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Abstract

In this paper we consider inexact Newton methods for finding the
largest positive definite solutions of two nonlinear matrix equationsX+
A∗X−1A = Q and X − A∗X−1A = Q, respectively. Using Newton’s
method for considered equations requires solving a Stein’s equation
at each iteration. For solving the Stein’s equation, we use Smith-
type iterations instead of exact methods. Nonlocal convergence of the
process is shown. Numerical experiments are included to illustrate the
theory.
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1 Introduction

We consider iterative methods for solving the nonlinear matrix equations

X +A∗X−1A = Q (1)
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and
X −A∗X−1A = Q (2)

where Q is a n× n Hermitian positive definite matrix, A is a n× n matrix,
and A∗ denotes the conjugate transpose of A. The equations (1) and (2)
can be reduced to the corresponding equations X + A∗

1X
−1A1 = I and

X − A∗
1X

−1A1 = I with right-hand side I (I is identity matrix). The
considered equations with right-hand side Q or I have been studied by many
authors [1, 2, 3, 4, 5, 6, 7, 8]. Both equations find application in various
fields, see references given in [1] and [5].

Eq. (1) was introduced by Anderson et al. [1]. Engwerda, Ran and Ri-
jkeboer [2] have investigated the theoretical properties of Eq. (1) as neces-
sary and sufficient conditions for the existence of a positive definite solution
(PDS). They also have given conditions for a largest and smallest positive
definite solutions (PDSs) and iterative methods (fixed-point iterations) for
finding them. Moreover, it is proven the connection of (1) with a discrete
algebraic Riccati equation [2, 3].

Eq. (2) and its Hermitian solutions were studied by Ferrante and Levy
[5]. They have proved that the largest solution corresponds to its unique
PDS. They also have studied its relationship with another type discrete
algebraic Riccati equation and have given an iterative method (fixed-point
iteration) for finding the unique PDS.

Besides the fixed-point iterations presented in [1, 2, 3] and [5] for equa-
tions (1) and (2), respectively, some authors have proposed other iterative
methods for finding PDSs. Zhan [4] has proposed an inverse-free variant
of the fixed-point iteration for the largest solution of Eq. (1). Guo and
Lancaster [6] have proposed second inverse-free variant of the fixed-point
iteration for Eq. (1) and Newton’s method for both equations (1) and (2).
Meini [7] has studied a cyclic reduction method for finding a largest and a
smallest solutions of the equations (1) and (2), respectively.

Motivated by investigation of Gao and Bai [10], we consider inexact
Newton methods for finding the largest solutions of the equations (1) and
(2), respectively. It is known that the Newton’s method requires solving a
Stein’s equation at each iteration. To solve it, instead of exact methods, we
use 2-Smith iteration [9].

The paper is organized as follows: In Section 2, we present some known
necessary and/or sufficient conditions for the existence of the PDS and some
iterative methods for solving the considered equations. In Section 3 we con-
sider inexact Newton methods and finally in Section 4 we will give numerical
examples to show the behavior of the considered methods.
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Throughout the paper A > 0 (A ≥ 0) means that A is a Hermitian
positive definite (semi-definite) matrix, ρ(A) and ∥A∥ are the spectral radius
and the spectral norm of a matrix A, respectively. Moreover, for a n × n
matrix A, we use ∥A∥∞ = maxi

∑n
j=1 |aij | We will say that XS and XL are

a smallest and a largest PDSs of Eq. (1), respectively, when for every PDS
X, we have XS ≤ X ≤ XL. Also, we will say that X− and X+ are a smallest
and a largest Hermitian solutions of the Eq.(2), respectively, when for every
Hermition solution X we have X− ≤ X ≤ X+.

2 Preliminaries

In this section, we present some known necessary and/or sufficient conditions
for the existence of the PDS and some iterative methods for the largest PDS
to the equations (1) and (2), respectively.

