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Abstract

This paper introduces an alternative variant of Higher Order Dy-
namic Mode Decomposition (HODMD), which improves the standard
approach from a computational point of view. In the new scheme, time-
delayed snapshots are used along with the special form of the Koopman
operator. An algorithm is derived that allows the calculation of novel
decomposition in a stable and efficient way. This method is suitable
in cases where standard Dynamic Mode Decomposition (DMD) is not
applicable. These are dynamics that show limited spatial complexity,
and a very large number of included frequencies. We illustrate and
explain the new method using some classical and sample dynamics.
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1 Introduction

Dynamic Mode Decomposition (DMD) is an equation-free technique suitable
for analyzing flow structures in numerical and experimental data, which has
become very popular since it was first introduced in a paper by Schmid [1].
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It has emerged as a leading technique to identify spatio-temporal coherent
structures from high-dimensional data. Shortly after its introduction, it
was shown by Rowley et al. [2] a close relation between the DMD and
spectral analysis of the Koopman operator, see also [3]. DMD analysis can
be considered as a numerical approximation to Koopman spectral analysis,
and in this sense it is applicable to nonlinear dynamical systems.

Due to the widespread success of DMD, mainly based on its possibility of
being applied easily to analyze many types of data, several researchers have
focused their effort on varying the algorithm with the aim of increasing
its robustness and its range of applications [4, 5, 6]. More examples are
presented in detail in the review article by Rowley and Dawson [7], see
also a recent review paper by Schmid [8]. See for theoretical work on the
relationships of the DMD method with other methods, such as POD [9],
Fourier analysis [4] and Koopman spectral analysis [2, 10, 11]. Theorems
regarding the existence and uniqueness of DMD modes and eigenvalues can
be found in [4]. For a review of the DMD literature, we refer the reader to
[12, 13, 14].

In the present article, the so-called Higher Order DMD (HODMD) will
play a central role. HODMD is an algorithm recently introduced by Clainche
and Vega in [15] as an extension of classical DMD. As in the classical DMD
approach, HODMD gives an approximation of the Koopman modes and cal-
culates spatio-temporal structures as an expansion in terms of DMD modes
and their associated frequencies, growth rates, and amplitudes. This ex-
tension uses delayed snapshots, which is a well known feature to increase
observability. HODMD widens the range of applicability of DMD to cases
in which the number of spatial modes is smaller than the number of frequen-
cies describing the flow field. This scenario is mainly found in three types
of applications: when the number of spatial points in the domain analyzed
is restricted, when the data are too noisy and in transient dynamics. The
main success of HODMD lies in its capability of analyzing highly complex
(periodic and quasi-periodic) spatio-temporal data as an expansion of DMD
modes that oscillate with a single temporal frequency for each one.

The HODMD framework has many advantages over the standard DMD
approach. Among the most important advantages are:

Better at capturing non-linear dynamics: Traditional DMD is inherently
a linear method, which may not effectively capture the dynamics of nonlin-
ear systems. HODMD extends the method by incorporating higher-order
interactions, making it more capable of representing and analyzing nonlin-
ear dynamics.

Improved Accuracy : By considering higher-order terms, HODMD can
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provide a more accurate representation of dynamics. This results in bet-
ter reconstruction and prediction of the system’s behavior, especially for
systems with significant nonlinear interactions.

Scalability : HODMD can be applied to large datasets and complex sys-
tems, making it suitable for a wide range of applications, including fluid
dynamics, neuroscience, structural health monitoring, and more. Its scala-
bility allows it to handle high-dimensional data effectively.

Flexible Framework : The HODMD framework can be adapted to various
types of data and systems. It can be applied to both time-series data and
spatial-temporal data, providing flexibility in its application across different
fields and types of problems.

The standard HODM framework does not explicitly exploit the special
structure of the Koopman operator as a block companion (Frobenius) ma-
trix. Our goal in this paper is to present an alternative algorithm for the
HODMD method that utilizes the time-delayed snapshot approach and ex-
ploits the special form of the Koopman operator. The new scheme will
preserve the above-described advantages of the HODMD approach over the
standard DMD method. It will have the following advantages over the stan-
dard HODMD scheme:

Compactness: The block companion matrix form of the Koopman oper-
ator provides a more compact representation of the reduced DMD operator.
This can reduce the dimensionality of the problem and the computational
resources required.

