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Abstract

In some previous papers, within the framework of the thermody-
namics of irreversible processes with internal variables, a linear theory
for magnetic relaxation phenomena in anisotropic mixtures, consisting
of n reacting fluid components, was developed. In particular, assuming
that the macroscopic magnetization m can be split in two irreversible
parts m = m(® + m® a generalized Snoek equation was derived. In
this paper we derive for these reacting anisotropic mixtures the heat
conduction equation. We show that the heat dissipation function is due
to the chemical reactions, the magnetic relaxation, the electric conduc-
tion, the viscous, magnetic, temperature fields and the diffusion and
the concentrations of the n fluid components. Also, the Snoek and De
Groot special cases are studied. The obtained results find applications
in nuclear resonance, in biology, in medicine and other fields, where
different species of molecules have different magnetic susceptibilities
and relaxation times and contribute to the total magnetization.
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1 Introduction

In [I]-]7] a linear theory for magnetic relaxation phenomena in magneti-
zable continuous media was developed, based on the thermodynamics of
irreversible processes with internal variables [8]-[13]. In particular, in [IJ,
in linear approximation Kluitenberg, assuming that the total specific mag-
netization is given by the sum of one reversible part and one irreversible
part, derived for magnetizable isotropic media the classical Snoek equation
describing magnetic relaxation phenomena [I4]. Subsequently, in [2], assum-
ing that the total specific magnetization m is composed of two irreversible
parts, i.e.,

m=m® + mW, (1)

Kluitenberg obtained a more general magnetic relaxation equation. In [4],
in the assumption that an arbitrary number n of microscopic phenomena
give rise to the total specific magnetization m, that can be split in n + 1
irreversible parts, i.e.

m = m® + Z m®), (2)
k=1

in the isotropic case a generalized Snoek equation was obtained by Kluiten-
berg and one of the authors, having the form of a linear relation among the
magnetic field B, the first n time derivatives of this field, the total magneti-
zation M = pm, with ¢ the mass density, and the first n+ 1 time derivatives
of M, being n the number of phenomena giving rise to the magnetization.
In [5] and [6]) reviews about the results obtained in [4] were done.

In [7] the behaviour of anisotropic reacting fluid mixtures with magnetic
relaxation was investigated. The irreversible microscopic phenomena giving
rise to magnetic relaxation are described, assuming that the total specific
magnetization m given by two irreversible parts m(®) and m® as in ,
and in the linear case the magnetic relaxation equation was derived.

In [I5], [16] analogous studies for dielectric relaxation phenomena in po-
larizable media with internal variables were performed by using the same
methods of the classical thermodynamics of irreversible processes with in-
ternal variables.
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In [I7] mixtures of n reacting fluid components, heat conducting and
presenting magnetic and dielectric relaxation, were described within the
same thermodynamic framework.

In this paper we derive the heat conduction equation and the heat dis-
sipation function for anisotropic mixtures, constituted by n reacting fluid
components, presenting magnetic relaxation. As in [7] we assume that the
total specific magnetization can be split in two irreversible parts (see ),
and we introduce m) as internal variable in the thermodynamic state space.

The paper is organized as follows.

In Sections 2-4 and Section 6 we give, adding further considerations
on the fundamentals of thermodynamics of irreversible processes, a review
of the model of the considered media, derived by the authors in [7]. We
present the governing equations describing all the processes inside them,
the entropy balance equation, the phenomenological equations, the Onsager-
Casimir relations and the laws of state. In Section 5 the entropy production
is worked out, taking into account the phenomenological equations. Finally,
in Section 7 the derivation of the field B(Y, conjugated to the internal specific
magnetization m(!), is obtained.

In Section 8 the specific internal energy and the specific entropy are
worked out.

In Section 9 the heat conduction equation and the heat dissipation func-
tion are derived and in Sections 10 and 11 the Snoek and De Groot cases
are studied.

The derived results find applications in several fields as in medicine,
in biology, in nuclear resonance, where different species of molecules have
different magnetic susceptibilities and relaxation times and contribute to the
total magnetization.

In [I§] the heat conduction equation and the heat dissipation function
were derived for anisotropic magnetizable media with relaxation, in the as-
sumption .

In [I9] and [20] the heat conduction equation and the heat dissipation
function were derived for anisotropic and isotropic polarizable media, re-
spectively, with dielectric relaxation in the linear case, within the same
thermodynamic framework.

A continuum phenomenological theory with internal variables for mag-
netizable media with relaxation phenomena and constitued by n different
ionic species was developed by Maugin in [2I], [22] to explain the internal
mechanisms in these media (see also [23], [24]).
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2 Balance equations

In this Section we present the equations governing the behaviour of mix-
tures consisting of n reacting fluid components, in a current configuration
K. [12]. We use the Cartesian tensor notation in a rectangular coordinate
system. The model for these media was developed by the authors within
the framework of classical irreversible thermodynamics with internal vari-
ables in [7]. All the processes occurring inside the considered mixtures are
governed by the balance equations and the Maxwell equations in Galilean
approximation.
The conservation of mass is given by
de

— eV V=0, (3)

n
where o is the total mass density field, given by o = Z g(k), the symbol
k=1

d
"V -7 denotes the divergence operator, 7 is the material time derivative,

d 0
defined by — = — + v;——, where Einstein convention for repeated indices
dt ot ox;
0 0
is used, — is the time partial derivative, — is the spatial partial derivative

ot 8331
and v; (i = 1,2,3) are the cartesian components of the barycentric velocity

v of the fluid mixture under consideration, defined by

vl 3 oy ®), (4)

being 0®) the mass density and v(¥) the velocity of the k-th fluid component.
Let us introduce the mass fractions ¢*) of the n fluid components by

(k) n
B = % (k=1,...,n), with Z B =1 (5)
k=1

(see 1).
Let us define the diffusion flux of the k-th fluid component with respect
to the barycentric motion by the expression

k i Y k
iy = oW @™ —v) (k=12...,n) with ’;Jgdgmzm (6)

(see (@), i.e. only n— 1 of the n diffusion fluxes are independent.



