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Abstract

The purpose of this paper is to determine conditions for the bound-
edness of the anisotropic norm of discrete–time linear stochastic sys-
tems with state dependent noise. It is proved that these conditions can
be expressed in terms of the feasibility of a specific system of matrix
inequalities.
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1 Introduction

Since the early formulation and developments due to E. Hopf and N. Wiener
in the 1940’s, the filtering problems received much attention. The famous
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results of Kalman and Bucy derived two decades later ([9], [10]) and their
successful implementation in many applications including aerospace, signal
processing, geophysics, etc., strongly stimulated the reasearch in this area.
A comprehensive survey of linear filtering and estimation can be found in
[8]. An important issue concerning the filtering performance is the robust-
ness with respect to the modelling uncertainty of the system which state is
estimated. It is known that the filter performance deteriorates due to the
modelling errors. Many papers have been devoted to the robust filtering
and in the presence of parametric uncertainty (see e.g. [4], [6], [11] and
the references therein). There are applications where the system parameters
are subject to random perturbations requiring stochastic models with state–
dependent noise (or multiplicative noise). Such stochastic systems have been
intensively studied over the last few decades (see [22] for early references) by
considering their H2 and H∞ norms ([6], [20]). Recalling that H2 optimiza-
tion may not be suitable when the considered signals are strongly colored
(e.g. periodic signals), and that H∞-optimization may poorly perform when
these signals are weakly colored (e.g. white noise), compromises between
these two approaches were seeked, mostly by considering multi objective
optimization (see e.g. [1] and [14]).

In the recent years, a considerable effort has been made to characterize
the so called anisotropic norm of linear deterministic systems [5], [12], [18],
[19]. The anisotropic norm offers and intermediate topology between the
H2 and H∞ norms, and as such it provides a single-objective optimization
approach alternative, to the multi objective approach of e.g. [1] and [14].

In [19] it is proved a Bounded Real Lemma type result for the anisotropic
norm of stable deterministic systems. It is shown that the boundedness norm
condition implies to solve a nonconvex optimization problem with reciproci-
cal variables.

The aim of the present paper is to investigate a procedure to determine
the anisotropic norm for stochastic systems with state–dependent noise and
to derive conditions for the boundedness of this norm in this case. Such
characterization will allow future developments in the control and estimation
algorithms to this class of stochastic systems which seems to have some
important applications (see e.g. [6] and [16]).

Notation: Throughout the paper the superscript ‘T ’ stands for matrix
transposition, Rn denotes the n dimensional Euclidean space, Rn×m is the
set of all n × m real matrices, and the notation P > 0, for P ∈ Rn×n
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means that P is symmetric and positive definite. The trace of a matrix Z
is denoted by Tr{Z}, col{a, b} denotes a column vector obtained with the
concatenation of the vectors a and b. We also denote by N (C) the basis for
the right null space of C.

2 Problem Statement

Consider the following discrete-time stochastic system we denote by F with
state- multiplicative noise:

xk+1 = (A+Hξk)xk +Bwk and zk = Cxk +Dwk (1)

where xk ∈ Rn denotes the state vector at moment k, wk ∈ Rm stands for
the input, zk ∈ Rp represents the output and ξk ∈ R is a random discrete-
time white noise sequence, with zero mean and unit covariance.

We consider the class of wk produced by the following generating filter
with m inputs and m outputs denoted by G:

hk+1 = (α+ ηξk)hk + βvk and wk = γhk + δvk, (2)

where vk is a white noise sequence, independent of ξk and also with zero
mean and unit covariance. Throughout the paper both stochastic systems
(1) and (2) are assumed exponentially stable in mean square. Recall that a
stochastic system of form (1) is called exponentially stable in mean square
if there exist c1 > 0 and c2 ∈ (0, 1) such that E[|xk|2] ≤ c2c

k
1|x0|2 for all

k ≥ 0 and for any initial condition x0 ∈ Rn at k = 0, where E denotes the
expectation and | · | stands for the Euclidian norm. Consider the estimate
ŵk of wk based on past measurements, namely,