Reduced Complexity : The new approach gives identical results to the
standard HODMD approach, but with less computational complexity.

Faster Computation: By using a simpler structure for the reduced DMD
operator the computational cost in the novel scheme is reduced, resulting in
faster computations and more scalable algorithms.

Memory and Storage Efficiency : The compact representation of the re-
duced DMD operator leads to significant memory savings, which reduce
overall data storage requirements, leading to more efficient data manage-
ment.

The remainder of this work is organized as follows: in the rest of Sec-
tion 1, for completeness of the exposition, we describe the standard DMD
approach, HODMD and Delay coordinate based DMD, in Section 2, we pro-
pose and discuss a new approach for HODMD computation and in Section 3
we present examples demonstrating the new algorithm. The conclusion is
in Section 4.



On higher order DMD 268

1.1 Standard DMD method

In this paragraph the DMD algorithm is briefly reviewed. The standard
definition of DMD considers a sequential set of data

D = {z0, . . . , zm}, (1)

where each zk ∈ Rn, and zi being a snapshot of the system state. The
data could be from measurements, experiments or simulations collected at
time ti from a given nonlinear system. Assume that the data are equispaced
in time, with a time step △t and the collection time starts from t0 to tm.
The main assumption of the method is that there exists a linear (unknown)
matrix A relating zk to the subsequent zk+1:

zk+1 = Azk (2)

for k = 0, . . . ,m − 1. The eigenvalues of A contain information on the
growth or decay rates and frequencies of oscillations, which when combined
represent the time evolution of the dynamical system. The DMD modes and
eigenvalues are intended to approximate the eigenvectors and eigenvalues of
A. The DMD method uses the arrangement of the data set into two large
data matrices:

X = [z0, . . . , zm−1] and Y = [z1, . . . , zm], (3)

such that AX = Y and therefore A = Y X†, where X† is a Moore-Penrose
pseudoinverse of X. In practice, the matrix A can be very high dimensional,
so it is approximated by a lower order matrix to determine its leading spec-
tral decomposition. Usually, the projection matrix of A onto the subspace
spanned by the snapshots in X is performed. From the reduced singular
value decomposition (SVD) of X

X = UΣV ∗,

where U, V are unitary matrices and Σ is a diagonal matrix, we can deduce
the projected operator

Ã = U∗AU = U∗Y V Σ−1, (4)

such that its eigenvalues are also the eigenvalues of A. Therefore, from the
spectral decomposition of Ã

ÃW = WΛ, (5)
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where Λ = diag{λj}rj=1 is the matrix of eigenvalues and W is the matrix of

eigenvectors of Ã, we determine the leading decomposition of A. The DMD
modes are computed by the formula

Φ = Y V Σ−1W. (6)

The modes in (6) are often called exact DMD modes, because Tu et al. [12]
prove that these are exact eigenvectors of matrix A.

As a result we can reconstruct the approximate dynamics of the data set
D. The representation of data, at sampling instants tk = k△t, in terms of
DMD is given by the linear model:

zDMD(k) = ΦΛkb, (7)

where b = Φ†z0, and Φ† is the pseudo-inverse of Φ.
For convenience the DMD eigenvalues λj can be converted to Fourier

modes as
ωj = ln(λj)/△t, (8)

for j = 1, . . . , r. Therefore the approximate solution at all times is given by

zDMD(t) = Φ exp(Ωt)b, (9)

where the columns of Φ are the DMD modes, and Ω = diag{ωj}rj=1 is a
diagonal matrix with the entries corresponding eigenvalues ωj. The vector
b determines the weighting of each of the r modes, so that z0 = Φb. Then
the vector zDMD(t) defines the state of the system at time t.

