r}{\|v - z_t\|_{C([-\tau,0];X)}} (v - z_t) + z_t & \text{if } \|v(0) - z(t)\| > r. \end{cases}$$

satisfies:

$$\|P_2(\pi(t,v)) - z_t\|_{C([-\tau,0];X)} = \begin{cases} r & \text{if } \|v(0) - z(t)\| > r, \\ \|v - z_t\|_{C([-\tau,0];X)} & \text{if } \|v(0) - z(t)\| \le r. \end{cases}$$

Therefore, if (t, v) satisfies (24), it follows that

$$||P_2(\pi(t,v)) - z_t||_{C([-\tau,0];X)} = r.$$

So, by (H_I) , we have

$$[v(0) - z(t), f]_{+} = [P_2(\pi(t, v))(0) - z(t), f]_{+} \le 0$$

which proves that F_{π} satisfies (H'_I) .

Hence, by virtue of Theorem 8, the problem

$$\begin{cases} u'(t) = Au(t) + f(t), & t \in \mathbf{R}_+, \\ f(t) \in F_{\pi}(t, u_t), & t \in \mathbf{R}_+, \\ u(t) = g(u)(t), & t \in [-\tau, 0] \end{cases}$$

has at least one C^0 -solution $u \in C_b([-\tau, +\infty); \overline{D(A)})$.

By (19), we have $||u_t(0) - z(t)|| \leq r$ for each $t \in \mathbf{R}_+$. So, $(t, u_t) \in \mathcal{K}_r$, which shows that

$$F_{\pi}(t, u_t) = F(t, u_t)$$

for each $t \in \mathbf{R}_+$. Thus u is a C^0 -solution of (1) and this completes the proof of Theorem 7.

7 Nonlinear diffusion in $L^1(\Omega)$

Let Ω be a nonempty, bounded and open subset in \mathbf{R}^d , $d \ge 1$, with C^1 boundary Σ , let $\varphi : D(\varphi) \subseteq \mathbf{R} \hookrightarrow \mathbf{R}$ be maximal monotone with $0 \in \varphi(0)$ and let $\omega > 0$. Let us consider the porous medium equation subjected to nonlocal initial conditions

$$\begin{cases}
\frac{\partial u}{\partial t}(t,x) \in \Delta \varphi(u(t,x)) - \omega u(t,x) + f(t,x), & \text{in } Q_+, \\
f(t,x) \in F\left(t, u(t), \int_{-\tau}^0 u(t+s,x) \, ds\right), & \text{in } Q_+, \\
\varphi(u(t,x)) = 0, & \text{on } \Sigma_+, \\
u(t,x) = \int_{\tau}^{+\infty} \mathcal{N}(u(\theta+t))(x) \, d\mu(\theta) + \psi(t)(x), & \text{in } Q_{\tau}.
\end{cases}$$
(25)

Let us consider the auxiliary problem

$$\begin{cases} \frac{\partial z}{\partial t}(t,x) \in \Delta \varphi(z(t,x)) - \omega z(t,x), & \text{in } Q_+, \\ \varphi(z(t,x)) = 0, & \text{on } \Sigma_+, \\ z(t,x) = \int_{\tau}^{+\infty} \mathcal{N}(z(\theta+t))(x) \, d\mu(\theta) + \psi(t)(x), & \text{in } Q_{\tau} \end{cases}$$
(26)

and let us denote by $z \in C_b([-\tau, +\infty); L^1(\Omega))$ the unique C^0 -solution of (26).

Before passing to the statement of the main existence result concerning (25), we need to introduce some notation and to explain the exact definition of F.