Engwerda et al. [2] have studied solvability of Eq. (1) in terms of
properties of the corresponding rational matrix-valued function ψ(λ) =
Q+λA+λ−1A∗. They have proved that: Under assumption Q > 0, Eq. (1)
has a PDS if and only if ψ is regular (i.e. detψ(λ) ̸= 0 for some λ) and
ψ(λ) ≥ 0 for all λ on the unit circle [2, Theorem 2.1]. Moreover:

Theorem 1. [2, Theorem 3.4] Suppose Q > 0 and assume Eq. (1) has
a PDS. Then this equation has a largest and a smallest solution XL and
XS, respectively. Moreover, XL is the unique solution for which X + λA is
invertible for |λ| < 1, while XS is the unique solution for which X + λA∗ is
invertible for |λ| > 1.

Therefore, the largest PDS XL of Eq. (1) is the unique solution for which
ρ(X−1

L A) ≤ 1.
Let us denote by ω(A) the numerical radius of a matrix A, i.e.,

ω(A) = max
∥x∥=1

|x∗Ax|.

Theorem 2. [2, Theorem 5.2] Suppose A is nonsingular. Then Eq. (1) has

a PDS X if and only if ω(Q− 1
2AQ− 1

2 ) ≤ 1
2 .

Remark 1. Let Q = LTL be Cholesky decomposition of Q > 0. Then
Q− 1

2AQ− 1
2 can be replaced with L−TAQ−1 in Theorem 2.

Ferrante and Levy [5] have investigated Eq. (2). Following are some of
their results:
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Theorem 3. [5, Proposition 4.1] The set of solutions of Eq. (2) admits a
largest element, which is the unique PDS X+.

Theorem 4. [5, Corollary 4.1] The set of solutions of Eq. (2) admits a
smallest element X−, which for A nonsingular is its unique negative definite
solution.

Now we will present some known iterative methods for founding the
largest solutions XL and X+ of Eq. (1) and Eq. (2), respectively, which we
will compare with our method.

Firstly, we present the iterative methods for Eq. (1).

Algorithm 1 (Basic fixed-point iteration for Eq. (1)). Take X0 = Q. For
k = 0, 1, . . ., compute

Xk+1 = Q−A∗X−1
k A,

until ∥Xk+1 −Xk∥∞ ≤ tol, for a fixed error bound tol > 0.

Then XL ≈ Xk+1.

For Algorithm 1 (BFPI-(1)) we have:

� X0 ≥ X1 ≥ X2 ≥ · · · , and limk→∞Xk = XL [2];

� limk→∞ sup k
√

∥Xk −XL∥ ≤ (ρ(X−1
L A))2 [6, Theorem 2.3].

We mentioned earlier that ρ(X−1
L A) ≤ 1. From above, the convergence

of the BFPI-(1) is R-linear, whenever ρ(X−1
L A) < 1, and typically sublinear,

when ρ(X−1
L A) = 1.

Next algorithm, representing Newton’s method was studied by Guo and
Lancaster [6].

Algorithm 2 (Newton’s method for Eq. (1)). Take X0 = Q. For k=0,1,. . . ,
compute Lk = X−1

k A, and solve

Xk+1 − L∗
kXk+1Lk = Q− 2L∗

kA, (3)

until ∥Xk+1 −Xk∥∞ ≤ tol, for a fixed error bound tol > 0.

Then XL ≈ Xk+1.

Algorithm 2 (NM-(1)) has the following properties [6, Theorem 5.3]:

� ρ(Lk) < 1, for k = 0, 1, . . .;

� X0 ≥ X1 ≥ X2 ≥ · · · , and limk→∞Xk = XL;
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� The convergence is quadratic if ρ(X−1
L A) < 1. If ρ(X−1

L A) = 1 and
all eigenvalues of X−1

L A on the unit circle are semisimple, then the
convergence is either quadratic or linear with rate 1/2.

The third method we will present is the Cyclic reduction method, con-
sidered by Meini [7].

Algorithm 3 (Cyclic reduction for Eq. (1)). Set X0 = Y0 = Q0 = Q,
A0 = A. For k = 0, 1, . . ., compute

Ak+1 = AkQ
−1
k Ak,

Qk+1 = Qk −AkQ
−1
k A∗

k −A∗
kQ

−1
k Ak,

Xk+1 = Xk −A∗
kQ

−1
k Ak,

Yk+1 = Yk −AkQ
−1
k A∗

k,

until ∥Xk+1 −Xk∥∞ ≤ tol, for a fixed error bound tol > 0.