1.2 Delay embedding DMD method

Delay embedding is also an important technique when the temporal or spec-
tral complexity of a dynamical system exceeds the spatial complexity, for
example, in systems characterized by a broadband spectrum or spatially
undersampled. In this case, we arrive at a ”short-and-wide”, rather than a
”tall-and-skinny”, data matrix D, and the standard algorithm fails at ex-
tracting all relevant spectral features. In particular, a central problem with
DMD that was first observed by Tu et al. [12], is that the standard DMD
algorithm is unable to accurately represent a standing wave in the data.
In these cases, the data often contain hidden temporal structures and un-
derlying dynamics that are not readily apparent. This requires advanced
analytical techniques to get meaningful conclusions from such data. One
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such technique is Delay Embedding DMD (or Hankel DMD), which pro-
vides a comprehensive framework for analyzing and interpreting complex
temporal dynamics.

Delay Embedding DMD overcomes several shortcomings of the stan-
dard DMD method by extending its capabilities to handle nonlinear dy-
namics, non-uniformly sampled data, long-term temporal behavior, high-
dimensional datasets, and noisy data. This makes it a more versatile and
robust technique for dynamic mode decomposition in various applications.
The Taken’s embedding theorem [19] provides a rigorous framework for an-
alyzing the information content of measurements of a nonlinear dynamical
system.

To implement delay embedding DMD, given the data sequence D in (1),
we stack s ≤ m time-shifted copies of the data to form the augmented input
matrix. The following Hankel matrix is formed:

Daug =













z1 z2 . . . zm−s+1

z2 z3 . . . zm−s+2
...

...
. . .

...
zs zs+1 . . . zm













, (10)

where the applied embedding dimension is s. The augmented data matrix
Daug is then used instead of D and processed by the standard DMD algo-
rithm. The DMD algorithm prescribed in the previous section is applied to
the augmented matrices Xaug, Yaug ∈ R(n.s)×(m−s) instead of X and Y , giv-
ing eigenvalues Φaug and modes Λaug. The first n rows of Φaug correspond
to the current (not shifted) time and are used to forecast x(t).

Among the reasons to compute DMD on these delay coordinates, in addi-
tion to the standing wave issue mentioned, is that if the state measurements
are low dimensional, it may be necessary to increase the rank of the matrix
Xaug by using delay coordinates. In general, we may increase the number
s of delay coordinates until the system reaches full rank numerically, i.e.,
adding more rows only results in new singular values.

Arbabi and Mezić [16] have shown the convergence of this time-shifted
approach to the eigenfunctions of the Koopman operator. They also illus-
trated remarkable improvements in the prediction of simple and complex
fluid systems. Further examples and theoretical results on delay embedding
and the Hankel viewpoint of Koopman analysis are given by Brunton et al.
[17], Kamb et al. [18]. They have demonstrated that linear time-delayed
models are an effective and efficient tool to capture nonlinear and chaotic
dynamics.
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1.3 Higher Order DMD method

The idea of an extension of the standard DMD from higher order that is ca-
pable of providing highly accurate results in cases in which the performance
of the classical DMD is deteriorating or even fails. The objective is to mix
the classical DMD with Taken’s delay embedding theorem [19], leading to a
higher order Koopman assumption that uses time-lagged snapshots, as

zk+s = A1zk +A2zk+1 . . .+Aszk+s−1, (11)

for k = 1, . . . ,m− s.
Let us note that s ≥ 1 is adjustable and, when s = 1 this assumption

exactly matches the standard Koopman assumption presented in Eq (2).
The resulting mapping is given by

AXaug = Yaug, (12)

where Xaug and Yaug are the augmented (Hankelized) data matrices:

Xaug =













z1 . . . zm−s

z2 . . . zm−s+1
... . . .

...
zs . . . zm−1













and Yaug =













z2 . . . zm−s+1

z3 . . . zm−s+2
... . . .

...
zs+1 . . . zm













(13)

and A is a block companion matrix:

A =



















0 I 0 . . . 0

0 0 I . . . 0
...

...
. . .

. . .
...

0 0 0
. . . I

A1 A2 A3 . . . As



















, (14)

with Ai ∈ Rn×n, 0 is the n × n zero matrix and I is the n × n unit ma-
trix. Using the augmented data matrices Xaug and Yaug and the higher
order Koopman operator A, we can apply the core algorithm and extract
spectral information from temporally broadband or spatially sparse data se-
quences. The higher-order extension adds more robustness and flexibility
to the standard algorithm and enables the analysis of systems for which
temporal resolution is substituted for spatial resolution.

