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1 Introduction

The complete controlability and the complete observability of a finite dimen-
sional time invariant linear deterministic system are powerful tools which
allow the designing of the state space representation of Kalman filters at
the beginning of ’60 years [16, 17, 18, 21]. Roughly speaking, the complete
controlability (complete observability) of a finite dimensional linear time in-
variant system, is equivalent to the possibility of designing a control law in
a linear state feedback form (in a linear output based feedback form, re-
spectively) such that all the eigenvalues of the closed-loop system, known
as closed-loop poles, be arbitrarily located in the complex plane with the
constraint that the complex poles to be in a complex conjugate pairs. If
all closed-loop poles are located in the left half plane, the resulting system
is exponentially stable. See for example [3, 9, 25]. Some years later, the
requirement of arbitrary assignments of all poles of the closed-loop system
was relaxed to the requirement that only a part of the closed-loop poles
to be arbitrarily placed in the complex plane with the condition that the
closed-loop poles which cannot be modified by a control law in a linear
state feedback form (a linear output based feedback form, respectively) to
be already located in the left half plane. A finite dimensional, linear time in-
variant, deterministic system for which the poles that cannot be modified by
a control law in a linear state feedback form (a linear output based feedback
form, respectively) is named stabilizable system (detectable system,
respectively). For the reader convenience, we refer to [19] and references
therein, for the case of continuous time linear systems and [1, 2, 15] and
references therein, for the case of the discrete time linear systems.

Starting with [26] the detectability and stabilizability concepts were ex-
tended to the stochastic framework. Here we refer to [8, 22, 24] for the
case of linear stochastic systems subject to state multiplicative white noise
perturbations and [6, 7] for the case of stochastic systems affected by jump
Markov perturbations. An unified approach of the stochastic stabilizability
and stochastic detectability for linear stochastic systems simultaneously af-
fected by state multiplicative white noise perturbations and jump Markov
perturbations was done in [11, 12, 13, 23].

It is well known that in the deterministic framework there exists a duality
between the stabilizability concept and the detectability concept, see for
example [1].

Our aim is to study if there exists a duality relationship between the
properties of stochastic stabilizability and stochastic detectability in the
case of the linear stochastic systems having the state space representation
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described by a system of Itô differential equations with periodic coefficients
possible affected by a standard homogeneous Markov process with a finite
number of states. It will be seen that in the case when the coefficients of the
system under consideration are subject to jump Markov perturbations, the
state space representation of the dual of such a system can be rigourously
described if and only if the transition probability matrix of the Markov
process is double stochastic, that is the sums of all elements on each row
and each column is 1.

The rest of the paper is organized as follows: Section 2 contains the model
description of the stochastic systems under consideration together with the
duality problem setting. Section 3 contains a list of useful Lyapunov type
criteria for exponential stability in mean square involved in the derivation
of the main results which are stated and proved in Section 4.

Applications of the concept of duality studied in this work will be pre-
sented in a future paper.

2 The problem

2.1 Model description

We consider the stochastic linear system having the state space representa-
tion described by:

dx(t) = (A0(t, η(t))x(t) +B0(t, η(t))u(t))dt

+
r∑

k=1

(Ak(t, η(t))x(t) +Bk(t, η(t))u(t))dwk(t) (1a)

dy(t) = C0(t, η(t))x(t)dt+
r∑

k=1

Ck(t, η(t))x(t)dwk(t), (1b)

t ∈ R+ = [0,∞), where x(t) ∈ Rn are the state parameters of the sys-
tem, u(t) ∈ Rm are the input vectors which may include control parameters
and/or exogenous disturbances, while y(t) ∈ Rp are vectors which are de-
scribing outputs providing information about the behaviour of the system.

In (1), {w(t)}t≥0 (w(t) = (w1(t) w2(t) ...wr(t))
⊤ is a r-dimensional stan-

dard Wiener process and {η(t)}t≥0 is a finite states standard homogeneous
Markov process defined on a given probability space (Ω,F,P). For rigourous
definitions and usual properties of the standard Wiener processes and of the
standard homogeneous Markov processes with a finite number of states we
refer to [4, 5, 10, 14, 20]. Here we recall only that in the case of a standard



Duality: detectability versus stabilizability in the stochastic context 290

homogeneous Markov process with N states, the transition semigroup P (t)
is of the form P (t) = eQt, t > 0, where Q ∈ RN×N is a matrix (often named
generator matrix) whose entries qij have the properties:

qij ≥ 0 if i ̸= j (2a)

N∑
k=1

qik = 0 (2b)

for all i, j ∈ N = {1, 2, ..., N}.
In the sequel, we shall write Ak(t, i), Bk(t, i), Ck(t, i), 0 ≤ k ≤ r, when-

ever the Markov process is in the mode i ∈ N .
The developments in this work are done under the following assumption:

H1) a) {w(t)}t≥0, {η(t)}t≥0 are independent stochastic processes;
b) (Ak(·, i), Bk(·, i)) : R → Rn×n × Rn×m and Ck(·, i) : R → Rp×n, 0 ≤

k ≤ r, i ∈ N are continuous matrix valued functions which are periodic with
period θ. □

For each t ≥ 0, Ft ⊂ F stands for the smallest σ-algebra with respect to
which the random vectors w(s), 0 ≤ s ≤ t are measurable augmented by all
subsets A ∈ F with P(A) = 0. Also we denote Gt ⊂ F the smallest σ-algebra
with respect to which the random variables η(s), 0 ≤ s ≤ t are measurable.

Note: The assumption H1) a) is equivalent to the fact that the σ-
algebras Ft and Gt are independent for any t ≥ 0. □

Throughout in this work, Ht ⊂ F denotes the smallest σ-algebra contain-
ing the σ-algebras Ft and Gt. If J ⊂ R+ is an interval, L2H{J,Rd} denotes
the linear space of d-dimensional stochastic processes z = {z(t)}t∈J which
are nonanticipative with respect to the family of σ-algebras H = {Ht}t∈J
and satisfy the condition E[

∫
J

|z(t)|2dt] < +∞.