Let $f_i : \mathbf{R}_+ \times \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be two functions with $f_1(t, u, v) \leq f_2(t, u, v)$ for each $(t, u, v) \in \mathbf{R}_+ \times \mathbf{R} \times \mathbf{R}$ and let

$$F: \mathbf{R}_+ \times C([-\tau, 0]; L^1(\Omega)) \hookrightarrow L^1(\Omega)$$

be given by

$$F := F_0 + F_1$$

where

$$F_0(t,v) = \left\{ f \in L^1(\Omega); f(x) \in [\widetilde{f}_1(t,v)(x), \widetilde{f}_1(t,v)(x)], \text{ a.e. for } x \in \Omega \right\}$$

and

$$F_1(t,v)(x) := \{\sigma(t)h(x)\}$$

for each $(t,v) \in \mathbf{R}_+ \times C([-\tau,0]; L^1(\Omega))$. Here

$$\widetilde{f}_i: \mathbf{R}_+ \times \Omega \times C([-\tau, 0]; L^1(\Omega)) \to \mathbf{R}, \ i = 1, 2,$$

are defined as:

$$\begin{cases} \widetilde{f}_{1}(t,x,v) := f_{1}\left(t,v(0)(x), \int_{-\tau}^{0} v(s)(x) \, ds\right) \\ \widetilde{f}_{2}(t,x,v) := f_{2}\left(t,v(0)(x), \int_{-\tau}^{0} v(s)(x) \, ds\right) \end{cases}$$
(27)

for each $(t,v) \in \mathbf{R}_+ \times C([-\tau,0]; L^1(\Omega))$, a.e. in Ω , $h \in L^1(\Omega)$ is a fixed element satisfying $\|h\|_{L^1(\Omega)} \neq 0$ and $\sigma \in L^1(\mathbf{R}_+; \mathbf{R})$.

Theorem 9 Let Ω be a nonempty, bounded and open subset in \mathbf{R}^d with C^1 boundary Σ , let $\omega > 0$ and let $\varphi : \mathbf{R} \to \mathbf{R}$ be continuous on \mathbf{R} and C^1 on $\mathbf{R} \setminus \{0\}$ with $\varphi(0) = 0$ and for which there exist two constants C > 0 and $\alpha > 0$ if $d \leq 2$ and $\alpha > (d-2)/d$ if $d \geq 3$ such that

$$\varphi'(r) \ge C|r|^{\alpha - 1}$$

for each $r \in \mathbf{R} \setminus \{0\}$. Let $f_i : \mathbf{R}_+ \times \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be two given functions, $h \in L^1(\Omega), \|h\|_{L^1(\Omega)} > 0, \sigma \in L^1(\mathbf{R}_+; \mathbf{R})$ and let F be defined as above.

Let $\mathcal{N} : L^1(\Omega) \to L^1(\Omega), \ \psi \in C([-\tau, 0]; L^1(\Omega))$ and let μ be a σ -finite and complete measure on $[\tau, +\infty)$. Let us assume that:

- $(\sigma_1) \|\sigma(t)\| \leq 1 \text{ for each } t \in \mathbf{R}_+;$
- (F₁) $f_1(t, u, v) \leq f_2(t, u, v)$ for each $(t, u, v) \in \mathbf{R}_+ \times \mathbf{R} \times \mathbf{R}$;
- (F₂) f_1 is l.s.c. and f_2 is u.s.c. and, for each $(t, u, v), (t, u, w) \in \mathbf{R}_+ \times \mathbf{R} \times \mathbf{R}$ with $v \leq w$, we have

$$\begin{cases} f_1(t, u, v) \le f_1(t, u, w), \\ f_2(t, u, v) \ge f_2(t, u, w); \end{cases}$$

(F₃) there exists c > 0 such that, for every $(t, x, v) \in D(f_1, f_2)$ with

$$\|v(0)(\cdot) - z(t, \cdot)\|_{L^{1}(\Omega)} \le c^{-1} \|h\|_{L^{1}(\Omega)}$$

 $we\ have$

$$sign[v(0)(x) - z(t,x)]f_0(x) \le -c|v(0)(x) - z(t,x)$$

for each $f_0(x) \in [f_1(t, x, v), f_2(t, x, v)]$, z being the unique C⁰-solution of the problem (26);