Then XL ≈ Xk+1 and XS ≈ Yk+1.

The Meini’s cyclic reduction method has the following properties [7]:

� Q0 ≥ Q1 ≥ Q2 ≥ · · · > 0;

� X0 ≥ X1 ≥ X2 ≥ · · · , and limk→∞Xk = XL;

� Y0 ≥ Y1 ≥ Y2 ≥ · · · , limk→∞ Yk = YL, and XS = Q− YL;

� The convergence is quadratic if ρ(X−1
L A) < 1. If ρ(X−1

L A) = 1 and
all eigenvalues of X−1

L A on the unit circle are semisimple, then the
convergence is at least linear with rate 1

2 [8].

Now we will present analogous methods to the above for Eq. (2).

Algorithm 4 (Basic fixed-point iteration for Eq. (2)). Take X0 = Q. For
k = 0, 1, . . ., compute

Xk+1 = Q+A∗X−1
k A,

until ∥Xk+1 −Xk∥∞ ≤ tol, for a fixed error bound tol > 0.

Then X+ ≈ Xk+1.

For Algorithm 4 (BFPI-(2)), we have:

� X2k−2 ≤ X2k ≤ X2s+1 ≤ X2s−1, for all k, s ≥ 1,
and limk→∞Xk = X+ [5, Lemma 5.1];
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� limk→∞ sup k
√
∥Xk −X+∥ ≤ (ρ(X−1

+ A))2 < 1 [6, Theorem 2.6].

Hence, the convergence of the BFPI-(2) is R-linear.

Algorithm 5 (Newton’s method for Eq. (2)). For given X0 sufficiently
close to X+ and k=0,1,. . . , compute Lk = X−1

k A, and solve

Xk+1 + L∗
kXk+1Lk = Q+ 2L∗

kA, (4)

until ∥Xk+1 −Xk∥∞ ≤ tol, for a fixed error bound tol > 0.

Then X+ ≈ Xk+1.

Newton’s method for Eq (2) guarantees quadratic convergence if the
initial guess X0 must be chosen close to the solution X+. It can be used as
an efficient correction method [6].

Algorithm 6 (Cyclic reduction for Eq. (2)). Set

A1 = AQ−1A, Q1 = Q+AQ−1A∗ +A∗Q−1A,

X1 = Q+A∗Q−1A, Y1 = Q+AQ−1A∗.

For k = 1, 2, . . . , compute

Ak+1 = AkQ
−1
k Ak,

Qk+1 = Qk −AkQ
−1
k A∗

k −A∗
kQ

−1
k Ak,

Xk+1 = Xk −A∗
kQ

−1
k Ak,

Yk+1 = Yk −AkQ
−1
k A∗

k,

until ∥Xk+1 −Xk∥∞ ≤ tol, for a fixed error bound tol > 0.

Then X+ ≈ Xk+1 and X− ≈ Yk+1.

3 Inexact Newton methods

3.1 Inexact Newton methods for Eq. (1)

We remind that the Newton’s method for Eq. (1) requires solving Eq. (3),
which we rewrite in the following way:

(Xk+1 −Xk)− L∗
k(Xk+1 −Xk)Lk = Q− L∗

kA−Xk. (5)

We note that Eq. (5) (i.e. (3)) is of the type of the well-known Stein’s
equation:

Y − C∗Y C = D. (6)
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Lemma 1. [11] Let C, D be square matrices.

(a) If ρ(C) < 1, then Eq. (6) has a unique solution Y , and Y ≥ 0 (Y > 0),
when D ≥ 0 (D > 0).

(b) If there is some Y > 0 such that Y −C∗Y C is positive definite (semi-
definite), then ρ(C) < 1 (ρ(C) ≤ 1).

Remark 2. In case of ρ(C) < 1 the unique solution Y of Eq. (6) has
representation

Y =
∞∑
j=0

(C∗)jDCj .

Remark 3. Under condition of Lemma 1, (a), we have Y ≤ 0 (Y < 0),
when D ≤ 0 (D < 0).