Here and in the sequel, E[·] stands for the mathematical expectation.
Based on Theorem 1.1 Chapter 5 in [14] we obtain:
Proposition 2.1. For any (t0, x0) ∈ R+×Rn and all u = {u(t)}t∈R+ the

stochastic linear differential equation (1a) has a unique solution x(·; t0, x0,u) :
[t0,∞)→ Rn which is a stochastic process having the properties:

a) x(·; t0, x0,u) is continuous a.s. at any t ≥ t0;
b) x(·; t0, x0,u) ∈ L2H{[t0, T ],Rn} for all T > t0;
c) x(t0; t0, x0,u) = x0. □
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Among the particular cases of the system (1) is that when N = {1},
that is, the Markov process has only one state. In this case, the system (1)
takes the form:

dx(t) = (A0(t)x(t) +B0(t)u(t))dt+

r∑
k=1

(Ak(t)x(t) +Bk(t)u(t))dwk(t)

(3a)

dy(t) = C0(t)x(t)dt+
r∑

k=1

Ck(t)x(t)dwk(t), (3b)

t ≥ 0. To ease the presentation of the results and to make the analogy
with the deterministic case more obvious, we say sometimes that the system
(1) and (3), respectively, are defined by the triples (C(·),A(·),B(·)) and
(C(·),A(·),B(·)), respectively, where C(·) = ( C0(·) C1(·) ... Cr(·) ),
A(·) = ( A0(·) A1(·) ... Ar(·) ),B(·) = ( B0(·) B1(·) ... Br(·) ), with
the convention that Mk(·) = (Mk(·, 1),Mk(·, 2), ...,Mk(·, N)) with Mk(·) ∈
∈ {Ck(·),Ak(·),Bk(·)}, Mk(·, i) ∈ {Ck(·, i), Ak(·, i), Bk(·, i)}, 0 ≤ k ≤ r,
Ck(·, i), Ak(·, i), Bk(·, i) are the matrix valued functions which are describing
the coefficients of (1) and C(·) = (C0(·), C1(·), ..., Cr(·)),
A(·) = (A0(·), A1(·), ..., Ar(·)), B(·) = (B0(·), B1(·), ..., Br(·)),
Ak(·), Bk(·), Ck(·) are the matrix valued functions which are describing the
coefficients of (3).

The system (1) will be named the state space representation of the
triple (C(·),A(·),B(·)), while the system (3) is the state space represen-
tation of the triple (C(·),A(·),B(·)).

2.2 Basic definitions

Definition 2.1. a) We say that the linear stochastic system (1a) is stochas-
tic stabilizable or equivalently, the pair (A(·),B(·)) is stabilizable if there
exist continuous and θ-periodic matrix valued functions F (·, i) : R+ →
Rm×n, i ∈ N with the property that the closed-loop stochastic linear differ-
ential equation:

dx(t) = (A0(t, η(t)) +B0(t, η(t))F (t, η(t)))x(t)dt

+

r∑
k=1

(Ak(t, η(t)) +Bk(t, η(t))F (t, η(t)))x(t)dwk(t), (4)

t ≥ 0 is exponentially stable in mean square (ESMS).
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b) We say that the stochastic linear system (3a) is stochastic stabiliz-
able or equivalently (A(·),B(·)) is stabilizable if there exists a continuous
and θ-periodic matrix valued function F (·) : R+ → Rm×n with the property
that the closed-loop stochastic linear differential equation

dx(t) = (A0(t) +B0(t)F (t))x(t)dt+
r∑

k=1

(Ak(t) +Bk(t)F (t))x(t)dwk(t), (5)

t ≥ 0, is ESMS. □
Definition 2.2. a) We say that the linear stochastic system (1) with

Bk(t, i) ≡ 0, 0 ≤ k ≤ r, is stochastic detectable or equivalently the pair
(C(·),A(·)) is detectable if there exist θ-periodic continuous matrix valued
functions K(·, i) : R+ → Rn×p, i ∈ N , with the property that the following
closed-loop linear stochastic differential equation:

dx(t) = (A0(t, η(t)) +K(t, η(t))C0(t, η(t)))x(t)dt

+
r∑

k=1

(Ak(t, η(t)) +K(t, η(t))Ck(t, η(t)))x(t)dwk(t), (6)

t ≥ 0, is ESMS.
b) We say that the linear stochastic system (3) with Bk(t) ≡ 0, 0 ≤

k ≤ r, is stochastic detectable or equivalently the pair (C(·),A(·)) is
detectable if there exist continuous and θ-periodic matrix valued functions
K(·) : R+ → Rn×p such that the closed-loop linear differential equation

dx(t) = (A0(t)+K(t)C0(t))x(t)dt+
r∑

k=1

(Ak(t)+K(t)Ck(t))x(t)dwk(t), (7)

t ≥ 0, is ESMS.

2.3 Duality: stochastic stabilizability versus stochastic de-
tectability

The problem which we want to study in this work requires that for a linear
stochastic system of the form (1) or equivalently for the associated triple
(C(·),A(·),B(·)) to construct a triple (C♯(·),A♯(·),B♯(·)) with the prop-
erty that (C(·),A(·)) is detectable if and only if the pair (A♯(·),B♯(·)) is
stabilizable and the pair (A(·),B(·)) is stabilizable if and only if the pair
(C♯(·),A♯(·)) is detectable.

The triple (C♯(·),A♯(·),B♯(·)) with these properties will be named the
dual of the triple (C(·),A(·),B(·)) and the state space representation of the
dual triple will be named the dual of the system (1).
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Similarly, in the case of the linear stochastic system (3) or equivalently for
the associated triple (C(·),A(·),B(·)) to construct a triple (C♯(·),A♯(·),B♯(·))
with the property that (C(·),A(·)) is detectable if and only if (A♯(·),B♯(·)) is
stabilizable and (A(·),B(·)) is stabilizable if and only if (C♯(·),A♯(·)) is de-
tectable. The state space representation of the dual triple (C♯(·),A♯(·),B♯(·))
will be named the dual of the linear stochastic system (3).