(F₄) there exists a nonnegative function $\tilde{\ell} \in L^1(\mathbf{R}_+; \mathbf{R}) \cap L^{\infty}(\mathbf{R}_+; \mathbf{R})$ such that

$$|f_i(t, u, v)| \le \ell(t)$$

for i = 1, 2 and for each $(t, u, v) \in \mathbf{R}_+ \times \mathbf{R} \times \mathbf{R}$;

(F₅) for each $t \in \mathbf{R}_+$ and each $v \in C([-\tau, 0]; L^1(\Omega))$, we have

 $f_i(t, z(t, x), v) = 0$

for i = 1, 2 and a.e. for $x \in \Omega$;

Nonlinear delay evolution inclusions

- (μ_1) there exists $b > \tau$ such that $supp \mu \subseteq [b, +\infty)$;
- $(\mu_2) \ \mu([b,\infty)) = 1;$
- $(\mathcal{N}_1) \|\mathcal{N}(u) \mathcal{N}(v)\|_{L^1(\Omega)} \le \|u v\|_{L^1(\Omega)} \text{ for each } u, v \in L^1(\Omega);$
- $(\mathcal{N}_2) \ \mathcal{N}(0) = 0.$

Then, the problem (25) has at least one C^0 -solution $u \in C_b([-\tau, +\infty); L^1(\Omega))$ satisfying

$$||u - z||_{C_b(\mathbf{R}_+;L^1(\Omega))} \le c^{-1} ||h||_{L^1(\Omega)}.$$

Remark 7 Condition (F_5) is satisfied, for instance, if

$$f_i(t, u, v) = \psi(t, u) \cdot \overline{f}_i(t, u, v),$$

where ψ is positive, continuous and bounded and $\psi(t, z(t, x)) = 0$, while \overline{f}_i satisfy $(F_1) \sim (F_4)$, i = 1, 2. In the particular case in which $\psi \equiv 0$, it follows that $z \equiv 0$ and so, (F_5) reduces to

$$f_i(t,0,v) = 0$$

for each $(t, v) \in \mathbf{R}_+ \times \mathbf{R}$.

Proof. Let $X = L^1(\Omega)$ and let us define $A: D(A) \subseteq L^1(\Omega) \to L^1(\Omega)$, by

$$Au := \Delta \varphi(u) - \omega u$$

for each $u \in D(A)$, where

$$D(A) = \left\{ u \in L^1(\Omega); \ \varphi(u) \in W_0^{1,1}(\Omega), \ \Delta \varphi(u) \in L^1(\Omega) \right\}$$

As $\varphi(0) = 0$, $C_0^{\infty}(\Omega)$ is dense in D(A) and so $\overline{D(A)} = L^1(\Omega)$.

Theorem 6 implies that A is *m*-dissipative and $A + \omega I$ is dissipative in $L^1(\Omega)$, A0 = 0, A generates a compact semigroup and is of complete continuous type on $\overline{D(A)} = L^1(\Omega)$. Hence, A satisfies (H_A) . Let F be defined as above and

$$g: C_b([-\tau, +\infty); L^1(\Omega)) \to C([-\tau, 0]; L^1(\Omega))$$

be defined by

$$g(u)(t)(x) = \int_{\tau}^{+\infty} \mathcal{N}(u(t+\theta))(x) \, d\mu(\theta) + \psi(t)(x)$$

for each $u \in C_b([-\tau, +\infty); L^1(\Omega))$, each $t \in [-\tau, 0]$ and a.e. for $x \in \Omega$.