ŵk = E{wk|wj , j < k} (3)

and denote the estimation error by

w̃k = wk − ŵk. (4)

The mean anisotropy of G is then obtained by the Szego-Kolmogorov for-
mula:

Ā(G) = −1

2
ln det

(
mE(w̃kw̃

T
k

Tr{wkw
T
k }

)
. (5)
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We denote the class of admissible filters G with Ā(G) < a by Ga. We note
that the anisotropy Ā(G) of wk is a measure of its whiteness. Namely, if wk

is white, then it can not be estimated (i.e. its optimal estimate is just zero)
and w̃k = wk which leads to Ā(G) = 0. On the other hand, if wk can be
perfectly estimated, then Ā(G) tends to infinity.

The a–anisotropic norm of the system F is defined as

||F ||a := supG∈Ga
||FG||2
||G||2

, (6)

where ||G||2 denotes the H2–type norm of the system (2), namely ||G||2 :=

limk→∞E[|wk|2]
1
2 , the sequence wk, k = 0, 1, ... being determined with null

initial conditions in (2). The computation of this norm may allow us to
analyze the disturbance attenuation properties for a given F or to design
feedback controllers which give rise to closed-loop systems F .

3 Generating Filter Mean Anisotropy

We first aim at computing Ā(G) in terms of α, β, γ, δ, η. To this end we
define ĥk = E{hk|wj , j < k} and we have ŵk = γĥk and w̃k = γh̃k + δvk
where h̃k := hk − h̃k denotes the state estimation error. Therefore,

E{w̃kw̃
T
k } = γXγT + δδT (7)

where X := E{h̃kh̃k}. Also, E{wkw
T
k } = γQγT +δδT where Q is the solution

of the Lyapunov equation

Q = αQαT + ηQηT + ββT . (8)

To complete the explicit computation of Ā(G) it remains to derive X. We
have the following result.

Lemma 1. The optimal filter gain L for which α − Lγ is stable and X
is minimized, is given by:

L∗ = (αXγT + βδT )
(
δδT + γXγT

)−1
(9)

where X is the stabilizing solution of the Riccati equation

X = αXαT − (αXγT +βδT )
(
δδT + γXγT

)−1
(γXαT + δβT ) +ηQηT +ββT

(10)
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and Q is the solution of the Lyapunov equation (8).
Proof: Consider the estimator

ĥk+1 = αĥk + L(wk − γĥk) (11)

From the latter and (2) one obtains[
h̃k+1

hk+1

]
=

[
α− Lγ 0

0 α

] [
h̃k
hk

]
+

[
0 η
0 η

] [
h̃k
hk

]
ξk

+

[
β − Lδ
β

]
vk.

According with the results derived for instance in [6, 7] concerning the com-
putation of the H2 norm of stochastic systems with state–dependent noise,

the H2 norm of the above system with the output h̃k equals
[
Tr
(
CPCT

)] 1
2

where C =
[
I 0

]
and the stochastic controllability Gramian

P =

[
X Z
ZT Q

]

is the solution of the Lyapunov equation

P = APAT +DPDT + BBT , (12)

where the following notations have been introduced

A :=

[
α− Lγ 0

0 α

]
, D :=

[
0 η
0 η

]
, B :=

[
β − Lδ
β

]
.

Then direct algebraic computations show that the blocks (1,1) and (2,2)
of equation (12) give

X = (α− Lγ)X (α− Lγ)T + ηQηT + (β − Lδ)(β − Lδ)T , (13)

and (8), respectively. The above equation (13) can be readily written as:

X = αXαT − (αXγT + βδT )
(
δδT + γXγT

)−1
(γXαT + δβT ) + ηQηT + ββT

+ (L− L∗)
(
δδT + γXγT

)
(L− L∗)T
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where L∗ is given by (9). Noting that Q satisfies (8), the theorem follows by
the monotonicity property of discrete-time Riccati equations (see for instance
[2], [17], [21]).

The stability of α − Lγ directly follows from the fact that X is the
stabilizing solution of (10).