In Section 4 we shall see that in the case of a triple (C(·),A(·),B(·)) as-
sociated to a linear stochastic system (3), the dual triple (C♯(·),A♯(·),B♯(·))
may be defined in a natural way together with its state space representation,
while in the case of a linear stochastic system as (1) the association of a dual
triple and of a dual system is possible only under an additional assumption
regarding the Markov process.

In Section 3 we will briefly recall several known aspects regarding the
Lyapunov type linear differential equations arising in stochastic control and
several criteria for the exponential stability in mean square of a system of
stochastic linear differential equations which will be involved in the deriva-
tion of the main results from this paper.

3 Some intermediate facts

Throughout this work Sn ⊂ Rn×n denotes the linear space of symmetric
matrices of size n× n and SNn := Sn × Sn × ...× Sn.

The elements of SNn are finite sequences of symmetric matrices, that is
X = (X(1), X(2), ..., X(N)).

On SNn we introduce the inner product

< X,Y >=
N∑
i=1

Tr[X(i)Y (i)] (8)

for all X = (X(1), X(2), ..., X(N)), Y = (Y (1), Y (2), ..., Y (N)) from SNn .
In (8), Tr[·] stands for the trace of a matrix. On the linear space SNn we
introduce the ordering relation ”≽” induced by the convex cone

SN+
n = {X = (X(1), X(2), ..., X(N)) ∈ SNn |X(i) ≥ 0, 1 ≤ i < N}.

Here X(i) ≥ 0 means that X(i) is a positive semidefinite matrix. In the
particular case N = 1, S1n is just Sn and the cone S1+n is the convex cone of
the symmetric semi-positive matrices S+n .

If Mk(·) : R → Rn×n and Mk(·, i) : R → Rn×n, i ∈ N , 0 ≤ k ≤ r
are continuous matrix valued functions, periodic of period θ, we define the
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operator valued functions L(·) : R→ B[Sn] and L(·) : R→ B[SNn ] as:

L(t)[X] = M0(t)X +XM⊤
0 (t) +

r∑
k=1

Mk(t)XM⊤
k (t) (9)

for all X ∈ Sn, t ∈ R and

L(t)[X] = (L1(t)[X], L2(t)[X], ..., LN (t)[X]),

where

Li(t)[X] = M0(t, i)X(i) +X(i)M⊤
0 (t, i) +

r∑
k=1

Mk(t, i)X(i)M⊤
k (t, i)

+
N∑
j=1

qjiX(j), (10)

for all X = (X(1), X(2), ..., X(N)) ∈ SNn , t ∈ R, i ∈ N .

Note: If H1,H2 are vector spaces, then B[H1,H2] stands for the vector
space of the linear operators T : H1 → H2. When H1 = H2 we shall write
B[H1] instead of B[H1,H1]. □

In (10) qij are the real numbers which are satisfying a condition of type
(2). By direct calculation one obtains that the adjoint operator L∗(t)[·] of
the operator L(t)[·] is

L∗(t)[X] = M⊤
0 (t)X +XM0(t) +

r∑
k=1

M⊤
k (t)XMk(t) (11)

for all (t,X) ∈ R× Sn. The adjoint operator L∗(t)[·] of the operator L(t)[·]
defined in (10) is

L∗(t)[X] = (L∗
1(t)[X], L∗

2(t)[X], ... , L∗
N (t)[X]),

with

L∗
i (t)[X] = M⊤

0 (t, i)X(i) +X(i)M0(t, i) +
r∑

k=1

M⊤
k (t, i)X(i)Mk(t, i)

+
N∑
j=1

qijX(j) (12)

for all t ∈ R, X = (X(1), X(2), ..., X(N)) ∈ SNn .
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Based on the operator valued functions from (9)-(10) we define the linear
differential equations on the Hilbert spaces Sn and SNn , respectively, as:

Ẋ(t) = L(t)[X(t)], t ∈ R (13)

and
Ẋ(t) = L(t)[X(t)], t ∈ R. (14)

Let T (t, t0) : Sn → Sn and T(t, t0) : SNn → SNn be the linear evolution oper-
ators on Sn and SNn , respectively, defined by the linear differential equations
(13), (14) respectively.

By definition T (t, t0)[X0] = X(t; t0, X0), ∀t, t0 ∈ R, X0 ∈ Sn and
T(t, t0)[X0] = X(t; t0,X0), ∀t, t0 ∈ R, X0 ∈ SNn .

Here, X(·; t0, X0) is the solution of the differential equation (13) with
initial condition X(t0; t0, X0) = X0 and X(·; t0,X0) is the solution of the
differential equation (14) with the initial value X(t0; t0,X0) = X0.

Applying Theorem 2.6.1 from [12] in the case of the differential equations
(13), (14), respectively, we obtain:

Corollary 3.1. The linear differential equation (13) defines a positive
evolution on the ordered Hilbert space (Sn,S+n ) while the linear differen-
tial equation (14) defines a positive evolution on the ordered Hilbert space
(SNn ,SN+

n ). This means that T (t, t0)[X0] ≽ 0, ∀t ≥ t0 whenever X0 ∈ S+n
and T(t, t0)[X0] ≽ 0, ∀t ≥ t0 whenever X0 ∈ SN+

n . □

Definition 3.1. a) We say that the linear differential equation (13)
defines an exponentially stable evolution on the Hilbert space Sn if

∥T (t, t0)∥ ≤ β1e
−α1(t−t0), ∀t ≥ t0, t, t0 ∈ R. (15)

b) We say that the linear differential equation (14) defines an exponen-
tially stable evolution on the Hilbert space SNn if

∥T(t, t0)∥ ≤ β2e
−α2(t−t0), ∀t ≥ t0, t, t0 ∈ R, (16)

where αk > 0, βk ≥ 1, k = 1, 2. □
In (15), ∥ · ∥ denotes any operator norm on the space B[Sn], while, in