From (σ_1) , (F_1) , (F_2) , (F_4) and Lemma 5.1 in Vrabie [47], using a similar arguments as in the proof of the corresponding part in the preceding section, we conclude that F satisfies (H_F) . From (F_2) and (F_3) , we conclude that F satisfies (H_I) and (H_B) with

$$r = c^{-1} \|h\|_{L^1(\Omega)}$$

Indeed, we will show that for each $(t, v) \in \mathbf{R}_+ \times C([-\tau, 0]; L^1(\Omega))$, with

$$||v(0)(\cdot) - z(t, \cdot)||_{L^1(\Omega)} = r,$$

and every $f \in F(t, v)$, we have

$$[v(0)(\cdot) - z(t, \cdot), f]_+ \le 0$$

Let us observe that in our case, i.e. $X = L^{1}(\Omega)$, we have

$$[v(0)(\cdot) - z(t, \cdot), f]_{+} = \int_{\{y \in \Omega; v(0)(y) - z(t,y) > 0\}} f(x) \, dx$$
$$- \int_{\{y \in \Omega; v(0)(y) - z(t,y) < 0\}} f(x) \, dx + \int_{\{y \in \Omega; v(0)(y) - z(t,y) = 0\}} |f(x)| \, dx.$$

Let $f \in F(t, v)$. Clearly f is of the form $f = f_0 + h$, where $f_0 \in L^1(\Omega)$ satisfies $f_1(t, x, v) \leq f_0(x) \leq f_2(t, x, v)$ a.e. for $x \in \Omega$. From the definition of $[\cdot, \cdot]_+$ in $L^1(\Omega)$, we deduce

$$\begin{split} [v(0)(\cdot) - z(t, \cdot), f]_+ \\ &\leq \int_{\{y \in \Omega; v(0)(y) - z(t,y) > 0\}} f_0(x) \, dx - \int_{\{y \in \Omega; v(0)(y) - z(t,y) < 0\}} f_0(x) \, dx \\ &+ \int_{\{y \in \Omega; v(0)(y) - z(t,y) = 0\}} |f_0(x)| \, dx + \int_{\{y \in \Omega; v(0)(y) - z(t,y) > 0\}} \alpha(t) h(x) \, dx \\ &- \int_{\{y \in \Omega; v(0)(y) - z(t,y) < 0\}} h(x) \, dx + \int_{\{y \in \Omega; v(0)(y) - z(t,y) = 0\}} |\alpha(t)| \cdot |h(x)| \, dx. \end{split}$$

Next, taking into account that, from (F_5) , we have $f_0(x) = 0$ a.e. for those $x \in \Omega$ for which v(0)(x) = z(t, x), the last inequality, conjunction with (F_4) , yields

$$[v(0)(\cdot) - z(t, \cdot), f]_{+} \le \int_{\Omega} \operatorname{sign} [v(0)(x) - z(t, x)] f_{0}(x) \, dx + \int_{\Omega} |\alpha(t)| \cdot |h(x)| \, dx$$

Nonlinear delay evolution inclusions

$$\leq -c \int_{\Omega} |v(0)(x) - z(t,x)| \, dx + \int_{\Omega} |h(x)| \, dx \leq 0.$$

So, F satisfies (H_I) . As (H_4) follows from (F_3) , we deduce that F satisfies (H_B) . Since the proof of (H_g) is very simple, we do not enter into details. So, we are in the hypotheses of Theorem 7 wherefrom the conclusion.

Acknowledgments

The work of both authors was supported by Grant PN-II-ID-PCE-2011-3-0052 of CNCS Romania.

References

- S. Aizicovici, H. Lee. Nonlinear nonlocal Cauchy problems in Banach spaces. Appl. Math. Lett. 18:401-407, 2005.
- [2] S. Aizicovici, M. McKibben. Existence results for a class of abstract nonlocal Cauchy problems. *Nonlinear Anal.* 39: 649–668, 2000.
- [3] S. Aizicovici, N. S. Papageorgiou, V. Staicu. Periodic solutions of nonlinear evolution inclusions in Banach spaces. J. Nonlinear Convex Anal. 7:163-177, 2006.
- [4] S. Aizicovici, N. H. Pavel, I. I. Vrabie. Anti-periodic solutions to strongly nonlinear evolution equations in Hilbert spaces. An. Stiinţ. Univ. Al. I. Cuza Iaşi (N.S.), Secţ. I a Mat. 44:227-234, 1998.
- [5] S. Aizicovici, V. Staicu. Multivalued evolution equations with nonlocal initial conditions in Banach spaces. NoDEA Nonlinear Differential Equations Appl. 14:361-376, 2007.
- [6] J. Andres. Periodic-type solutions of differential inclusions. Adv. Math. Res. 8:295-353, 2009.
- [7] O. Arino, S. Gautier, J. P. Penot. A Fixed Point theorem for sequentially continuous mappings with applications to ordinary differential equations. *Funkcial. Ekvac.* 27:273-279, 1984.