Higher Order DMD was introduced by Le Clainche and Vega in [15].
However, the algorithm presented there does not exploit the special form of
the generalized Koopman matrix A in (14). The proposed algorithm consists
of the following two main steps:
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1. Singular value decomposition (SVD) is applied to the full snapshot
matrix D in (1):

D = UDΣDV
∗
D. (15)

2. The delay-embedding DMD approach is applied to the reduced snap-
shot matrix

D̂ = U∗
DD. (16)

Therefore, the reduced order approximation of A is computed by the formula

Ã = U∗
XAUX = U∗

XYaugVXΣ−1
X , (17)

which corresponds to formula (4) in the one-dimensional case, where UX is
from the SVD of Xaug = UXΣXV ∗

X .
This means that the approach proposed in [15] is more of a Delay em-

bedding DMD (or Hankel DMD) applied to the reduced data set

D̂ = {ẑ0, . . . , ẑm}, (18)

where zi = UDẑi for i = 0, . . . ,m. We should note that in the algorithm
presented in [15] the DMD amplitudes are calculated in a more optimal way
than in the standard DMD approach.

2 A new approach to Higher Order DMD

Our goal in this section is to obtain an alternative approach to calculating
the HODMD described in Section 1.3, which would be more cost effective.
For this purpose, we will use the special form of the Koopman operator A
defined in (14).

DMD operator as a block companion matrix

Let us represent operator A ∈ Rs.n×s.n in the following equivalent block-
matrix notation:

A =

[

0 I

A1 A2:s

]

, (19)

where 0 ∈ R(s−1)n×n is a zero matrix, I ∈ R(s−1)n×(s−1)n is an identity
matrix, A1 ∈ Rn×n and A2:s ∈ Rn×(s−1)n is the following block matrix
A2:s = [A2| . . . |As].
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For convenience, let us represent the augmented matrices Xaug and Yaug

defined in (13) as follows:

Xaug =













X1

X2
...

Xs













and Yaug =













X2

X3
...

Xs+1













, (20)

where Xi ∈ Rn×(m−s) denotes the sub-matrix

Xi = [zi|zi+1 . . . |zm−s+i−1] (21)

for i = 1, . . . , s+ 1.
Therefore the following equivalent presentations are valid:

Xaug =

[

X1

X2;s

]

and Yaug =

[

X2;s

Xs+1

]

, (22)

where double indexing is used for block sub-matrix Xp;q:

Xp;q =









Xp

...

Xq









.

Then the relation (12) has the following equivalent representation:

AXaug = Yaug ⇔
[

0 I

A1 A2:s

] [

X1

X2;s

]

=

[

X2;s

Xs+1

]

. (23)

Obviously, operator A can be represented as

A = YaugX
†
aug, (24)

where X†
aug is the Moore-Penrose pseudoinverse of Xaug. Eq. (24) implies

A =

[

0 I

A1 A2:s

]

=

[

X2;s

Xs+1

]

X†
aug. (25)

In order to calculate the block matrix A it is enough to calculate the last
row of matrices:

A1:s = [A1|A2| . . . |As] = Xs+1X
†
aug, (26)

which is n× s.n matrix.
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Reduced order DMD operator

Let us have a reduced SVD of Xaug ∈ Rs.n×(m−s):

Xaug = UXΣXV ∗
X , (27)

where UX ∈ Rs.n×r, VX ∈ Rm−s×r,ΣX ∈ Rr×r, and let represent matrix
UX in a block matrix of the form (20)

UX =













U1

U2
...

Us













, (28)

with sub-matrices Ui ∈ Rn×r for i = 1, . . . , s.
Therefore, the reduced order DMD operator

Ã = U∗
XAUX (29)

has the following equivalent expression:

Ã = [U∗
1;s−1 | U∗

s ]

[

0 I

A1 A2:s

] [

U1

U2;s

]

, (30)

where 0 ∈ R(s−1)n×n is a zero matrix, I ∈ R(s−1)n×(s−1)n is an identity
matrix. Double indexing is used for block sub-matrices Up;q of the form:

Up;q =









Up

...