(16), ∥ · ∥ can be any operator norm on the space B[SNn ].
The linear operators L(t) and L(t), introduced in (9), (10), respectively,

are named Lyapunov type operators from stochastic control and the lin-
ear differential equations (13) and (14) are known as Lyapunov type linear
differential equations of stochastic control.
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To make clearer the relationship of these equations with the stochastic
framework, let us consider the following stochastic linear differential equa-
tions (SLDEs):

dx(t) = M0(t)x(t)dt+
r∑

k=1

Mk(t)x(t)dwk(t), t ≥ 0 (17)

and

dx(t) = M0(t, η(t))x(t)dt+
r∑

k=1

Mk(t, η(t))x(t)dwk(t), t ≥ 0. (18)

In (17), Mk(·) are the matrix valued functions which are involved in (9)
and in (18), Mk(·, i) are the matrix valued functions occurring in (10).
The stochastic processes {w(t)}t≥0, {η(t)}t≥0 are those which are appearing
in (1) and satisfy the assumption H1).

Let x(t; t0, x0) be a solution of the SLDE (17) satisfying x(t0; t0, x0) = x0
for an arbitrary initial pair (t0, x0) ∈ R+ × Rn.

We set X(t) := E[x(t; t0, x0)x⊤(t; t0, x0)]. By direct calculations based
on Itô’s formula one obtains that t → X(t) is the solution of the following
initial value problem (IVP):

Ẋ(t) = L(t)[X(t)], t ≥ t0, (19a)

X(t0) = x0x
⊤
0 . (19b)

Let x(t; t0, x0) be the solution of the SLDE (18) satisfying x(t0; t0, x0) =
x0 for an arbitrary initial pair (t0, x0) ∈ R+ × Rn. We set X(t, i) =
E[x(t; t0, x0)x⊤(t; t0, x0)χ{η(t)=i}], 1 ≤ i ≤ N , χ{η(t)=i} being the indicator

function of the event {η(t) = i}, that is χ{η(t)=i}(ω) =

{
1, if η(t, ω) = i
0, if η(t, ω) ̸= i.

By direct calculations, involving Itô’s formula one obtains that t →
X(t) = (X(t, 1), X(t, 2), ..., X(t,N)) is the solution of the following IVP
on SNn :

Ẋ(t) = L(t)[X(t)], t ≥ t0, (20a)

X(t0) = (π1(t0)x0x
⊤
0 , π2(t0)x0x

⊤
0 , ..., πN (t0)x0x

⊤
0 ), (20b)

where πi(t0) = P{η(t0) = i}, 1 ≤ i ≤ N .

Definition 3.2. a) We say that the SLDE (17) is exponentially stable in
mean square (ESMS) if its solutions x(·; t0, x0) are satisfying the condition

E[|x(t; t0, x0)|2] ≤ βe−α(t−t0)|x0|2 (21)
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for all t ≥ t0 ≥ 0, x0 ∈ Rn, where α > 0, β ≥ 1 do not depend upon t, t0, x0.
b) We say that the SLDE (18) is:

(i) exponentially stable in mean square with conditioning (ESMS-C) if its
solutions are satisfying

E[|x(t; t0, x0)|2|η(t0) = j] ≤ β1e
−α1(t−t0)|x0|2, (22)

∀t ≥ t0 ≥ 0, x0 ∈ Rn and for any initial probability distribution π(0)
of the Markov process;

(ii) exponentially stable in mean square (ESMS) if its solutions x(·; t0, x0)
are satisfying

E[|x(t; t0, x0)|2] ≤ β2e
−α2(t−t0)|x0|2 (23)

for all t ≥ t0 ≥ 0, x0 ∈ Rn and for any initial probability distribution
π(0) of the Markov process.

In (22) and (23) αk > 0, βk ≥ 1, k = 1, 2 are not depending upon t, t0, π(0).□

Note: a) The initial probability distributions of the Markov process
{η(t)}t≥0 are defined by π(0) = (π1(0), π2(0), ..., πN (0)) with
πk(0) := P{η(0) = k}, 1 ≤ k ≤ N .

b) In general, the property of ESMS-C of a SLDE of type (18) implies the
property of ESMS of it. However, when the coefficients of (18) are periodic
functions the property of ESMS-C is equivalent to the property of ESMS,
see Theorem 3.2.5 from [12] applied in the case of the SLDE (18). □

From Theorem 2.2.2 in [12] we obtain:

Corollary 3.2. The following equivalences hold:
(i) The Lyapunov type linear differential equation (13) generates an ex-

ponentially stable evolution on the Hilbert space Sn if and only if the ac-
companying SLDE (17) is ESMS.

(ii) The Lyapunov type linear differential equation (14) generates an ex-
ponentially stable evolution on the Hilbert space SNn if and only if the accom-
panying SLDE (18) is ESMS-C. □

Applying Corollary 2.3.8 and Corollary 2.4.4 from [12] in the case of the
operator valued function L(·) defined in (9) together with the equivalence
(i) from Corollary 3.2 (above), we obtain:
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Proposition 3.3: If the matrix valued functions Mk(·) are continuous
and periodic of period θ, the following are equivalent:

(i) the SLDE (17) is ESMS;
(ii) the Lyapunov type linear differential equation (13) generates an ex-

ponentially stable evolution on the Hilbert space Sn;
(iii) for any continuous, θ-periodic, uniform positive matrix valued func-

tion H(·) : R→ S+n , the non-homogeneous backward Lyapunov type matrix
differential equation

Ẏ (t) +M⊤
0 (t)Y (t) + Y (t)M0(t) +

r∑
k=1

M⊤
k (t)Y (t)Mk(t) +H(t) = 0 (24)

has a solution Y (·) : R → S+n with the property that Y (·) is a θ-periodic
and uniform positive matrix valued function;

(iv) there exists a continuous, θ-periodic uniform positive matrix valued
function H̃(·) : R → S+n with the property that the corresponding non-
homogeneous backward Lyapunov type matrix differential equation of the
form (24) has a θ-periodic and uniform positive solution Ỹ (·) : R→ S+n ;