- [8] G. Avalishvili, M. Avalishvili. Nonclassical problems with nonlocal initial conditions for abstract second-order evolution equations. *Bull. Georgian Natl. Acad. Sci.* (N.S.) 5:17-24, 2011.
- [9] M. Badii, J. I. Díaz, A. Tesei. Existence and attractivity results for a class of degenerate functional parabolic problems. *Rend. Semin. Mat. Univ. Padova* 78:109-124, 1987.
- [10] P. Baras. Compacité de l'opérateur definissant la solution d'une équation d'évolution non linéaire $(du/dt) + Au \ni f$. C. R. Math. Acad. Sci. Paris 286:1113-1116, 1978.
- [11] V. Barbu. Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer Monographs in Mathematics, Berlin, 2010.
- [12] P. Benilan. Equations d'évolution dans un espace de Banach quelconque et applications. Thèse, Orsay, 1972.
- [13] H. Brezis, W. A. Strauss. Semi-linear second-order elliptic equations in L¹. J. Math. Soc. Japan 25:565-590, 1973.
- [14] M. D. Burlică, D. Roşu. A class of nonlinear delay evolution equations with nonlocal initial conditions. *Proc. Amer.* Math. Soc., 142:2445-2458, 2014.
- [15] L. Byszewski. Theorem about existence and uniqueness of continuous solution of nonlocal problem for nonlinear hyperbolic equation. *Appl. Anal.* 40:173-180, 1990.
- [16] L. Byszewski. Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problems, J. Math. Anal. Appl. 162:494-505, 1991.
- [17] L. Byszewski, V. Lakshmikantham. Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. *Appl. Anal.* 40:11-19, 1990.
- [18] R. Caşcaval, I. I. Vrabie. Existence of periodic solutions for a class of nonlinear evolution equations. *Rev. Mat. Complut.* 7:325-338, 1994.
- [19] O. Cârjă, M. Necula, I. I. Vrabie. Viability, Invariance and Applications, Elsevier North-Holland Mathematics Studies 207, Amsterdam, 2007.

- [20] D. H. Chen, R. N. Wang, Y. Zhou. Nonlinear evolution inclusions: Topological characterizations of solution sets and applications. *F. Funct. Anal.* 265:2039-2073, 2013.
- [21] M. G. Crandall, T. M. Liggett. Generation of semi-groups of nonlinear transformations in general Banach spaces. Amer. J. Math. 93:265-298, 1971.
- [22] N. Dunford, J. T. Schwartz. *Linear operators. Part I: General theory*. Interscience Publishers Inc. New York, 1958.
- [23] R. E. Edwards. Functional analysis theory and applications. Holt, Rinehart and Winston, New York Chicago San Francisco Toronto London, 1965.
- [24] K. Deng. Exponential decay of solutions of semilinear parabolic equations with initial boundary conditions. J. Math. Anal. Appl. 179:630-637, 1993.
- [25] J. I. Díaz, I. I. Vrabie. Propriétes de compacité de l'opérateur de Green généralisé pour l'équation des millieux poreux. C. R. Math. Acad. Sci. Paris 309:221-223, 1989.
- [26] J. I. Díaz, I. I. Vrabie. Existence for reaction diffusion systems: A compactness method approach. J. Math. Anal. Appl. 188:521-540, 1994.
- [27] Zhenbin Fan, Qixiang Dong, Gang Li. Semilinear differential equations with nonlocal conditions in Banach spaces. Int. J. Nonlinear Sci. 2:131-139, 2006.
- [28] Ky Fan. Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Natl. Acad. Sci. USA 38:121-126, 1952.
- [29] J. García-Falset. Existence results and asymptotic behaviour for nonlocal abstract Cauchy problems. J. Math. Anal. Appl. 338:639-652, 2008.
- [30] J. García-Falset, S. Reich. Integral solutions to a class of nonlocal evolution equations. *Commun. Contemp. Math.* 12:1032-1054, 2010.
- [31] I. L. Glicksberg. A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. *Proc. Amer. Math. Soc.* 3:170-174, 1952.