Uq









.

From (30), after simple transformations and using (26), we obtain the fol-
lowing representation:

Ã = U∗
1;s−1U2;s + U∗

sXs+1VxΣ
−1
X , (31)

which is an r × r matrix. Therefore, matrix Ã in (31) is the reduced order
approximation of A, which corresponds to formula (17) in the standard
HODMD approach.
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Alternative Higher Order DMD algorithm

Now, we can formulate an alternative version of the HODMD approach
considered in section 1.3:

Algorithm 1: Alternative Higher Order DMD

Input: Snapshot data matrix D, delay embedding parameter s

and rank reduction parameter r.

Output: DMD eigenvalues Λ and modes Φ

1: Procedure AHODMD(D, s, r)

2: Xaug and Xs+1 (Define matrices as in (21))

3: [UX ,ΣX , VX ] = SV D(Xaug, r) (Truncated r-rank SVD of Xaug)

4: U1, U2;s, U1;s−1, Us (Define matrices as in (28))

5: Ã = U∗
1;s−1U2;s + U∗

sXs+1VXΣ−1
X (Low rank approximation of A)

6: [W,Λ] = EIG(Ã) (Eigen-decomposition of Ã)

7: Λ = diag{λi} (DMD eigenvalues of A)

8: Φ = UXW (DMD modes of A)

9: End Procedure

It can be easily verified that in particular, for s = 1, the proposed algo-
rithm reduces to the standard DMD algorithm. In the rest of this study, we
will show that Algorithm 1 gives results identical to the standard HODMD
algorithm and at the same time is computationally more economical.

Although Algorithm 1 accepts as input the entire data matrix D, the
proposed scheme is also applicable to a pre-reduced data system D̂, as in
the standard HODMD approach. In other words, one can first apply SVD to
the entire snapshot matrix, including the spatial truncation, which defines
at the beginning the spatial modes, the spatial complexity, and the reduced
snapshots. Since in this way, implementing the new algorithm with large
s is computationally cheap, a good strategy is to apply the algorithm to
several sample values of s and compare the results to guess the appropriate
value of s. The new algorithm turns out to be quite robust in connection
with varying s.
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Computational Cost and Memory Requirement

The main difference between the two considered approaches, standard and
alternative HODMD, lies in the representation of the reduced DMD opera-
tor.

Standard HODMD Alternative HODMD

Ã U∗
XYaugVXΣ−1

X U∗
1;s−1U2;s + U∗

sXs+1VXΣ−1
X

CC rsn(m− s) + r2(m− s+ 1) rn[r(s− 1) +m− s] + r2(m− s+ 1)

Table 1: Reduced DMD operators and computational costs (CC) for Standard
HODMD and Alternative HODMD algorithms.

We note that the standard HODMD method requires the three matrices
UX , ΣX and VX (from the SVD of Xaug) and the entire matrix Yaug, the
alternative HODMD method uses the first three matrices plus the matrix
Xs+1 instead of Yaug. This suggests that the alternative approach would
require less storage and computational work, given that Yaug ∈ Rs.n×(m−s)

and Xs+1 ∈ Rn×(m−s). Table 1 gives a brief summary of the reduced DMD
operators and the computational costs for the two approaches considered.

As we can see from Table 1, both DMD operators require matrix mul-
tiplication VXΣ−1

X with the computational costs r2(m − s + 1), so in the
comparison we will reduce this operation for both cases.

Let us define the following two (reduced) cost functions:

f1(s, r) = rns(m− s), (Alternative HODMD)

f2(s, r) = rn [r(s− 1) +m− s] , (Standard HODMD).
(32)

A three-dimensional visualization of the f1 and f2 functions is shown in
Fig. 1 (for example values n = 20 and m = 200).

From (32), we see that for s = 1 (where s is the time-shift coefficient)
they have the same computational complexity (because the two algorithms
reduce to the standard DMD algorithm).

It can easily be deduced that the difference between the computational
work of the standard approach and the alternative approach is equal to:

fdiff = f2 − f1 = rn(s− 1)(m− r − s). (33)
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Figure 1: Computational cost functions: (Left) f1 (standard HODMD) and
(Right) f2 (alternative HODMD), with n = 20 and m = 200.