(v) for any continuous, θ-periodic uniform positive matrix valued func-
tion H(·) : R → S+n the non-homogenous forward Lyapunov type matrix
differential equation

Ẋ(t) = M0(t)X(t) +X(t)M⊤
0 (t) +

r∑
k=1

Mk(t)X(t)M⊤
k (t) +H(t) (25)

has a θ-periodic and uniform positive solution X(·) : R→ S+n ;
(vi) there exists a continuous, θ-periodic, uniform positive matrix val-

ued function H̃(·) : R → S+n with the property that the corresponding
non-homogeneous forward Lyapunov type matrix differential equation of the
form (25) has a θ-periodic and uniform positive solution X̃(·) : R→ S+n . □

Further, Corollary 2.3.8 and Corollary 2.4.4 from [12] applied in the case
of the operator valued function L(·) defined in (10) together with the equiv-
alence (ii) from Corollary 3.2 give:

Proposition 3.4: If the matrix valued functions Mk(·, i) : R → Rn×n,
0 ≤ k ≤ r, i ∈ N , are continuous and θ-periodic, the following are equiva-
lent:

(i) the SLDE (18) is ESMS;
(ii) the Lyapunov type linear differential equation (14) generates an ex-

ponentially stable evolution on the Hilbert space SNn ;
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(iii) for any continuous θ-periodic uniform positive matrix valued func-
tions H(·, i) : R → Sn, i ∈ N , the non-homogeneous backward Lyapunov
type matrix differential equation on the Hilbert space SNn :

Ẏ (t, i) +M⊤
0 (t, i)Y (t, i) + Y (t, i)M0(t, i) +

r∑
k=1

M⊤
k (t, i)Y (t, i)Mk(t, i)

+
N∑
j=1

qijY (t, j) +H(t, i) = 0, i ∈ N , t ∈ R, (26)

has a θ-periodic and uniform positive solution

Y(·) = (Y (·, 1), Y (·, 2), ..., Y (·, N)) : R→ SNn ;

(iv) there exist continuous, θ-periodic, uniform positive matrix valued
functions H̃(·, i) : R → SNn with the property that the corresponding non-
homogeneous backward Lyapunov type matrix differential equation of the
form (26) has a θ-periodic and uniform positive solution

Ỹ(·) = (Ỹ (·, 1), Ỹ (·, 2), ..., Ỹ (·, N)) : R→ SNn ;

(v) for any continuous, θ-periodic, uniform positive matrix valued func-
tions H(·, i) : R→ Sn, the non-homogeneous forward Lyapunov type matrix
differential equation on Sn:

Ẋ(t, i) = M0(t, i)X(t, i) +X(t, i)M⊤
0 (t, i) +

r∑
k=1

Mk(t, i)X(t, i)M⊤
k (t, i)

+
N∑
j=1

qjiX(t, j) +H(t, i), i ∈ N (27)

has a θ-periodic and uniform positive solution X(·) = (X(·, 1), ..., X(·, N)) :
R→ SNn ;

(vi) there exist continuous, θ-periodic, uniform positive matrix valued
functions H̃(·, i) : R→ Sn, i ∈ N , with the property that the corresponding
non-homogenous forward matrix differential equation of the form (27) has a
θ-periodic and uniform positive solution X̃(·) = (X̃(·, 1), X̃(·, 2), ..., X̃(·, N)) :
R→ SNn . □

4 The main results

4.1 The case of the linear stochastic systems free of jump
Markov perturbations

A. Let us assume that the system (3a) is stochastic stabilizable, or equiv-
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alently the pair (A(·),B(·)) is stabilizable. According to Definition 2.1 (b)
there exists a continuous and θ-period matrix valued function F (·) : R →
Rm×n with the property that the corresponding stochastic linear differen-
tial equation (SLDE) (5) is ESMS. Employing the implications (i)⇒ (v)⇒
(vi)⇒ (i) from Proposition 3.3 with the updatesMk(t)← Ak(t)+Bk(t)F (t),
0 ≤ k ≤ r, t ∈ R we may infer that (A(·),B(·)) is stabilizable if and only
if there exists a continuous and θ-periodic matrix valued function F (·) with
the property that the corresponding non-homogeneous forward Lyapunov
type matrix differential equation:

Ẋ(t) = (A0(t) +B0(t)F (t))X(t) +X(t)(A0(t) +B0(t)F (t))⊤

+
r∑

k=1

(Ak(t) +Bk(t)F (t))X(t)(Ak(t) +Bk(t)F (t))⊤ + In, (28)

t ∈ R, has a solution X̃(·) : R → Sn which is a θ-periodic and uniform
positive function satisfying

X̃(t) ≥ δ2In, ∀t ∈ R. (29)

By direct calculations one obtains that the function Ỹ (·) : R → Sn defined
by Ỹ (t) ≜ X̃(−t) is a θ-periodic solution of the following non-homogeneous
backward Lyapunov type matrix differential equation:

˙̃Y (t) + (Ã0(t) + K̃(t)C̃k(t))
⊤Ỹ (t)(Ã(t) + K̃(t)C̃k(t))

+
r∑

k=1

(Ãk(t) + K̃(t)C̃k(t))
⊤Ỹ (t)(Ãk(t) + K̃(t)C̃k(t)) + In = 0 (30a)

Ỹ (t) ≥ δ2In, (30b)

t ∈ R, where

Ãk(t) := A⊤
k (−t), C̃k(t) := B⊤

k (−t), 0 ≤ k ≤ r, K̃(t) := F⊤(−t), t ∈ R.
(31)

The equivalence (iv)⇔ (i) from Proposition 3.3 together with the updates
Mk(t)← Ãk(t)+ K̃(t)C̃k(t), 0 ≤ k ≤ r, t ∈ R guarantees that the feasibility
of (30) is equivalent to the exponential stability in mean square of the SLDE:

dx(t) = (Ã0(t)+K̃(t)C̃0(t))x(t)dt+
r∑

k=1

(Ãk(t)+K̃(t)C̃k(t))x(t)dwk(t), t ∈ R+.