The Stein’s equation (6) can be solved with an exact method or itera-
tively.

Further in a considered method, similar to Gao and Bai [10], we will use
2-Smith iteration [9]: Set Y0 = D, C0 = C. For p = 0, 1, . . . , compute

Yp+1 = Yp + C∗
pYpCp, Cp+1 = C2

p . (7)

We have that

Yp =
2p−1∑
j=0

(C∗)jDCj , p = 0, 1, . . . .

Hence, in case of ρ(C) < 1 the sequence {Yp} quadratically converges to
the unique solution Y of Eq. (6).

Now we propose two variants of the Inexact Newton method for Eq. (1).
Firstly,

Algorithm 7 (Inexact Newton method for Eq. (1)). Take X0 = Q and m.

For k = 0, 1, . . . , compute

Lk = X−1
k A, Dk = Q− L∗

kA−Xk,

take Ck,0 = Lk, Yk,1 = Dk + C∗
k,0DkCk,0,

for p = 1, 2, . . . ,m, compute

Ck,p = C2
k,p−1, Yk,p+1 = Yk,p + C∗

k,pYk,pCk,p,

Xk+1 = Xk + Yk,m+1,

until ∥Yk,m+1∥∞ ≤ tol, for a fixed error bound tol > 0.

Then XL ≈ Xk+1.
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In the each step k in the Algorithm 7 we approximate Yk of the equation

Yk − L∗
kYkLk = Dk (8)

by Yk,m+1 (see Eq. (5)), using the 2-Smith iteration.
In the second variant of the Inexact Newton method (INM-(1)), the fixed

number m of the 2-Smith iteration, we replace with k − the iteration step.

Algorithm 8 (Inexact Newton method for Eq. (1)). Take X0 = Q.

For k = 0, 1, . . . , compute

Lk = X−1
k A, Dk = Q− L∗

kA−Xk,

take Ck,0 = Lk, Yk,1 = Dk + C∗
k,0DkCk,0,

for p = 1, 2, . . . , k, compute

Ck,p = C2
k,p−1, Yk,p+1 = Yk,p + C∗

k,pYk,pCk,p,

Xk+1 = Xk + Yk,k+1,

until ∥Yk,k+1∥∞ ≤ tol, for a fixed error bound tol > 0.

Then XL ≈ Xk+1.

Theorem 5. If Eq. (3) has a positive definite solution, then Algorithm 7
determines a sequence of Hermitian matrices {Xk} for which ρ(Lk) < 1,
Dk ≤ 0, Xk ≥ Xk+1 for k = 0, 1, . . ., and limk→∞Xk = XL, where XL is
the largest solution of Eq. (3).

Proof. Let X+ be any PDS of Eq. (3), i.e. Q−A∗X−1
+ A−X+ = 0.

We will prove the theorem by induction. Together with the sequence
{Xk}∞k=0, we consider the sequences {X ′

k}∞k=1 and {Yk}∞k=0, where Yk is a
unique solution of Eq. (8) and X ′

k+1 = Xk + Yk.
After simple calculations for X ′

k+1, we have

X ′
k+1 − L∗

kX
′
k+1Lk = Q− 2L∗

kA (9)

and

X ′
k+1 −X+ − L∗

k(X
′
k+1 −X+)Lk = (A−X+Lk)

∗X−1
+ (A−X+Lk). (10)

For k = 0, we have X0 = Q ≥ X+ and

0 < X+ = Q−A∗X−1
+ A ≤ Q−A∗Q−1A = Q− (Q−1A)∗QQ−1A.

Thus, ρ(L0) < 1 by Lemma 1.
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By D0 = Q−A∗Q−1A−Q = −A∗Q−1A ≤ 0, Remark 2, and Remark 3,
we have Y0 ≤ Y0,m+1 ≤ 0 and X ′

1 ≤ X1 ≤ X0.
Since ρ(L0) < 1, from (10) in case of k = 0 and Lemma 1, it follows

X ′
1 ≥ X+. Hence X1 ≥ X+.
Assume that the statement of the theorem is true for k = q, i.e.