If we consider fdiff in (33) as a function of a variable s (for a fixed value of
r), then it has the following equivalent representation:

fdiff = −a1s
2 + a2s− a3, (34)

where a1 = rn, a2 = rn(m−r+1) and a3 = rn(m−r). It can be shown that
the two zeros of fdiff are 1 and m− r. Therefore, for the values of the time-
shift coefficient s in the interval [2,m− r], the Alternative HODMD is more
efficient than the Standard HODMD. From the fact that it has the shape
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Figure 2: (Left) overlapped cost functions f1 and f2; (Right) function fdiff .

of a parabola, we can conclude that it reaches its maximum at the value
s = (m− r + 1)/2. Therefore, the Standard HODMD algorithm requires at



On higher order DMD 278

least the following number of operations:

fdiff (2) = rn(m− r − 2), (35)

in more than the alternative algorithm, and this number can reach up to

max
s

fdiff = fdiff

(

m− r + 1

2

)

=
rn

2

[

(m− r + 1)2 − 2(m− r)
]

. (36)

This can also be seen in the overlapping charts in Fig. 2 (Left).
Furthermore, in the standard approach the number of floating numbers

that must be stored (to compute the reduced DMD operator) exceeds those
in the alternative algorithm by: n(s− 1)(m − s).

So for example with a dataset consisting of 200 snapshots (m = 200) and
each snapshot is of dimension 20 (n = 200), then the standard algorithm
will calculate between 3.9e102× r and 2e105× r more operations, depending
on the choice of the delay factor s, where r is the rank truncation index.
The graph of fdiff is depicted in Fig. 2 (Right), for example values n = 20,
m = 200 and r = 50).

3 Numerical examples

To demonstrate and compare the standard and alternative HODMD algo-
rithms, we consider two illustrative examples.

Example 1: A toy model for the temporal evolution of LiDAR

In this example, we will demonstrate a fully data-driven application of the
Alternative HODMD approach to feature extraction.

The model is defined as

z(x, t) = (2.10−3x3 + 8.10−2x2 + x)[2 sin(ω1t) + 0.25 cos(ω2t)],

where ω1 = 2π/45 and ω2 =
√
5. This example is taken from the book

by Clainche and Vega [20], Chapter 7. It is representative of the method-
ology used in the prediction of the Light Detection And Ranging (LiDAR)
measurements, see [21]. The exception is that this toy model is free of noise.

The dynamics associated with this model is multi-scale, since the two
frequencies imposed exhibit quite different values (small and large), quasi-
periodic, because ω1 and ω2 are incommensurable (namely, the ratio ω1/ω2 is
not a rational number) and, consequently, fairly demanding. It is possible to
represent this model as a DMD expansion involving four frequencies, namely
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Figure 3: The model (1) defined in the interval x ∈ [0, 50].
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Figure 4: (Left) The first 15 singular values of Xaug, with s = 4 and r = 4;
(Right) DMD eigenvalues computed by Standard HODMD (blue circles) and
Alternative HODMD (red crosses).

±ω1 and ±ω2. The spatio-temporal color map of the model is presented in
Fig. 3. The model is spatially defined in the interval x ∈ [0, 50].

A set of 1000 snapshots is collected in the time interval t ∈ [0, 200]. Using
the standard DMD algorithm provides completely spurious results since the
spatial complexity of this problem (represented by the number of singular
values, n = 1) is smaller than the spectral complexity (represented by the
number of frequencies defined in this model, r = 4). Thus s should be at
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Figure 5: Two leading DMD modes of Standard HODMD method.

least 4, although in the examples presented the optimal solution is found for
values of s > 10.
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Figure 6: Two leading DMD modes of Alternative HODMD method.