(32)
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Further, the exponential stability in mean square of the SLDE (32) is equiv-
alent to the stochastic detectability of the stochastic linear system:

dx(t) = Ã0(t)x(t)dt+

r∑
k=1

Ãk(t)x(t)dwk(t) (33a)

dy(t) = C̃0(t)x(t)dt+

r∑
k=1

C̃k(t)x(t)dwk(t). (33b)

According to Definition 2.2 a) applied in the case of the system (33) we may
conclude that the system (33) is stochastic detectable, if and only if the pair
(C♯(·),A♯(·)) is detectable, where

C♯(·) = (C̃0(·), C̃1(·), ..., C̃r(·)), (34a)

A♯(·) = (Ã0(·), Ã1(·), ..., Ãr(·)), (34b)

C̃k(·), Ãk(·) being introduced in (31).
Summarizing the previous developments we can state:

Proposition 4.1. Under the assumptionH1) a) withN = 1, ifA(·),B(·)
are associated to the system (3), then the following are equivalent:

(i) (A(·),B(·)) is stabilizable;
(ii) (C♯(·),A♯(·)) is detectable. □

Note: In the sequel, the pair (C♯(·),A♯(·)) introduced via (34) will be
named the dual pair of the pair (A(·),B(·)) and (33) will be named the dual
system of the system (3a). □

B. Let us consider now the system

dx(t) = A0(t)x(t)dt+
r∑

k=1

Ak(t)x(t)dwk(t) (35a)

dy(t) = C0(t)x(t)dt+

r∑
k=1

Ck(t)x(t)dwk(t), (35b)

obtained from (3) taking Bk(t) ≡ 0, 0 ≤ k ≤ r, t ∈ R. Employing the
implications (i) ⇒ (iii) ⇒ (iv) ⇒ (i) from Proposition 3.3 in the case of
the closed-loop SLDE (7) we obtain that the linear stochastic system (35) is
stochastic detectable, or equivalently the pair (C(·),A(·)) is detectable if and



Duality: detectability versus stabilizability in the stochastic context 302

only if the non-homogeneous backward Lyapunov type matrix differential
equation:

Ẏ (t) + (A0(t) +K(t)C0(t))
⊤Y (t) + Y (t)(A0(t) +K(t)C0(t))

+

r∑
k=1

(Ak(t) +K(t)Ck(t))
⊤Y (t)(Ak(t) +K(t)Ck(t)) + In = 0 (36)

has a uniform positive solution Ŷ (·) : R→ Sn which is a θ-periodic function.
Setting X̂(t) ≜ Ŷ (−t), t ∈ R, we obtain by direct calculation that X̂(·)
solves:

Ẋ(t) = (Ã0(t) + B̃0(t)F (t))X(t) +X(t)(Ã0(t) + B̃0(t)F (t))⊤

+
r∑

k=1

(Ãk(t) + B̃k(t)F (t))X(t)(Ãk(t) + B̃k(t)F (t))⊤ + In (37a)

νIn ≥ X(t) ≥ γ2In, (37b)

t ∈ R, where

B̃k(t) := C⊤(−t), F (t) := K⊤(−t), 0 ≤ k ≤ r, t ∈ R (38)

and Ãk(t), 0 ≤ k ≤ r, t ∈ R are those defined in (31).
The equivalence (vi) ⇔ (i) from Proposition 3.3 with the updates

Mk(t) ← Ãk(t) + B̃k(t)F (t), t ∈ R, 0 ≤ k ≤ r, guarantees that the fea-
sibility of (38) is equivalent to the exponential stability in mean square of
the following SLDE:

dx(t) = (Ã0(t)+B̃0(t)F (t))x(t)dt+
r∑

k=1

(Ãk(t)+B̃k(t)F (t))x(t)dwk(t). (39)

The property of ESMS of (39) is equivalent to the stochastic stabilizability
of the system:

dx(t) = (Ã0(t)x(t)+B̃0(t)u(t))dt+

r∑
k=1

(Ãk(t)x(t)+B̃k(t)u(t))dwk(t), t ∈ R+.

(40)
But the stochastic stabilizability of (40) is equivalent to the stabilizability

of the pair (A♯(·),B♯(·)), where A♯(·) is defined in (34b) and

B♯(·) ≜ (B̃0(·), B̃1(·), ..., B̃r(·)), (41)
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B̃k(·) being defined by (38).
Thus, we have proved:

Proposition 4.2. Under the assumptions H1) a) for N = 1, if the pair
(C(·),A(·)) is defined based on the coefficients of the linear stochastic system
(35), the following are equivalent:

(i) the pair (C(·),A(·)) is detectable;
(ii) the pair (A♯(·),B♯(·)) is stabilizable. □

Note: The triple (C♯(·),A♯(·),B♯(·)) introduced by (34), (41) is the dual
of the triple (C(·),A(·),B(·)) whose state space representation is described
by (3). The state-space representation of the dual triple is

dx̃(t) = (Ã0(t)x̃(t) + B̃0(t)ũ(t))dt+

r∑
k=1

(Ãk(t)x̃(t) + B̃k(t)ũ(t))dwk(t)

dỹ(t) = C̃0(t)x̃(t)dt+

r∑
k=1

C̃k(t)x̃(t)dwk(t), (42)

where Ãk(t), B̃k(t), C̃k(t), 0 ≤ k ≤ r were defined in (31) and (38). □

4.2 The case of linear stochastic systems subject to jump
Markov perturbations

In this subsection we study the duality of the detectability versus the stabi-
lizability in the case of the linear stochastic systems of type (1).

C. First, let us assume that the system described by (1a) is stochastic
stabilizable, or equivalently, that the pair (A(·),B(·)) is stabilizable. Ac-
cording to Definition 2.1(a), in this case there exist continuous and θ-periodic
matrix valued functions F (·, i) : R→ Rm×n, i ∈ N , with the property that
the closed-loop SLDE (4) is ESMS.