- [32] D. Gordeziani, M. Avalishvili, G. Avalishvili. On the investigation of one nonclassical problem for Navier-Stokes equations. AMI 7:66-77, 2002.
- [33] J. Hale. Functional differential equations. Applied Mathematical Sciences 3, Springer Verlag, New York, Heidelbreg, Berlin, 1971.
- [34] N. Hirano, N. Shioji. Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems. *Abstr. Appl. Anal.* 2004:183-203, 2004.
- [35] M. McKibben. Discovering Evolution Equations with Applications. Vol. I. Deterministic Models. Chapman & Hall/CRC Appl. Math. Nonlinear Sci. Ser. London, 2011.
- [36] E. Mitidieri, I. I. Vrabie. Existence for nonlinear functional differential equations. *Hiroshima Math. J.* 17:627-649, 1987.
- [37] E. Mitidieri, I. I. Vrabie. A class of strongly nonlinear functional differential equations. Ann. Mat. Pura Appl. 151:125-147, 1988.
- [38] W. E. Olmstead, C. A. Roberts. The One-Dimensional Heat Equation with a Nonlocal Initial Condition. Appl. Math. Lett. 10:89-94, 1997.
- [39] A. Paicu. Periodic solutions for a class of differential inclusions in general Banach spaces. J. Math. Anal. Appl. 337:1238-1248, 2008.
- [40] A. Paicu. Periodic solutions for a class of nonlinear evolution equations in Banach spaces. An. Stiinţ. Al. I. Cuza Iaşi, (N.S.) 55:107-118, 2009.
- [41] A. Paicu, I. I. Vrabie. A class of nonlinear evolution equations subjected to nonlocal initial conditions. *Nonlinear Anal.* 72:4091-4100, 2010.
- [42] F. Rabier, P. Courtier, M. Ehrendorfer. Four-Dimensional Data Assimilation: Comparison of Variational and Sequential Algorithms. *Quart.* J. Roy. Meteorol. Sci. 118:673-713, 1992.
- [43] V. V. Shelukhin. A problem nonlocal in time for the equations of the dynamics of a barotropic ocean. *Siberian Math. Journal* 36:701-724, 1995.
- [44] I. I. Vrabie. Periodic solutions for nonlinear evolution equations in a Banach space. Proc. Amer. Math. Soc. 109:653-661, 1990.

- [45] I. I. Vrabie. Compactness methods for nonlinear evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics, Second Edition, London, 1995.
- [46] I. I. Vrabie. Existence for nonlinear evolution inclusions with nonlocal retarded initial conditions. *Nonlin. Anal. T.M.A.* 74:7047-7060, 2011.
- [47] I. I. Vrabie. Existence in the large for nonlinear delay evolution inclusions with nonlocal initial conditions. J. Functional Analysis 262:1363-1391, 2012.
- [48] I. I. Vrabie. Nonlinear retarded evolution equations with nonlocal initial conditions. Dynamic Systems and Applications 21:417-440, 2012.
- [49] I. I. Vrabie. Global solutions for nonlinear delay evolution inclusions with nonlocal initial conditions. *Set-Valued Anal.* 20:477–497, 2012.
- [50] I. I. Vrabie. Delay evolution equations with mixed nonlocal plus local initial conditions, *Commun. Contemp. Math.*, **17** (2015) 1350035 (22 pages) DOI: 10.1142/S0219199713500351.