A. Labianca, L. Palese, L. Restuccia 231

The balance equations for the mass fractions ¢*) have the following form
12):

de®)
_ _ y(kh) 7(h)
0 dt dff)+z Jchem)

(k=1,...,n), (7)

where v (") J ((ch]zem) is the production of k-th fluid component per unit volume

and per unit time by the h-th chemical reaction, J((dz om

reaction rate of the h-th chemical reaction and the quantity v*" divided
by the molecular mass M*) of the k-th fluid component is proportional to
the stoichiometric coefficient with which the k-th fluid component appears
in the h-th chemical reaction.

From equations ([7) we can obtain the following relation, by multiply-
(k
ing both sides by MT’ summing over k£ and introducing the h-th quantity

) is the chemical

A | representing the opposite of the so-called chemical affinity of each h-th
reaction, i.e., A" = Z,uk) (kh) =1,...,7),

o~ W™ o (L5 g
72 =Y <TZ“ iaisp)

k=1 k=1

(k) 1"

(k) I (h) 7(h)
Z J(dlff ( T > T ;;1 A J(chem) : (8)
Mazwell’s equatzons, in Galilean approximation, for magnetizable media
(in the rationalized Gauss system) keep the form

VxH—la—E—ll,
c Ot c
V-E = o),
10B 9)
E+—-—=0
VX +08t ’
V-B=0

where c¢ is the light velocity, E and B are the electric and magnetic field
strengths, respectively, H is the magnetic displacement field, o(¢) is the
electric charge per unit volume (electric charge density) and I is the density
of the total electric current.

For magnetizable media the polarization vector, defined by P =D — E,
with D the electric displacement field, is null, then P = 0 and D = E in
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equations @1 and @2. Furthermore, we define the magnetization M and
the specific magnetization m by

M—B-H  m=2IM, (10)
0

that are axial vectors.
The total charge e per unit of mass of the system is given by

n

e= - Z o®ek) = Z cFek) (11)
k=1

oyt

—_

being e(®) the charge per unit of mass of the k-th fluid component (see 1).
In equations @172 I and o) are defined by

1= Z oF) By (k) oY = ge = Z oFe®), (12)
k=1 k=1
and they satisfy the following charge conservation law

Dol
ot

Equation 1 can be written in the form

=-V-1 (13)

I= v+ Z e(k)JEl;sz) (14)
k=1

(see (6)1 and (12)2).

On the right hand side of the first term (Vv is the electric current
due to convection, the second one is the electric current due to the relative
motion of the n fluid components, called conduction current j) and given
by

(el) _ N~ (k) 1)
j )—kz_:le( )J(diff). (15)

The first law of thermodynamics for magnetizable media in an electro-
magnetic field, in Galilean approximation, see [12], has the form

dm

dt’

du _ —v.J@ + Tap

d&aﬁ
et

Z=ab L se) |4 0B -
@ +o

(16)
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where u is the specific internal energy of the system, J@ is the heat flux

d
density, 7,4 is the symmetric mechanical stress tensor and Zzﬁ is the small
strain rate tensor, given by
deqg 1 [Ovy  Ovg
= ,0=1,2,3). 17
dt 2 (83}5 + 0zq (o, 8 ) (17)

On the right hand side of equation there are present four contribu-
tions given by the heat supply, the work done by the mecanical stress, the
Joule heat and the work done by the magnetic field to change the magneti-
zation, respectively.

In all the quantities are per unit of volume and per unit of time.

We note that does not satisfy the requirements of the relativity
theory. However, we assume that the velocity of the medium under consid-
eration with respect to the observer is small compared with the velocity of
the light. In this case equation is a good approximation for the first
law of thermodynamics (Galilean approximation). For the exact relativistic
formulation of the first law for viscous, magnetizable simple fluid mixtures
influenced by an electromagnetic field the reader may consult Kluitenberg
[25] and Kluitenberg and De Groot [26], [27].

In the following Section 3 we will introduce the entropy balance equation
and the phenomenological equations, derived in [7].

3 Choice of the state space variables, entropy pro-
duction and phenomenological equations

In this Section we give a review of some results obtained in [7], with some
considerations on the foundations of the irreversible processes thermody-
namics. Let us suppose that the total specific magnetization m is given
by two irreversible contributions, m® and m™, due to two different types
of irreversible microscopic phenomena, that give rise to the magnetic re-
laxation and let us introduce m( in the thermodynamic state space as
internal variable to describe these phenomena. Thus, we assume that the
specific entropy s (the entropy per unit of mass) is a function of the specific
internal energy u, the strain tensor £,4, the specific magnetization m® the
concentrations ¢*) of the n fluid components (k =1,...,n) (see [7])

s=s (u, EaB, M, m®, M ,c(")) . (18)
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The internal variables are a powerful tool to describe complex media. In
this paper we work within the classical irreversible thermodynamics (CIT),
see [8]-[13], where gradients and time derivatives of the physical fields, dis-
sipative fluxes are not included in the thermodynamic state space and the
local equilibrium hypothesis for the system is assumed (see28]-[30]), i.e. out
of the equilibrium each point of the medium is considered as a thermody-
namic cell where the reversible thermodynamics is applicable. For some
remarks about the internal variables and some versions of non-equilibrium
thermodynamics see Section 2 of Reference [31]. We define the equilibrium

temperature 7', the equilibrium stress tensor T(;(Y%q), the equilibrium magnetic

field B(¢9)| the thermodynamic affinity B(!), conjugate to the internal vari-
able m(Y), and the thermodynamic or chemical potential u(*) of the k-th
fluid component, respectively, by