The chain of implications (i) ⇒ (v) ⇒ (vi) ⇒ (i) from Proposition 3.4
with the updates Mk(t, i) ← Ak(t, i) + Bk(t, i)F (t, i), i ∈ N , 0 ≤ k ≤ r,
allows us to infer that (A(·),B(·)) is stabilizable if and only if there exist
continuous and θ-periodic matrix valued functions F (·, i) : R → Rm×n,
i ∈ N , with the property that the corresponding non-homogeneous forward
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Lyapunov type matrix differential equation on SNn :

Ẋ(t, i) = (A0(t, i) +B0(t, i)F (t, i))X(t, i) +X(t, i)(A0(t, i)

+B0(t, i)F (t, i))⊤ +
r∑

k=1

(Ak(t, i) +Bk(t, i)F (t, i))X(t, i)(Ak(t, i)

+Bk(t, i)F (t, i))⊤ +
N∑
j=1

qjiX(t, j) + In, t ∈ R, i ∈ N (43)

has a solution X̃(·) = (X̃(·, 1), X̃(·, 2), ..., X̃(·, N)) : R → SNn which is a
θ-periodic function and satisfies

X̃(t, i) ≥ γ2In, ∀(t, i) ∈ R×N , (44)

γ being a constant not depending upon t and i.
We set Ỹ (t, i) := X̃(−t, i) for all (t, i) ∈ R×N .
By direct calculation, involving (43) one obtains that

t → Ỹ(t) = (Ỹ (t, 1), Ỹ (t, 2), ..., Ỹ (t,N)) : R → SNn is a θ-periodic func-
tion which satisfies:

d

dt
Ỹ (t, i) + (Ǎ0(t, i) +K(t, i)Č0(t, i))

⊤Ỹ (t, i) + Ỹ (t, i)(Ǎ0(t, i)

+K(t, i)Č0(t, i)) +
r∑

k=1

(Ǎk(t, i) +K(t, i)Čk(t, i))
⊤Ỹ (t, i)(Ǎk(t, i)

+K(t, i)Čk(t, i)) +

N∑
j=1

q̌(i, j)Ỹ (t, j) + In = 0 (45a)

ν2In ≥ Ỹ (t, i) ≥ γ2In (45b)

for all (t, i) ∈ R×N , where

Ǎk(t, i) := A⊤
k (−t, i), Čk(t, i) := B⊤

k (−t, i)
0 ≤ k ≤ r, K(t, i) := F⊤(−t, i), ∀(t, i) ∈ R×N . (46)

In (45a),
q̌ij := qji, ∀i, j ∈ N . (47)

Let us assume that besides the conditions (2), the component qij of the
generator matrix Q of the Markov process are satisfying the additional con-
dition:

N∑
j=1

qji = 0, ∀i ∈ N . (48)
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Under these conditions we may invoke the equivalence (iv) ⇔ (i) from
Proposition 3.4 with the updates Mk(t, i)← Ǎk(t, i)+K(t, i)Čk(t, i), i ∈ N ,
0 ≤ k ≤ r, t ∈ R to deduce that under the condition (48), the feasibility of
(45) is equivalent to the exponential stability in mean square of the following
SLDE:

dx(t) = (Ǎ0(t)η̌(t) +K(t, η̌(t))Č0(t, η̌(t)))x(t)dt

+
r∑

k=1

(Ǎ(t, η̌(t)) +K(t, η̌(t))Čk(t, η̌(t)))x(t)dwk(t), (49)

t ≥ 0 where {η̌(t)}t≥0 is a standard homogeneous Markov process de-
fined on the probability space (Ω,F,P) taking values in the finite set N =
{1, 2, ..., N} and have the transition semigroup {P̌ (t)}t>0, where

P̌ (t) = eQ
⊤t. (50)

According to Definition 2.2 (a) the exponential stability in mean square of
the SLDE (49) is equivalent to the stochastic detactability of the stochastic
linear system

dx(t) = Ǎ0(t, η̌(t))x(t)dt+
r∑

k=1

Ǎk(t, η̌(t))x(t)dwk(t) (51a)

dy(t) = Č0(t, η̌(t))x(t)dt+

r∑
k=1

Čk(t, η̌(t))x(t)dwk(t), (51b)

or equivalently with the detectability of the pair (C♯(·),A♯(·)), where

C♯(·) := (Č0(·), Č1(·), ..., Čr(·) (52a)

Čk(·) = (Čk(·, 1), Čk(·, 2), ..., Čk(·, N)) (52b)

A♯(·) := (Ǎ0(·), Ǎ1(·), ..., Ǎr(·)) (53a)

Ǎk(·) = (Ǎk(·, 1), Ǎk(·, 2), ..., Ǎk(·, N)), (53b)

where Čk(·, i), Ǎk(·, i), 0 ≤ k ≤ r, i ∈ N are those defined in (46).
So, we proved:

Proposition 4.3. Assume: a) the assumption H1) holds;
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b) the components qij of the generator matrix Q of the Markov process
are satisfying the condition (48).

Under these conditions, the following are equivalent:
(i) the pair (A(·),B(·)) having the state space representation described

by (1a) is stabilizable;
(ii) the pair (C♯(·),A♯(·)) introduced by (52)-(53) is detectable. □

Note: In the sequel, the linear stochastic system (51) will be named the
dual of (1a), while (C♯(·),A♯(·)) will be called the dual pair of (A(·),B(·)). It
is worth mentioning that the dual system (51) of (1a) can be rigourously de-
fined of the components qij of the generator matrix Q if the Markov process
which affects the coefficients of (1a) are satisfying the additional condition
(48). □

D. Let us consider the linear stochastic system:

dx(t) = A0(t, η(t))x(t)dt+
r∑

k=1

Ak(t, η(t))x(t)dwk(t) (54a)

dy(t) = C0(t, η(t))x(t)dt+
r∑

k=1

Ck(t, η(t))x(t)dwk(t), (54b)

t ≥ 0, obtained from (1) when Bk(t, i) ≡ 0, 0 ≤ k ≤ r.
Employing the chain of implications (i) ⇒ (iii) ⇒ (iv) ⇒ (i) from