By setting s in the interval s ∈ [10, 100], the relative RMS error in the
reconstruction of the original snapshots using both HODMD algorithms is
∼ 10−14. Fig. 4 shows the singular values calculated in the dimension-
reduction step of the HODMD algorithm.
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When using the values s = 4 and r = 4, both algorithms achieve the same
accuracy with an error of 1.4e−11 and 4.7e−11, respectively. Increasing the
values of s = 4 and/or r = 4, the accuracy of both algorithms increases. The
two algorithms produce identical DMD eigenvalues, see Fig. 4 and compa-
rable DMD modes, see Fig. 5 and Fig. 6. As expected, the method identifies
four exact frequencies, namely ±ω1 and ±ω2, and reconstructs the original
data with a RMS error ∼ 10−14.

Example 2: Van der Pol oscillator

Now, we consider the classical Van der Pol oscillator model. It is described
by B. van der Pol in [22], defined as

ẍ− µ(1− x2)ẋ+ x = 0,

where the usual meaning of x(t) is position, but this may differ depending
on the application, and µ is a scalar parameter that characterizes damping.
If the time derivative y(t) = ẋ(t) is introduced as an additional variable, the
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Figure 7: Trajectory of the Van der Pol oscillator.

equation can be reduced to a system of first order differential equations

ẋ = y
ẏ = µ(1− x2)y − x .

(37)

The parameter µ > 0 controls the degree of nonlinearity; we use the value
µ = 1.5. Time-domain simulations are performed by using discretization
time-steps of △t = 0.02 over a total time period of T = 20.
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The differential equation is solved in MATLAB with ode45 solver. The
generated data matrix D is of dimension 2× 1000. Simulation results from
initial conditions [x0, y0] = [1, 1] are shown in Fig. 7. Standard DMD ap-

s= r= Standard HODMD Alternative HODMD

50 12 4.822e − 01 4.823e − 01

80 15 4.621e − 01 4.593e − 01

100 20 3.622e − 01 3.583e − 01

200 40 5.30e − 02 5.23e − 02

250 50 2.59e − 02 2.57e − 02

300 70 1.5e − 03 1.5e − 03

350 80 1.3745e − 04 1.3912e − 04

Table 2: RMS error of reconstruction by Standard HODMD and Alternative
HODMD.

proach provides spurious results in reconstruction of the dynamics (37),
because it identifies only two modes that are insufficient to approximate the
dynamics. In order to achieve a better approximation, we used different
values for s and r. Table 2 shows the RMS error for different values of s
and r for the two algorithms. As we can see from Table 2 by increasing the

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

k

σk

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re(λ)

Im(λ)  

 

 
Standard HODMD

Alternative HODMD

Figure 8: Left: The first 70 singular values of Xaug; Right: DMD eigenvalues
computed by Alternative HODMD method, with s = 300 and r = 70.

values of s and/or r the accuracy of both algorithms increases also. For the
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value s = 300 the first 70 singular values of the augmented data matrix Xaug

are shown in Fig. 8 (left). In this case, according to formula (33), we can
calculate that the standard HODMD algorithm uses 2.6 × 107 calculations
more than the alternative HODMD algorithm. By choosing r = 70, both al-
gorithms achieve accuracy with an error of: 1.5e−3. The DMD eigenvalues,
calculated by both algorithms, are shown in Fig. 8 (right).

Two trajectories for x(t) and y(t) reconstructions of (37) using Standard
HODMD and Alternative HODMD are shown in Fig. 9.
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Figure 9: Reconstruction of x(t) and y(t) using Standard HODMD and
Alternative HODMD methods.

The phase portrait reconstructions for the Van der Pol oscillator, by the
two, Standard HODMD and Alternative HODMD, approaches are shown in
Fig. 10.

4 Conclusion

We have provided a new algorithm for computing higher order dynamic
mode decomposition from time series data. We show via simulation exam-
ples that the proposed algorithm can provide an identical approximation of
the dynamics regarding more cost effectiveness than the standard HODMD
approach. The new method has been illustrated and tested in several mod-
els: a spatio-temporal toy model, with application in the analysis of LiDAR
experimental data, and the canonical Van der Pol oscillator model. Experi-
mental results show that the introduced approach gives identical results to
those of the standard HODMD method. In this way the introduced algo-
rithm is an alternative to the standard HODMD algorithm and can be used
in various fields of application.
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Figure 10: Reconstruction of the Van der Pol oscillator using Standard
HODMD and Alternative HODMD methods.
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