А	.nn.	Acad.	Ro	m.	Sci.
	Ser	. Mat	h. A	App	l.
	Vol.	6. N	o. 1	/20	14

TOEPLITZ OPERATORS WITH BOUNDED HARMONIC SYMBOLS*

Namita Das[†]

Abstract

In this paper we show that if A and B are two bounded linear operators on the Bergman space $L^2_a(\mathbb{D})$ and $AT_{\phi}B = T_{\phi}$ for all $\phi \in$ $h^{\infty}(\mathbb{D})$ then $A = \alpha I$ and $B = \beta I$ for some $\alpha, \beta \in \mathbb{C}$ and $\alpha\beta = 1$. Here $h^{\infty}(\mathbb{D})$ is the space of all bounded harmonic functions on the open unit disk \mathbb{D} .

MSC: 47B35

ISSN 2066-6594

Keywords: Toeplitz operators, Bergman space, bounded harmonic function, Bergman shift, Hardy space

1 Introduction

Let $n \in \mathbb{N}$ and $L_a^{2,n}(\mathbb{D})$ be the Hilbert space of all analytic functions f on \mathbb{D} with finite norm

$$||f||^2_{L^{2,n}_a(\mathbb{D})} = \lim_{r \to 1} \int_{\overline{\mathbb{D}}} |f(rz)|^2 d\mu_n(z).$$

The measure $d\mu_1$ is the normalized Lebesgue arc length measure on the unit circle \mathbb{T} and for $n \geq 2$ the measure $d\mu_n$ is the weighted Lebesgue area measure given by $d\mu_n(z) = (n-1)(1-|z|^2)^{n-2}dA(z), z \in \mathbb{D}$, where $dA(z) = \frac{dxdy}{\pi}, z = x + iy$, is the planar Lebesgue area measure normalized so that the unit disk \mathbb{D} has area 1. The space $L_a^{2,1}(\mathbb{D}) = H^2(\mathbb{D})$, the standard Hardy space, the space $L_a^{2,2}(\mathbb{D}) = L_a^2(\mathbb{D})$, is the unweighted Bergman space and

^{*}Accepted for publication in revised form on January 29, 2014

[†]P.G.Department of Mathematics, Utkal University, Vanivihar, Bhubaneswar, Odisha, 751004, India, namitadas440@yahoo.co.in