We can, therefore, now present the formula for the mean anisotropy of
the generating filter (2):

Ā(G) = −1

2
ln det

(
m(γXγT + δδT )

Tr(γQγT + δδT )

)
(14)

where X and Q respectively satisfy (10) and (8). Thus the condition Λ̄(G) <
a becomes

−1

2
ln det

(
m(γXγT + δδT )

Tr(γQγT + δδT )

)
< a

which gives

det
(
γXγT + δδT

)
> e−

2a
m

(
Tr
(
γQγT + δδT

))m
.

One can show that the above condition is fulfilled if there exists q > 0
such that

γXγT + δδT > qIm > e−
2a
m

(
γQγT + δδT

)
. (15)

Recall that in the above developments X denotes the stabilizing solution of
the Riccati equation (10). Considering instead of this equation the inequality

X < αXαT − (αXγT + βδT )
(
δδT + γXγT

)−1
(γXαT + δβT )

+ηQηT + ββT
(16)

with X > 0, from the monotonicity properties of the stabilizing solution of
the Riccati equation with respect to the free term, it follows that if X̃ > 0
verifies (16) then X̃ < X where X is the solution of (10). Therefore the left
side inequality in (15) is fulfilled by the solution X of the Riccati equation
if it holds for a solution X̃ > 0 of (16).
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Defining

G =

[
α β
γ δ

]
, (17)

it follows based on Schur complements arguments that (16) is equivalent
with the inequality[

−X + ηQηT 0
0 0

]
+ G

[
X 0
0 Im

]
GT > 0. (18)

With the notation (17) the left side inequality in (15) may be written in the
equivalent form

[
0 Im

]
G
[
X 0
0 Im

]
GT
[

0
Im

]
> qIm. (19)

Remark 1. (i) S ince X > 0 it follows that condition (18) is fulfilled if
ηQηT > X;

(ii) I f δδT > qIm, the left side inequality in (15) is automatically fulfilled
for any X > 0.

Using again Schur complement arguments it follows that the right side
inequality in (15) is equivalent with

[
0 Im

]
G
[
X 0
0 Im

]
GT
[

0
Im

]
< qe

2a
m Im. (20)

4 Anisotropic Norm Computation

We note that the anisotropy Ā(G) of wk is a measure of its whiteness.
Namely, if wk is white, then it can not be estimated (i.e. its optimal es-
timate is just zero) and w̃k = wk which leads to Ā(G) = 0. In the case of
η = 0 (i.e. the case without mutiplicative noise) this corresponds to G = λI
for some λ > 0, where G notation is abused to be the transfer function
matrix of the generating system. If on the other hand the transfer matrix
function corresponding to G is rank deficient (namely w has frequency bands
with zero power spectrum) on some finite interval of frequencies, then Ā(G)
tends to infinity. These facts may provide intuitive explanation to the result
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of [12] where it is shown that ||F ||a of (6) coincides with the H2 norm at
a→ 0+ whereas it coincides with the H∞-norm for a→ +∞. We note that
[12] also provides asymptotic expansions of ||F ||a in the vicinity of those two
extremes.

Appending (2) to (1), and defining the augmented state-vector x̄k =
col{xk, hk} we readily obtain:

x̄k+1 = (Ā+ H̄ξk)x̄k + B̄wk and zk = C̄x̄k + D̄vk (21)

where

Ā =

[
A Bγ
0 α

]
, B̄ =

[
Bδ
β

]
, H̄ =

[
H 0
η 0

]
(22)

and

C̄ =
[
C Dγ

]
, D̄ = Dδ (23)

We now note that

||G||22 = Tr{γQγT + δδT } (24)

where Q satisfies (8) and that

||FG||22 = Tr{C̄P C̄T + D̄D̄T } (25)

where

P = ĀP ĀT + B̄B̄T + H̄PH̄T (26)

Applying Schur’s complements arguments, the following linear matrix in-
equalities, therefore, characterize ||F ||a < θ:

−P B̄ H̄P ĀP
B̄T −I 0 0
PH̄T 0 −P 0
PĀT 0 0 −P

 < 0 (27)

and 
−Q β ηQ αQ
βT −I 0 0
QηT 0 −Q 0
QαT 0 0 −Q

 < 0 (28)

where

Tr{C̄P C̄T + D̄D̄T } − Tr{γQγT + δδT }θ2 < 0. (29)
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We next partition P as follows:

P =

[
R M
MT S

]
. (30)

Using this notation and (17), the inequality (27) can be rewritten as

Z + PTGQ+QTGTP < 0 (31)

where

Z =



−R −M 0 HR HM AR AM
−MT −S 0 ηR 0 0 0

0 0 −I 0 0 0 0
RHT RηT 0 −R −M 0 0
MTHT 0 0 −MT −S 0 0
RAT 0 0 0 0 −R −M
MTAT 0 0 0 0 −MT −S


. (32)

and where

P =

[
0 I 0 0 0 0 0
BT 0 0 0 0 0 0

]
(33)

and

Q =

[
0 0 0 0 0 0 S
0 I 0 0 0 0 0

]
(34)

Then according to the so–called Projection Lemma (see e.g. [3], p. 22) there
exists G for which the condition (31) if and only if

W T
PZWP < 0 (35)

and
W T
QZWQ < 0 (36)

where WP and WQ are bases of the null spaces of P and Q, respectively.
Denoting NBT = N (BT ) we readily obtain:

WP =



NBT 0 0 0 0 0
0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


and WQ =



I 0 0 0 0
0 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
0 0 0 0 0


.
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Similarly, we rewrite (28), as:

Z̄ + P̄TGQ̄+ Q̄TGT P̄ < 0 (37)

where

Z̄ =


−Q 0 ηQ 0
0 −I 0 0

QηT 0 −Q 0
0 0 0 −Q


and

P̄T =

[
I 0 0 0
0 0 0 0

]
, Q̄ =

[
0 0 0 Q
0 I 0 0

]
.

Remark 2. The solutions G of (31) (and similarly of (37)) may be
expressed using the following parameterization (see the proof in [15], p. 30)
G = Φ1 + Φ2LΦ3 with the parameter L such that LTL < I, where Φ1, Φ2

and Φ3 depends on Z, P and Q.

Further, based on the notations introduced above, the condition (29)
becomes

Tr


[
C

[
0 D

]
G
[
In
0

] ] [
R M
MT S

] CT[
In 0

]
GT
[

0
DT

] 
+
[

0 D
]
G
[

0
DT

]
− θ2

[
0 Im

]
G
[
Q 0
0 Im

]
GT
[

0
Im

]}
< 0.

(38)

The above developments are concluded in the following result.

Theorem 1. The a–anisotropic norm of the stochastic system with
state–dependent noise (1) is less than θ > 0 if the system of matrix in-
equalities (18)–(20), (31), (37), (38) are feasible with respect to the scalar
q > 0 and to the matrices G, η, Q > 0, X > 0, P > 0 where G and P are
defined by (17) and (30), respectively .

5 Final remarks

The boundedness conditions for the anisotropic norm given by Theorem 1
require to solve a sign–indefinite quadratic optimization problem. The fol-
lowing research will be devoted to the development of numerical algorithms
based on semidefinite programming to solve this optimization problem.



On the anisotropic norm of stochastic systems 219

References

[1] D.S. Bernstein and W.M. Haddad, LQG Control with and H∞ Per-
formance Bound a Riccati equation Approach, IEEE Transactions on
Automatic Control, Vol. 34, pp. 293-305, 1989.

[2] R.R. Bitmead, M. Gevers, I.R. Petersen and R.J. Kaye, ”Monotonic-
ity and stabilizability properties of solutions of the Riccati difference
equation: propositions, lemmas, theorems, fallacious conjectures and
counter-examples”, Systems & Control Letters, vol. 5, No 5, pp. 309-
315, April 1985.

[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequality in Systems and Control Theory, SIAM Frontier Series, 1994.