ρ(Lq) < 1, Dq ≤ 0, Xq ≥ Xq+1,

and we suppose Xq ≥ X+, also.
Now we will prove that it is true for k = q + 1.
From ρ(Lq) < 1, Dq ≤ 0, and (10) in case of k = q + 1 we have

Yq ≤ Yq,m+1 ≤ 0 and X+ ≤ X ′
q+1 ≤ Xq+1 ≤ Xq.

By using equalities

Yq − Yq,m+1 − L∗
q(Yq − Yq,m+1)Lq = (L∗

q)
2m+1

DqL
2m+1

q ,

(Lq − Lq+1)
∗Xq+1(Lq − Lq+1) = L∗

qXq+1Lq − 2L∗
qA+ L∗

q+1A,

and (9) in case of k = q, we have

Dq+1 = Q− L∗
q+1A−Xq+1

= X ′
q+1 − L∗

qX
′
q+1Lq + 2L∗

qA− L∗
q+1A−Xq+1

= Yq − Yq,m+1 − L∗
q(Yq − Yq,m+1)Lq − (Lq − Lq+1)

∗Xq+1(Lq − Lq+1)

= (L∗
q)

2m+1
DqL

2m+1

q − (Lq − Lq+1)
∗Xq+1(Lq − Lq+1) ≤ 0.

Hence,

Xq+1 − L∗
q+1Xq+1Lq+1 = Q− 2L∗

q+1A−Dk+1

= Q− 2L∗
q+1A− (L∗

q)
2m+1

DqL
2m+1

q

+ (Lq − Lq+1)
∗Xq+1(Lq − Lq+1)

and

Xq+1 −X+ − L∗
q+1(Xq+1 −X+)Lq+1

= (A−X+Lq+1)
∗X−1

+ (A−X+Lq+1)− (L∗
q)

2m+1
DqL

2m+1

q

+ (Lq − Lq+1)
∗Xq+1(Lq − Lq+1). (11)

Let us consider the operators Sk : Hn → Hn, k = 0, 1, . . ., related

Sk(H) = L∗
kHLk, H ∈ Hn, (12)
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where Hn is the space of n×n Hermitian matrices, endowed with the scalar
product ⟨X,Y ⟩ = traceXY . We note that the spectrum of Sk is equal to the
spectrum of LT

k ⊗ L∗
k (⊗ means the Kronecker product) [12]. So ρ(Sk) < 1

if and only if ρ(Lk) < 1. Hence ρ(Sq) < 1.
Assume that ρ(Sq+1) ≥ 1. Since Sq+1 is positive operator, defined on

Hn, by Krein-Rutman’s theorem [13] it follows that there is V ≥ 0, V ̸= 0
with S∗

q+1(V ) = λV for some λ ≥ 1. Let W be the right-hand side of (11),
then we get

0 ≤ ⟨V,W ⟩ = ⟨V,Xq+1 −X+⟩ − ⟨V,Sq+1(Xq+1 −X+)⟩
= (1− λ)⟨V,Xq+1 −X+⟩ ≤ 0.

Hence ⟨V,W ⟩ = 0. Since Dq ≤ 0, X−1
+ > 0, Xq+1 > 0 in (11), we

conclude that ⟨V, (Lq −Lq+1)
∗Xq+1(Lq −Lq+1)⟩ = 0 and (Lq −Lq+1)V = 0,

i.e., LqV = Lq+1V . Thus, S∗
q (V ) = S∗

q+1(V ) = λV, which contradicts
ρ(Sq) < 1. So, ρ(Sq+1) < 1 and ρ(Lq+1) < 1.

Therefore, ρ(Lk) < 1, Dk ≤ 0, and Xk ≥ Xk+1 ≥ X+ for k = 0, 1, . . . q,
where X+ is arbitrary PDS of Eq. (1). Thus, limk→∞ = XL.

Theorem 6. If Eq. (3) has a positive definite solution, then Algorithm 8
determines a sequence of Hermitian matrices {Xk} for which ρ(Lk) < 1,
Dk ≤ 0, Xk ≥ Xk+1 for k = 0, 1, . . ., and limk→∞Xk = XL, where XL is
the largest solution of Eq. (3).