0
-1 _ 1) D) (n)
T —8us(u,5aﬁ,m,m AN ),
(a) _ 0 (1) 1) (n)
T, —gTaeaﬁs(u,salg,m,m NN ),
0
(eq) — _p_~_ 1 D (n)
Bleq T8m8<u,6aﬂ,m,m , el ),
0
(€ I L 1) D) (n)
B —Tam(l)s<u,€a5,m,m ,C\ ¢ ),
pk) = —Tis (u ag,m,m) 1) c(")) (k=1 n)
ac(k) ) a,B? ) ) PR AR ] *

Considering very small deviations with respect to a local equilibrium
state, we expand the entropy into Taylor’s series with respect to this
state, and confining our consideration to the linear terms, we obtain the
differential of the entropy s in a point of the thermodynamic phase space
(see[32], [33]), i.e. in a local position in a current configuration K, in the
following form, called Gibbs relation,

1 (e . -
Tds = du — ETC(Yﬁq)d&‘ag ~ B . dm + B . am® — ]; pPde® | (19)

where we have used Eqs. 2—5. From it follows that the time
derivative of the entropy s in the considered point of the thermodynamic
phase space takes the form

ds du 1 (qde,
s_du_ 1 (eqdeap _

& B(€d) . d7m .
dt — dt o dt dt dt
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From , using and we have

ds 1 de .\ dm

ds _ o 30, (1@, () 42ag | pir) dm

o=V +T( 7 VT Ty =g te dt
0. MY 5 o ; A W IR
+o Z (chem z_: dsz T +T-] ) ( )

where J(), To(;g) and BU") are the entropy flux, the viscous stress tensor and
the irreversible magnetic field, respectively, defined by

s (k
R CUE WL )

Té%z) = TaB — Tc(vﬁq) (a, 0 =1,2,3), B — B _ B(ed). (23)

Defining the thermodynamic force X*), conjugate to the diffusion flux

()
Jigigr)> PY

(k)

and taking into account equation ([15)) we have

n (k) 1
(k) H (k ) —
_;J(dim‘V( T >+T Zszff
1 by (k)
T ; Talgpy - (X0 —x) = Z Tty - X®, (25)

where we have used @, and defined X*) = x(®) _x(™) (k= 1,...,n—1).
Using , the entropy balance equation can be written in the
following form

d
0% ==V -3 440, (26)

where ¢®) is the entropy production per unit volume and per unit time,
given by

1 .y dm dm®) 1
() — — (ir) 22 . 22" _ Zq(.
o T (gB 7 + 0B 7 TJ vT
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(vi) d€ap
T Z J(dlff X + Z A (chem Top dt > : (27)

In the expression 1’ o) is the intrinsic entropy production defined as
non-negative quantity by the second law of thermodynamics: (%) > 0.

o) = 0 when the system is in thermodynamic equilibrium, i.e. when
irreversible processes inside the system are not present. In thermodynamic
equilibrium the sources (the body force, the energy source, the external
entropy production) are null, the velocity of the medium is constant or null,
the fluxes of physical quantities, the gradients and the time derivatives of
the fields are null, the internal variables "become dependent on the variables
of the equilibrium subspace, but they are not determined by them, i.e., the
equilibrium subspace is many-valued” [34].

If we assume that the specific entropy s is a constitutive function of the
independent variables of the thermodynamic state space

c=C (u75a5,m(0),m(1),0(1), .. .,c(”)), ie.
s=s (u,sag, m@ m® M c(")) , (28)

in || o) assumes the following form

1 1 de dm(©)
() — — | =730 . (vi) €ap (ir) 222 °
o T [ TJ VT + T 7 + 0B 7
0B+ m) I S a0 S, X))

It is seen from ( . ) that if the magnetic field B equals the equilibrium
magnetic field B9, B(") vanishes and only the specific partial magneti-
zation m™) contributes to the entropy production, i.e. changes in m(©
become reversible and we are in the Snoek case (see Section 10). Thus, m(?)
is an irreversible part of the total magnetization only when the magnetizable
medium is not in a thermodynamic equilibrium state. Also, from we
can obtain the De Groot-Mazur case (see Section 11), when m = m(®
there is no internal variable m®).

From it is seen that the intrinsic entropy production

, l.e.

i) — 7 (s)

is a bilinear form composed of a sum of m terms, where each term is a
product of the components of a flux J;, scalar, vector, tensor, and the com-
ponents of an affinity, or thermodynamic force Y; (conjugate to the flux .J;),
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scalar, vector, tensor, i.e.
m
in) _ > i (30)
i=1

From , using the procedures of the classical irreversible thermody-
namics, the phenomenological equations can be written in the following
linear form (see [12], [13] and also [35]))

Ji=> Ly, (i=1,...,m), (31)
k=1

where the quantities L;; are called phenomenological coefficients and are
constant. In equations it is seen that a thermodynamic flux does not
depend only on the corresponding force, but also on other forces.