[4] Costa, O. L. V., and Kubrusly, C. S., ” State-feedback H∞-control for
discrete-time infinite-dimensional stochastic bilinear systems,“ J. Math.
Sys. Estim. & Contr., Vol. 6, 1996, pp. 1-32.

[5] P. Diamond, I. Vladimirov, A. Kurdyukov and A. Semyonov, Aniso-
tropy-Based Performance Analysis of Linear Discrete Time Invariant
Control Systems, Int. Journal of Control, Vol. 74, pp. 28-42, 2001.

[6] E. Gershon, U. Shaked and I. Yaesh, H∞ Control and Estimation of
State-Multiplicative Linear Systems, Springer, 2005.

[7] A. Halanay and T. Morozan, ”Optimal stabilizing compensators for lin-
ear discrete–time linear systems under independent random perturba-
tions”, Revue Roumaine Math. Pures et Appl., 37(3), 1992, pp. 213–224.

[8] T. Kailath, ”A view of three decades of linear filtering theory”, IEEE
Transactions on Information Theory, 20, 1974, pp. 146–181.

[9] R. Kalman, ”A new approach to linear filtering and prediction prob-
lems”, ASME Trans.–Part D, J. Basic Engineering, 82, 1960, pp. 34–45.

[10] R. Kalman and R.S. Bucy, ”New results in linear filtering and predic-
tion theory”, ASME Trans.–Part D, J. Basic Engineering, 83, 1961,
pp. 95–108.

[11] R.S. Mangoubi, Robust Estimation and Failure Detection, Springer,
1998.



220 Adrian-Mihail Stoica, Isaac Yaesh

[12] E. A. Maksimov, On the Relationship Between the Problem of Aniso-
tropy-based Controller Synthesis and Classical Optimal Control Prob-
lems, Automation and Remote Control, Vol. 68, pp. 1594-1603, 2007.

[13] T. Morozan, ”Parametrized Riccati equations associated to input–
output operators for discrete–time systems with state–dependent
noise”, Stochastic Analysis and Applications, 16(5), 1998, pp. 915–931.

[14] H. Rotstein and M. Sznaier, An Exact Solution to General Four Block
Discrete-Time Mixed H2/H∞ problems via COnvex Optimization, IEEE
Transactions on Automatic Control, Vol. 43, pp. 1475-1481, 1998.

[15] R.E. Skelton, T. Iwasaki and K. Grigoriadis, A Unified Algebraic Ap-
proach to Linear Control Design, Taylor & Francis, 1998.

[16] A.-M Stoica and I. Yaesh, “Markovian Jump Delayed Hopfield Networks
with Multiplicative Noise”, Automatica, Vol. 44, pp. 49-55, 2008.

[17] A.-M Stoica and I. Yaesh, “Kalman Type Filtering for Discrete-Time
Stochastic Systems with State-Dependent Noise”, Proceedings of the
MTNS 2008, Blacksburg, Virginia, 2008.

[18] M.M. Tchaiskovsky and A. P. Kurdyukov, Computing Anisotropic
Norm of Linear Discrete Time Invariant System via LMI Based Ap-
proach, Archives of Control Sciences, Int. Journal of Control, Vol. 74,
pp. 28-42, 2001.

[19] M.M. Tchaikovsky, A.P. Kurdyukov and V.N. Timin, Synthesis of
Anisotropic Suboptimal Controllers by Convex Optimization, arXiv
1108.4982v4[cs.SY], 2011.

[20] W. Li, E. Todorov and R.E. Skelton, ”Estimation and Control of Sys-
tems with Multiplicative Noise via Linear Matrix Inequalities”, Pro-
ceedings of the 43rd IEEE Conference on Decision and Control, Decem-
ber 14-17, 2004 Atlantis, Paradise Island, Bahamas.

[21] H.K. Wiemmer, Monotonicity of maximal solutions of algebraic Riccati
equations”, Systems and Control Letters, 5, 1985, pp. 317-319.

[22] W.M. Wonham, ”Random differential equations in control theory”,
Probabilistic methods in Applied Math., 2, 1970.