Proof. The proof is analogous to Theorem 5.

3.2 Inexact Newton methods for Eq. (2)

For Eq. (2) the Newton’s method requires solving Eq. (4), which we rewrite
in the following way:

(Xk+1 −Xk) + L∗
k(Xk+1 −Xk)Lk = Q+ L∗

kA−Xk. (13)

Both of the equations (4) and (13) are of the following type equation:

Y + C∗Y C = D. (14)

A sufficient condition for the existence of a unique solution Ȳ of Eq. (14)
is D̃−C∗D̃C > 0 for a D̃ > 0 (see [12, Proposition 3.1]). Thus, by Lemma1
it follows ρ(C) < 1. Moreover, in this case the unique solution is given by

Ȳ =

∞∑
j=0

(−1)j(C∗)jDCj . (15)
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From D > 0 does not follow Ȳ > 0, but if D − C∗DC > 0, then Ȳ > 0
(see [12, Theorem 3.3]). The unique solution Ȳ of Eq. (14) can be computed
iteratively by 2-Smith iteration (7) with Y1 = D − C∗DC and C1 = C2.

Now we propose analogous of Algorithm 7 and Algorithm 8 variants of
the Inexact Newton method for Eq. (2).

Algorithm 9 (Inexact Newton method for Eq. (2)). Take X0 sufficiently
close to X+ and m.

For k = 0, 1, . . . , compute

Lk = X−1
k A, Dk = Q+ L∗

kA−Xk,

take Ck,0 = Lk, Yk,1 = Dk − C∗
k,0DkCk,0

for p = 1, 2, . . . ,m, compute

Ck,p = C2
k,p−1, Yk,p+1 = Yk,p + C∗

k,pYk,pCk,p,

Xk+1 = Xk + Yk,m+1,

until ∥Yk,m+1∥∞ ≤ tol, for a fixed error bound tol > 0.

Then X+ ≈ Xk+1.

Algorithm 10 (Inexact Newton method for Eq. (2)). Take X0 sufficiently
close to X+.

For k = 0, 1, . . . , compute

Lk = X−1
k A, Dk = Q+ L∗

kA−Xk,

take Ck,0 = Lk, Yk,1 = Dk − C∗
k,0DkCk,0

for p = 1, 2, . . . , k, compute

Ck,p = C2
k,p−1, Yk,p+1 = Yk,p + C∗

k,pYk,pCk,p,

Xk+1 = Xk + Yk,k+1,

until ∥Yk,k+1∥∞ ≤ tol, for a fixed error bound tol > 0.

Then X+ ≈ Xk+1.

In the two algorithms above, X0 sufficiently close to X+ is needed, as in
the original Newton’s method (Algorithm 5).

We present these algorithms by numerical examples in the next section
and its convergence behavior we investigate in a future work.

Now we will propose an algorithm for Eq. (2) by using its relation to an
equation of the type of Eq. (1).
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Let X+ be a unique PDS of Eq. (2). Then, by Woodbury formula, we
have

X+ = Q+A∗X−1
+ A = Q+A∗(Q+A∗X−1

+ A)−1A

= Q+A∗[Q−1 −Q−1A∗(X+ +AQ−1A∗)−1AQ−1]A

= Q+A∗Q−1A−A∗Q−1A∗(X+ +AQ−1A∗)−1AQ−1A

and
ZL +B∗Z−1

L B = P,

where B = AQ−1A, P = Q+A∗Q−1A+AQ−1A∗, and ZL = X++AQ−1A∗

is the largest solution of equation Z +B∗Z−1B = P. Thus, following Algo-
rithm8, we get:

Algorithm 11 (Inexact Newton method for Eq. (2)). Take Z0 = Q +
A∗Q−1A+AQ−1A∗.

For k = 0, 1, . . . , compute

Lk = Z−1
k A, Dk = Z0 − L∗

kA− Zk,

take Ck,0 = Lk, Yk,1 = Dk + C∗
k,0DkCk,0,

for p = 1, 2, . . . , k, compute

Ck,p = C2
k,p−1, Yk,p+1 = Yk,p + C∗

k,pYk,pCk,p,

Zk+1 = Zk + Yk,k+1,

until ∥Yk,k+1∥∞ ≤ tol, for a fixed error bound tol > 0.