In equation o) is the sum of six terms, thus the phenomenolog-
ical equations, in which the irreversible fluxes are linear functions of the
thermodynamic forces, have the following form (see [7])

Bl = QLE%)aﬁdzﬁ + LG B - ; Oqaﬁax N Z L ®
#3 LRAD + LG T (32)
¢ dnf) - %)aﬁd% + LB — FL0s gggTﬁ "Z; LoipyasXs
Z Liyiena A" + Ly ”)’gm%, (33)
T = oLi{ s dzﬁ + Lias B - T Ly 3; nz; Liys X5

+ ZT;LEZ;QAW + L) df%, (34)

Tt o = OL{DAas dzﬁ +L{panasBs’ ~ T E]anﬁ 923 nz:: LpDyasX
+ZL"’h> h>+L§g‘;def§” G=1,...,n—1), (35)
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b = {Ehon G+ Ui~ T+ S U
+ Z L A(h Eggvdfg” (I=1,..r), (36)
TSZ;) - QLEM ;)c)tﬁv dg? + qufj\})lo)zﬁ'yB(l) o % amqu) 585 + Z L p l;ﬁ'y 7
+ Z Lt A® fx’gjﬁ%. (37)

In principle, all irreversible phenomena described by — can in-
fluence each other. For instance, the third, fourth, fifth and sixth term
on the right-hand side of describe the influences of the heat flux, dif-
fusion fluxes, chemical reactions and viscous flow on magnetic relaxation.
These phenomena are called cross effects. Equations and describe
irreversible changes in the magnetization, the phenomenological equations
- describe the irreversible processes of the heat flux, diffusion fluxes

and chemical reactions. Equation (37) is a generalization of Newton’s law

(070) (0,1) (O’q)
(MM)ap’ L(MM)CVﬁ’ L(M)a,B’ ..., that

are present in — are called phenomenological tensors. LE(])\}[O&)Q 5 and

LE(])\;R/[) 5 are polar tensors of second order connected with the magnetic re-

for viscous fluid flow. The quantities L

laxation, LE%Z) By and LE M)(zc,B are pseudotensors of third order connected

(q q) -

with the influence of the viscous flow on the magnetic relaxation. L ;" is

the heat conductivity polar tensor of order two, L(Ué Ug ) is the viscosity polar

tensor of order four, LEDD))aB (j,k=1,...,n—1) is a polar tensor of order
two connected with the diffusion flow of the k-th fluid component, Lgécz) is a
scalar connected with the chemical affinity of the reaction h (I,h =1,...,7),
d dm® ,
having taken into account that o ;1, 0 r;lt , B and BW are pseudovec-
tors (or axial vectors) while 7-'VT, X®) (k=1,...,n—1) and To(;g), J@,
d
Jgdsz), (k=1,...,n—-1), Ztﬁ are polar tensors and J(l) AD (l=1,...,r),

T are scalar quantities.
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4 Onsager-Casimir reciprocity relations and sym-
metry relations

The macroscopic quantities, which are present in a phenomenological theory
come from statistical averages of functions of the coordinates and momenta
of the microscopic particles constituting the system at mesoscopic level (see
[13]). From the microscopic point of view a macroscopic quantity is called
even (or odd), if it is a even (or odd) function of the speed of the micro-
scopic particles. Macroscopic quantities which do not depend on the velocity
of these microscopic particles are considered even, the thermodynamic force
conjugated to an even flux is an odd quantity, while the affinity conjugate
to an odd flux is an even quantity. The heat flux, the time derivative of
the small strain tensor, the time derivative of an even quantity, the spa-
tial derivative of an odd quantity are examples of odd functions; the tem-
perature, the mass density, the kinetic energy, the stress tensor, the time
derivative of an odd quantity, the spatial derivative of an even quantity are
examples of even functions. From the macroscopic point of view we distin-
guish the macroscopic quantities in even and odd functions when they are
even or odd under time reversal. Introducing the symbols ”(©)” and 7 (€)”
to indicate odd and even macroscopic quantities, respectively, the intrinsic
entropy production can be written in the form

p q

olin) — Z Ji(O)Y;(e) + Z Jlge)Yk(O)7 with p+q=m, (38)

i=1 k=1

where the odd quantities Jl-(o) and the even quantities J ,ge) are components
of vectors, tensors, which represent the fluxes, while the even quantities
Y;(e) and the odd quantities Yk(o) are components of vectors, tensors, which
represent the thermodynamic forces conjugated to the corresponding fluxes.
From , since T is an even function, ¢(™ is an odd quantity. By virtue

of the phenomenological equations take the following expression

p q
JO =3 LEO LR =1 ), (39)
J=1 k=1
(©) _ = 1 (00)v(0) L N 7 (e0)1-(0)
O =LY O Y LY, (Il=1,...,q), (40)
J=1 k=1

with p+ ¢ =m.
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d dm™® §
In 0 C;:l 0 rzllt ) A(h) (h = 1’..'7,’,)7 T—lvT, To(éﬁ) and
X (k) (k =1,...,n — 1) are even functions of the microscopic particle ve-

locities, while B(”) B, 3@, Jgd)ff) k=1,....,r), JO (1=1,...r),

de
dotﬁ are odd functions of these velocities.
Thus, we can write

(o17) = (3) " () () (287)

)" (55) B ) ()

S () (40) ) (1) ()
dm() ()_ 1,00 \(ee) (dmg (€) 1) \(©) /o

o\ " 0 (L) (dt> + (Lias)  (B5)
A (w) " () S (1) ()

T

+hz_:1( (1) )) (A(h))()Jr(L%Zﬁw)w) (dZi?v)(O)? (42)

(Jaq))(o) —y (L(M y (o) <d,3 0,0) (Bél))(o)