Proposition 3.4 in the case of the closed-loop SLDE (6) we may infer that the
stochastic linear system (54) is stochastic detectable or equivalently the pair
(C(·),A(·)) is detectable, if and only if there exist continuous and θ-periodic
matrix valued functions K(·, i) with the property that the non-homogeneous
backward Lyapunov type matrix differential equation on SNn :

d
dtY (t, i) + (A0(t, i) +K(t, i)C0(t, i))

⊤Y (t, i) + Y (t, i)(A0(t, i)

+K(t, i)C0(t, i)) +
r∑

k=1

(Ak(t, i) +K(t, i)Ck(t, i))
⊤Y (t, i)(Ak(t, i)

+K(t, i)Ck(t, i)) +
N∑
j=1

qijY (t, j) + In = 0 (55)

has an uniform positive solution Y̌(·) = (Y̌ (·, 1), Y̌ (·, 2), ..., Y̌ (·, N)) : R →
SNn which is a θ-periodic function.
Setting X̌(t, i) := Y̌ (−t, i), (t, i) ∈ R × N , by direct calculation involving
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(55) we obtain that X̌(·) = (X̌(·, 1), X̌(·, 2), ..., X̌(·, N)) satisfies

d

dt
X̌(t, i) = (Ǎ0(t, i) + B̌0(t, i)F (t, i))X̌(t, i) + X̌(t, i)(Ǎ0(t, i)

+ B̌0(t, i)F (t, i))⊤ +
r∑

k=1

(Ǎk(t, i) + B̌k(t, i)F (t, i))X̌(t, i)(Ǎk(t, i)

+ B̌k(t, i)F (t, i))⊤ +
N∑
j=1

q̌jiX̌(t, j) + In (56a)

ν2In ≥ X̌(t, i) ≥ γ2In, (56b)

∀(t, i) ∈ R×N , where

B̌k(t, i) := C⊤
k (−t, i), 0 ≤ k ≤ r, F (t, i) := K⊤(−t, i), (57)

∀(t, i) ∈ R×N , Ǎk(t, i), 0 ≤ k ≤ r being introduced in (46).
In (56a), q̌ji := qij , ∀i, j ∈ N . Let us assume that the components qij

of the generator matrix Q of the Markov process satisfy the additional condi-
tion (48). Under these conditions, we may invoke the equivalence (vi)⇔ (i)
from Proposition 3.4 with the updates Mk(t, i) ← Ǎk(t, i) + B̌k(t, i)F (t, i),
0 ≤ k ≤ r, (t, i) ∈ R×N , to deduce that under condition (48), the fesabiltiy
of (56) is equivalent to the exponential stability in mean square of the fol-
lowing SLDE:

dx(t) = (Ǎ0(t, η̌(t)) + B̌0(t, η̌(t))F (t, η̌(t)))x(t)dt

+
r∑

k=1

(Ǎk(t, η̌(t)) + B̌k(t, η̌(t))F (t, η̌(t)))x(t)dwk(t), (58)

t ≥ 0, where {η̌(t)}t≥0 is a standard homogeneous Markov process taking
values in the finite set N = {1, 2, ..., N} and having the transition semi-
groups {P̌ (t)}t>0 with P̌ (t) described by (50).

According to Definition 2.1(a), the exponential stability in mean square
of the SLDE (58) is equivalent to the stochastic stabilizability of the linear
stochastic system:

dx(t) = (Ǎ0(t, η̌(t))x(t) + B̌0(t, η̌(t))u(t))dt

+
r∑

k=1

(Ǎk(t, η̌(t))x(t) + B̌k(t, η̌(t))u(t))dwk(t), (59)

t ≥ 0, or equivalent to stabilizability of the pair (A♯(·),B♯(·)), where A♯(·)
was described by (53) and

B♯(·) = (B̌0(·), B̌1(·), ..., B̌r(·)) (60a)

B̌k(·) = (B̌k(·, 1), B̌k(·, 2), ..., B̌k(·, N)), (60b)
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B̌k(·, i) being defined in (57).
The previous developments allow us to state:

Proposition 4.4. Assume that the assumptions from Proposition 4.3.
hold. Under these conditions the following are equivalent:

(i) the pair (C(·),A(·)) having the state space representation described
by (54) is detectable;

(ii) the pair (A♯(·),B♯(·)) described by (53) and (60) is stabilizable. □

Note: a) The linear stochastic system (59) will be named the dual
system of (54), while the pair (A♯(·),B♯(·)) will be named the dual pair of
(C(·),A(·)). It is worth mentioning that the dual system (59) of the system
(54) can be rigourously defined if the components qij of the generator matrix
Q satisfy the additional condition (48).

b) Under the condition (48) the triple (C♯(·),A♯(·),B♯(·)) introduced
via (52), (53) and (60) is the dual of the triple (C(·),A(·),B(·)) whose state
space representation is described by the linear stochastic system (1).
The state space representation of the dual triple is given by

dx̌(t) = (Ǎ0(t, η̌(t))x̌(t) + B̌0(t, η̌(t))ǔ(t))dt

+
r∑

k=1

(Ǎk(t, η̌(t))x̌(t) + B̌k(t, η̌(t))ǔ(t))dwk(t) (61a)

dy̌(t) = Č0(t, η̌(t))x̌(t)dt+
r∑

k=1

Čk(t, η̌(t))x̌(t)dwk(t), (61b)

Ǎk(t, i), B̌k(t, i), Čk(t, i), 0 ≤ k ≤ r are defined in (46) and (57).
In (61), {η̌(t)}t≥0 is a standard homogeneous Markov process defined on the
probability space (Ω,F,P) taking values in the finite set N and having the
transition semigroup defined in (50).

c) It remains as an open problem to introduce a concept of duality that
covers the cases when condition (48) is violated.
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