Then X+ ≈ Zk+1 −AQ−1A∗.

4 Numerical examples

In this section, we conduct numerical experiments to approximate the largest
PDS of Eq. (1) and the unique PDS of Eq. (2), respectively. We compare
the proposed Inexact Newton methods with Basic fixed-point iteration, New-
ton’s method and Cyclic reduction for the both equations, respectively. As
practical stopping criterion for each algorithm, we use ∥Xk −Xk−1∥∞ ≤ tol
for given tol > 0 (∥Zk − Zk−1∥∞ ≤ tol for Algorithm11). For the con-
sidered examples and algorithms, we report k – the number of iterations,
∥Xk −Xk−1∥∞, and res+(X) = ∥Q − A∗X−1A − X∥∞ or res−(X) =
∥Q+A∗X−1A−X∥∞.
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Example 1. [6, Example 7.1] We consider Eq. (1) with matrix coefficients

A =

(
2 1
3 4

)
, Q =

(
6.0 5.0
5.0 8.6

)
.

For the matrices in Example 1, we have ρ(Q− 1
2AQ− 1

2 ) ≈ 0.434. In Ta-
ble 1 we report the results of experiments for Example 1.

Table 1: Numerical results of Example 1 with tol = 10−8.

Algorithm k ∥Xk −Xk−1∥∞ res+(Xk)

Algorithm 1 (BFPI-(1)) 27 8.5492e− 09 3.2977e− 09
Algorithm 3 (CR-(1)) 6 3.5822e− 11 2.6645e− 15
Algorithm 2 (NM-(1)) 6 5.1056e− 11 3.1508e− 11
Algorithm 8 (INM-(1)) 6 5.3001e− 11 1.3323e− 15
Algorithm 7 (INM-(1)) (m=10) 6 5.1068e− 11 8.8818e− 16
Algorithm 7 (INM-(1)) (m=4) 6 5.1063e− 11 4.4409e− 16

Example 2. [6, Example 7.2] We consider Eq. (1) with Q = I and

A =

 0.2 0.2 0.1
0.2 0.15 0.15
0.1 0.15 0.25

 .

We note that in Example 2 the matrix A is normal and ρ(A) = 1
2 . The

results of the experiment are presented in Table 2.

Table 2: Numerical results of Example 2 with tol = 10−8

Algorithm k ∥Xk −Xk−1∥∞ res+(Xk)

Algorithm 1 (BFPI-(1)) 7071 9.9988e− 09 9.9960e− 09
Algorithm 3 (CR-(1)) 26 7.5853e− 09 8.3267e− 17
Algorithm 2 (NM-(1)) 25 8.1568e− 09 1.6653e− 16
Algorithm 8 (INM-(1)) 25 9.6333e− 09 2.2204e− 16
Algorithm 7 (INM-(1)) (m=10) 167 9.9060e− 09 4.8064e− 12
Algorithm 7 (INM-(1)) (m=4) 200 4.0684e− 07 1.2647e− 08

For Example 2 we notice that, with Algorithm7 (INM-(1)), the number
of iterations k grows when the number of internal iterations decreases. The
iterations of Algorithm8 coincides with those of NM-(1) and close to those
of CR-(1). The Algorithm 7 in case of m = 4 terminated at 200 iterations.
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Example 3. [6, Example 7.3] We consider Eq. (1) with

A =

 0.37 0.13 0.12
−0.30 0.34 0.12
0.11 −0.17 0.29

 , Q =

 1.20 −0.30 0.10
−0.30 2.10 0.20
0.10 0.20 0.65

 .

For the matrices in Example 3, we have ρ(Q− 1
2AQ− 1

2 ) ≈ 0.487. The
results of the experiment are presented in Table 3.