) (5) ) <ng>><€>

Oxg
£ 3 (2) 7 (a) ¢ (LS,@’;”)(“”) o
gD O (L6 (06 amg 7,60 O") M)
(Tialrna) =2 (EBinas) ( dt ) Lipanes)  (B5)

(e)
(0 (55) 0 () (30
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3 (0 () s (2 ) (E) T
(G=1,...,n—1),
(o) = 0 (E8005) ™ (%2) "+ (£0) " (587)”
) (2E) B () ()

-3 (o) (4) 7+ () (5
(47) " = e (i) () (i) (200)
() () () ()"

+Z( () ) (4) ) 4 (i) (dflf)(o). (46)

Let us introduce the Onsager symmetry relations for the phenomenolog-
ical coefficients coming from microscopic considerations [36], [37] (the minus
sign which occurs in is called the Casimir minus sign), see also [12], [13]:

(I=1,...,r), (45)

) (0,€)
) (0)

ij.ve) _ ng@) (i,7=1,....p), (47)
LE? =Ly (ki=1,...,q) (48)
L = -1 i=1,...p; k=1,....q). (49)

Thus, we have the following Onsager-Casimir reciprocity relations for
the phenomenological coefficients present in (32)-(37) (see [7] where they
were derived)

(0,0) (0,0) Ly _ (1 (6:9) _ 7(9,9)
L(M)aﬁ L(M)Ba’ L(M)aﬁ L(M)Ba’ Laﬁ - Lﬁa )

o,1) (1,0 0,9) _ 1(q,0) (q,vi) __ (vi,g)
Lisnyas = ~Lianser  Lnes = Liinpar  Lapy’ = ~Lpya'>

(0,k) (k,0) (4:k) _ 7(kJ) C g
Liyipyas = L(oanse L(’DD)aﬂ_L(D”D)ﬁa (j,k=1,...,n—1),
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Liere = Litthar  Loye =Lighe G =1,...,n—1), (h=1,...,7),
Lg\%)aﬁ - _LEI;\%)W LEIBQ)}ZZ)BV - _ngil;)m (k=1,...,n—1),
Lvhus = ~Liitisar Libyas = Lipjpa (k=1...n—1)

Livitra = ~Licaner Lty = Licey Lh=1,....)

Lig = Liciar  Lithasy = ~Liima:

LiGhap =~ (0 =1oo) L0, = Lia Lasra = Lisas -

(50)

The Onsager-Casimir reciprocity relations reduce the number of inde-
pendent components of the phenomenological tensors.

Because of the symmetry of ¢,4, To(tqu) and the viscous stress T

[0
has the following symmetry relations

(%Z) one

LEJI\KO{BW - Lg\;)igwﬁ’ Lgll)\;)lflﬁv - Lgﬁ;gav’

) - ) e

LEJO\;)ZM - Lg%igwﬁ’ LEUML%BW - LEIJ@)O/;M’

Lichas = Lo Ulias = Lion (bR =1,007),
LE%Q,BV - LE%Q%B’ LEvDisz)ﬁv - L%S?@év Gk=1,...,n—1),

(vi,vi) _ p(viwi) oy (viwi) g (vi,vE)
Laﬁ’yé - Laﬁé'y - LBa'yd - Lﬁaé'y :
From the last symmetry relations, by virtue of Onsager relations (50))3, we
have
(vi,vi)  p(vii) oy (viwi) g (viwd)  p(viei) g (vivi) oy (viwd) g (vi,vE)
Lopro’ = Lapsy’ = Lpars’ = Lpasy’ = Lasag” = Lasga’ = Loyas” = Loypa -

5 Derivation of the intrinsic entropy production

In this section we work out the intrinsic entropy production ¢ = To(s)
as a bilinear form.
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From and the phenomenological equations — we have

(M)aB gt T

(in) _ 00 dmg 1) o) 1 0q 0T
o —<L tLanasBs ~ planes g,

(0,k) k) (i) degy | dmq
+ Z L(MD + Z L MC)a L(M)aﬁv dt )Q dt

+<QL(LO) dmg 0y poy 1oag OT

(nes~gy T Hnas”s T T8,
LR 0 N O a0, e 9580\ gy
+ZL(MD Xp +hz_:1L(M0)aA tLnasy g | Pa

Ll @0 dmg | @1 L) @) 0T "~ (k)
T <QL(M)aB o T LiwjasBs _TLocB axBJFZL(D)aﬁ

(a:h) 4 (q.vi) 4€By 8l
Z%w DL g >8ma

dmg (1) o 1. Ga
+Z<9L mas~gy T EmnasBs”  plDas gy,

k) | =G 4k L G dep ;
+ Z L DD)a,BXB + L(JDC)aA( )+ Lp) 7>Xé])
h=1

@) dmg a1 L) 1 oag 0T
+Z<9L(CM)5dt theansPs — Flowa,,

uc) B NS LR gt i) B8y 4
+ZL Xg? + 3" Ligoy AW + L) dt”)AU
h=1

wi0) dmy | wil) pa) L wig) 0T
( oLanasy gp dt + Lianyap, By TLaﬁv 635

(vi,k) (vi,h) 4 (k) (vi,vi) d5'y6 dEaﬁ
JFZLDW7 § +ZL LA 4 L —c )= 6D

Using Onsager-Casimir relations we obtain

CHnas gy T T (M)aB gy (MD)ap*p

n—1
Gin) _ ( o0 dms 100 OT N~ 0k v
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T

d « vl d
_|_ Z LE(])\ZhC)‘)aA(h)>Q m _|_ <L(171) B(l) _|_ L(l’ ) 65’7)3(1)