Table 3: Numerical results of Example 3 with tol = 10−12

Algorithm k ∥Xk −Xk−1∥∞ res+(Xk)

Algorithm 1 (BFPI-(1)) 332 9.4835e− 13 8.8862e− 13
Algorithm 3 (CR-(1)) 10 1.2216e− 16 3.3307e− 16
Algorithm 2 (NM-(1)) 9 1.3942e− 15 1.1796e− 16
Algorithm 8 (INM-(1)) 9 1.5293e− 15 1.1796e− 16
Algorithm 7 (INM-(1)) (m=10) 9 1.0292e− 15 1.1102e− 16
Algorithm 7 (INM-(1)) (m=4) 16 9.3708e− 13 8.2226e− 15

The following examples are for Eq. (2).

Example 4. [6, Example 7.4] We consider Eq. (2) with matrix coefficients

A =

(
50 20
10 60

)
, Q =

(
3 2
2 4

)
.

For the matrices in Example 4, we have ρ(Q−1A) ≈ 27. Hence, Algo-
rithm9 and Algorithm10 with X0 = Q are not applicable. The results of the
experiment are presented in Table 4. Indeed, Algorithm9 and Algorithm10
with X0 = Q are not convergent and terminated after 200 iterations.

Table 4: Numerical results of Example 4 with tol = 10−10

Algorithm k ∥Xk −Xk−1∥∞ res−(Xk)

Algorithm 4 (BFPI-(2)) 501 9.4595e− 11 8.7184e− 11
Algorithm 6 (CR-(2)) 9 2.4412e− 11 2.3004e− 12
Algorithm 5 (NM-(2)) 10 1.0658e− 14 1.4211e− 14
Algorithm 10 (INM-(2)) 200 NaN NaN
Algorithm 9 (INM-(2)) (m=10) 200 NaN NaN
Algorithm 11 (INM-(2)) 9 4.2235e− 13 2.0961e− 12

After 63 iterations by Algorithm4 for Example 4, we have ∥(X−1
62 A∥ +

∥(X−1
63 A∥ < 2 and ∥(X−1

63 A∥ ≈ 0.95. Then, using X63 as an initial value in
Algorithm5, Algorithm9 and Algorithm10, we obtain the results in Table 5.
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Table 5: Numerical results of Example 4 after 63 iterations with BFPI-(2)

Algorithm k ∥X63+k −X62+k∥∞ res(X63+k)

Algorithm 5 (NM-(2)) 4 2.4524e− 11 1.7764e− 14
Algorithm 10 (INM-(2)) 8 1.7053e− 13 1.0658e− 14
Algorithm 9 (INM-(2)) (m=10) 4 2.4523e− 11 1.7764e− 14
Algorithm 9 (INM-(2)) (m=4) 14 1.5437e− 11 5.4747e− 12

Example 5. [14, Example 5] We consider Eq. (2) with Q = I and

A =

(
−3.47 3.47
−2.89 −3.47

)
.

For the matrix A in Example 5, we have ρ(A) ≈ 4.7. Therefore, Algo-
rithm9 and Algorithm10 with X0 = I are again not applicable. The results
of the experiment are presented in Table 6.

Table 6: Numerical results of Example 5 with tol = 10−10

Algorithm k ∥Xk −Xk−1∥∞ res−(Xk)

Algorithm 4 (BFPI-(2)) 122 9.4068e− 11 7.7817e− 11
Algorithm 6 (CR-(2)) 7 1.4991e− 11 1.1435e− 14
Algorithm 5 (NM-(2)) 8 1.1102e− 16 1.2768e− 15
Algorithm 11 (INM-(2)) 6 3.4971e− 11 6.6613e− 15

Algorithm9 and Algorithm10 we use with initial value X7, which is ob-
tained by Algorithm 4 (BFPI-(2)). The results are presented in Table 7.

Table 7: Numerical results of Example 5 after 7 iterations with BFPI-(2)

Algorithm k ∥X7+k −X6+k∥∞ res−(X7+k)

Algorithm 10 (INM-(2)) 6 7.3764e− 12 1.2768e− 15
Algorithm 9 (INM-(2)) (m=10) 5 9.6229e− 13 1.3323e− 15
Algorithm 9 (INM-(2)) (m=4) 6 3.2048e− 11 6.4670e− 14
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