M)aB ™~ M) a
= dt (M)ap (M)aBy ¢

1 (¢,0) dmg )y 0T !
Lq o qq L
(Q (M)~ g T Las pas kzl

(a.h) 4(n) | 94 7,1:0) dmg
ZL(C)aA ) T Z( (DM)aB ™ g

1 J q) (S (4:k) (3:h) h j
-7l D)aﬁax ZL(DD a,BX,B + ZL(DC AW ) x§)

dmﬁ 1 i (LK)
+ Z<9L e g~ T Baxﬁ E%Dw

(L,h) ( ) (vi,1) (1) (vi,vi) dE,Y(; d{:‘ag
+ Z L(cc ) + (L(M)aﬁ B{Y + Ly L) =28 (52)
and ﬁnally
(in) _ 2700 dmgdma 1 g OT dmq
o = nas gy g 20 L(M)aﬂaxﬁ a
0 k‘) (kJ dma dma (1’1) (1) (1)
+2¢ Z Ly +2¢ Z Ly 8+ L 5By B

(o)) degy p1y 2 OT 2.~ (@) 4 9T
+2L( M)apy gt B T; ﬁ B 83: Tg C)aA

81‘@
n—1 n—1
) 9T OT J,h> ) x ) (Gik) (k) ()
+T2 " Dre 9y 22_:2_: LA +2 LippyasXs XS
Jj=1h= Jk=1
"R 4 (h) Al (viyi) dE~s dEq
+ D7 LigoyAW AW + Lygy —1e —E. (53)
1,h=1

Relation shows that the entropy production is a quadratic form in
the components of the time derivative of the total specific magnetization

dm
axial vector R the components of the thermodynamic force conjugate to
the partial specific magnetization axial vector BV, the k-th thermodynamic

force X¥) conjugate to the k-th diffusion flux Jgdsz) (k=1,....,n—1),

the chemical affinity of h-th reaction A* (h =1,...,7), the components of
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the temperature gradient, and the components of the time derivative of the
strain tensor. The entropy production is a positive definite quadratic form,
i.e.

o®) > 0. (54)

From the positive definite character of the entropy production several
inequalities may be derived for the components of the phenomenological
coefficients, resulting from the fact that all the elements of the main diagonal
of the matrix associated to the quadratic form must be non-negative and
all principal minors of this matrix must be non-negative (see [38], [39] and
[35], as examples in the case of three-dimensional isotropic and anisotropic
rigid media and isotropic magnetizable media). For instance, we have

(0,0) (1,1)
L(M)aa >0, L(M)aa >0,

L% >0, LD >0 (k=1,...,n-1), LU >o.

(55)

Also, from the fifth of the inequalities we obtain, by virtue of symmetry
and Onsager-Casimir relations,

(vi,vi) (vi,vi) (vi,vi)

6 Linear equations of state for anisotropic reacting
fluid mixtures with magnetic relaxation

In this Section we give a review of the results obtained in the paper [7]. In
order to obtain the linear equations of state we use the specific free energy
f as thermodynamic potential, defined by

f=u—"Ts. (57)

Using the Gibbs relation (19)), we obtain the following expression for the
differential of f,

df = —sdT +v7 P deqg +BED - dm — BY - dm® + 3 p®ac® . (58)
k=1

Therefore, the following definitions are valid

0
- 1 1) (n)
S 8Tf(T,soé/g,m,m e\ ce ), (59)
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e 0 n
To(zﬁq) = Qﬂf <T7 €ap, M, m(l)’ c(l)’ T ’C( )) ’ (60)
Bled) _ a% (T capem,mD, D, . ), (61)
B — 86(1)f (T, €y, m®, D .,C(n)) : (62)
m

9 n
u(k) = mf (T,saﬂ,m, m®, Dl )) (k=1,...,n). (63)

Let us consider a reference state of the medium (indicated by the symbol
"(0)”) and we also require that this reference state is a state of thermody-
namic equilibrium. We assume that in this state there is an uniform tem-
perature, that has an arbitrary (but fixed) value T{g), the concentrations

k) (k =1,...,n) of the n fluid components have fixed values CES; and

¢
the values of the strain tensor £(g)g, the m( and mgég are null. Then,

we assume that the mechanical stress tensor 7,4, the magnetic field B, BW
and the p(®) vanish in this state, i.e. we assume that

(eq) 1 (1) A
Taﬁq (T(O)7 5(0)a,6’7 m(o), m(o), C(O)’ ceey C(O)) = 0, (64)

e (1) (1) (n)) _
B( a) (T(O)vg(O)aﬁa m(o), m(o), C(O)’ ce ’C(O)> = 0, (65)

1 (1 (1) (n)) _
B( ) <T(0), 6(0)05, m(o), m(o 0y C(O)) = O, (66)

e
pk) (T(O), E(0)aB> M(0); mgég, cgég, . ,CES’D =0 (k=1,...,n). (67)
! T=T, k) = k) (k=1 n)

0)> ( N R 5)
E0as =0, m =0, mgég =0.

Let us expand the free energy f into Taylor’s series with respect to the
considered reference state and we consider very small deviations with respect
to this state.

We postulate the following form for the specific free energy f

f=rY4+ 3, (69)

where
1
F =) 5%aprcEaser¢ + dapcas(T — Tio))
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F 2 H ( ) T+ e (¢ el o
1 (2 1 7
32 .kzzl b (e —c)) (e —efg)) | — (D) (70)
and
% = o) [ E(J)\f))aﬁma (mg — 2m(51)) + agjlwl))aﬁ (1)m(ﬁl)} n

0) (1)
+(“EM>ama_“<M> m®) (T - T(p))

-~ (30, (LB ) () B
+ kz_:l (brama + binaml) (¢ = c(g)) (71)
In ¢(T) is some function of the temperature, v(g) is the specific

volume in the reference state, defined by vy = ——, that in the following
20

1
will be replaced by v = —, supposed constant. Furthermore, in 1} the
o

scalars %) and the tensors AaBryey Qafs bgkﬁ), b(ik) are constant and satisfy
the following symmetry relations

Aapy¢ = ABay¢ = QaBly = ABaly = Ay(af = Ay(Ba = A¢yaB = A¢yBa>
Gap = aga, b9 =050, bOR =p®) (i k=1,..,n). (72

In the tensors ag?\f))aﬁ, agjl\}ll))a 5 are constant and satisfy the following
symmetry relations

(0,00 (0,0 (1 1) (1,1)
U01as = Aanser U01jas = A01)sa (73)
and the vector components agg}) 8\)4)(1, bgg/[k))a, bgl k;) (k=1,...,n) are

constant. The symmetry properties of the above phenomenological coeffi-
cients come from the physical interpretation of the second partial derivatives
of the free energy with respect to the considered independent variables, with
their properties of invariance respect to the priority of derivation with re-
spect to the considered variables. Furthermore, the symmetry of the small
strain tensor €, is taken into consideration. All these constants are deter-
mined by the physical properties of the medium in the reference state.
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From and — we have the following state equation for the

equilibrium stress tensor T(ieﬁq)

k)
78D = aapycere + aap(T — T(o) Z b (™ =) (74)

Finally, from , , and — we have the following equa-

tions of state

BN — a0 (Mg — M) 4+l (T~ T)) + ;b%)a (e — ).

a (M)ap (M) (0)
(75)
1 _ (00) NCRVIRCOIN (Y k) (k) (R
B = af3sMs — alasM5” +aina(T = Tio) + 3 b (¢ — (o))
k=1
(76)
k - I3 i i
p*) =y [b(k) (T —Tp) + b((xg)Ea,B + Z pli:k) (c( ) _ CEO))>
i=1
(0,k) _ pLE) (1)
b(M) M, b( Ma M, ], (77)
where we have defined the fields M(® and M®) as
MO — gm(o), MO — gm(l). (78)

If in equations — all cross effects are neglected, except for possible
interactions among the different types of magnetic relaxation phenomena,
taking into consideration the state equations, we obtain the following equa-
tions for the irreversible magnetic relaxation phenomena, the stress tensor,
the electric flux and the heat flux, respectively

B, = B9 + Lg‘j;’}aﬁ% + LaBS, (79)

dﬂﬁ - = Lisnyns dgfﬂ + LiynnsB5 (80)

Ta = Gagycexe + aas(T — T)) + Z b (e — cfg)) + Lﬁfgg’?% (81)
(being To(;g) = To8 — TéBQ)),

=R I = S Gk
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ZL”‘ AP =1, 7). (82)

(chem

Taking into account ., , equations ((79)) and may be written,

respectively, in the form (see [7])

A0 _ o)
Ol/BMﬁ _Q(O,O)a’ (83)
where (1) _ (00 1) (1)
Cap = Aaryap T L(arja, Yaryyp0 (84)
1) _ (.00 ©01)  (0,0) (00) dMpg
Qo = ((3s + Ly Uana) Mo + Liyns gy — Ba
(0) GRVNEY
T @ana T Lanasar ))(T—Tm))
S DR (k) ()
+k§_:1(b W T Lianwsbiang) (< = <o) (85)
and
My
i e = Qo (86)
where 0o
1, 1,
hgy = L(M)ﬁna(M)nv (87)
and dM
_ ) 00 (1,0
Quos = Linrysnanym ™M + Livnysy g
Ly (1) 1) k) (k) )
+L (s (T = To) +ZL ity (B =) 69)

-1
Assuming that it is possible to define the inverse matrix (c&lg) , such
that

(c63) ™ ) =l (e) ™ = b (59)

the partial magnetization field M) is given by (see ) and
_ ({0
MY = (c3) Qoo (90)

n [7] from and , using , the magnetic relaxation equation for

anisotropic reacting fluid mixtures under consideration was obtained, having
the form of a linear relation among the components of the magnetic field, the
components of the total magnetization, the temperature, the concentrations
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of the n fluid components, the first time derivative of the components of
the magnetic field, of the temperature, of the concentrations of the n fluid
components, of the total magnetization field, and the second derivative with
respect to time of this last axial vector.

7 Derivation of the field BY

In this Section we work out the expression for the field B, conjugate to

the internal variable m().
Using and we see that B(Y) can be written as follows

1) _ (0,0) 2D (YT (00 0,1)  (0,0)
o” = a(anasMs = Oarjas (%) l(( ane L )vna(M)nC) M

(0,0) dM; (0) o1 (1)
+Lamhe g = By + (aihy, + Lanheatine) (T = To)

k=1
1 "k k
(T = To) + ;;1 b () — b)) | (91)

where c&ob), is defined by

© _ (00 01 (00)
Cap = Aanas T L(Arjay Y01y (92)

and c&lg is given by (84). We have
(1) (0,0) 1) () (1,1) 1) (0,0) (0,1) (0,0)
= Yan)ap (%) ¢ Me=aiiag (%) ( Unryye T Ly “(M)nc) M¢

(11 <(B'y)) Lo dM¢ a(ll) ((U) B,

e \© (M)v¢ ™ gr (M)ap \ By
~alis () (a0, + LOyalih,) (T = To) + iy, (T~ T0)
i ()" SO0+ ) (-
+Zb8\4]‘;) (ck —CE]S))) (93)
i.e.
B = Digipac M + D@)ac% + D{inacBe
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-t S OG-, on

where )
Dithac = () [a3useld = aliius (aihc + LEiLeiine) ] ©9)
Diihyac =~ ((Bv)) AL (3ne: (96)
Dt = () alkius (07)
Diihe == () aliiius (o3, + Loholiny) + aliner (99
Pl = () "o 08, + L) + i 9

8 First law of thermodynamics

In this section we work out the first law of thermodynamics for the anisotropic
reacting fluid mixtures under consideration.

From and — we have
u=f+Ts=fO 4?4 Ts (100)
From we have the following form for the specific entropy s
_ (0) (1) (k ) dy
§=— la(M)amaa(M +Zb ( ) — ¢l ))] fvaaﬁeangdT

(101)
Thus, from (100) we obtain

k=1
+ kZ: b((fg (c<k> _ cé’g;) Eap + ;é::l p (k) (C(i) _ Cgé))) (C(k) _ CEQ)]
%Q [“EO 0>)aﬁ Ma (mﬂ - 2m“)) +alt 1)>a6 (1)1 )}

d
—o(1) = Tio) (4 e = i) + T g

#3 (=f) (me i) a0
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_ 1 .00 (1) (
U = 59 [a(M)aﬂ Meq (mg —2my ) +aapag Ma Mg }
(0) (1) (1)
—To) (a(M)a Mo = Qg M )
1 dep
+v <2(1a6%5a657< - T(o)aaﬁ5o</3> +To5 — (1)

~0Tigy Y2 b (¢ = clg)) +vi0) D08 (¥ = cff)) cas

k=1 k=1
v - 7 7
o3 3 (- (-
+ Z (c(k) — c%) (bg?\;[k)léma + b&’%mg)) . (103)

c(e) = 2; (T, o, m,mD) D ,c(”)) , (104)
_d (pdp _d (nde\ _dy
€)= 71 (TdT “"(T)) AT (TdT) T’ (105)
i.e. dQSO
cle) = TidTZ.

If ¢(e) is constant one obtains the result

T
¢ = c(e)T log m + 5(0)T — c(e)(T = T(g)) — u(0), (106)

where 8(0) == <3;€> (see 101 ) and U(O) == T(O) <Z;€> - QO(T(O))
=T T=T(o)
(see ) are the specific entropy and the specific internal energy in the
reference state respectively.
Thus, QD(T(O)) = T(O)S(O) - U(O).
The result was derived in [40] but without demonstration.
Indeed, from equation ([105);, one has

de
Tﬁ —p—c(e)T = A (107)
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d (p\ 1 (dy ©
and taking into account that a7 () =7 (dT) T3
dip d (¢\ , ¢
—=T— (= = 1
aT ~ T (T) 7 (108)
From (107)) one gets
dp ¢ Ao
from which, by virtue of , one has
T—\7)- = 11
dr (T> ce) T’ (110)
d (e cle) Ao ¢ _ A
el = logT — 2 + B 111
dT (T> T T2 T c(e) log T (0)> (111)
Y= TC(E) logT — A(O) + B(O)T, (112)

with Ag) and B( integration constants calculated in the reference state for
T = T). From ) and ( .2 = Uy — c(a—:)T(O),

B(O) = 8(0) — c(e )log Tio) — T o) and thus, from the result 1 is

obtained.
Then, the first law of thermodynamics (16)) becomes
L 00 d (1) @) g
5900 gp Mo (M5 =208 ) | + alyp M 2 My
B 0 4 A0 4

1 d d
+§aa6%a(5a657<) - T(O)aocﬁ aeaﬁ + QC@);T

k=1
z £ ) 4)
(09 -4 O )] -
0 (p-1pa@a 9T (vi) d€ap dM

= |\T Ly 5 + JE, + Bo—2
830&( of 8@3) tTas dt @ + dt ’

where we have supposed that Jé el) Jé ), 7'( “9) are given by and .
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9 Heat conduction equation and the heat dissipa-
tion function

In this Section we work out the heat conduction equation and the heat
dissipation function for the media under consideration.

From (|101]) we have

ds @ dM, ) dM)
Car ~ TtnaTgp T 0neT g
_ - k) (k) _ (k) deag d? @ dT
kz::lb Q(C C(O)) Gap—, +o TN (113)
By using (105]) we obtain
ds (0 dM, (1) dM,ﬁl)
= Tl “Ona g+ e gy
LN (o) B deap ar
kz::lb g(c C(o)) Ao~ + oc(e) o (114)
From the balance equation (26| we have
ds () 4 Tr(®)
QTa——TV-J 4+ To'¥ =
1
—V-J@ 4 TJ(‘D VT 4TV - ( Zu(’f Jgfhff ) +To'®, (115)

being J®) and o) given by and .
Taking into consideration equation , in components (115)) takes the
following form

ds 9 ~17,(2:9) oT —2 7 (gq) 0T OT
o dt Oz (T Lag 8:55 T Lag 0o Oxp

o (& .
+T87 (T 1 Z u(’“U((j}f f)a) + To. (116)

Thus, comparing ) and ( we have

dr 0 dMs (1) nd(yl) deap | <o k) (k) _ (k)
Qc(e)dt—T[(M)a o —a(M)QT—FaagW—FI;b Q(C —c(o))
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0 oT 0 " de
o T—1L(q,q)7 7Y% (71 (k) (k) (vi) A€ap
+8£L'a ( of 8$5> + 8$a ( z_:,u J(dsz)a + 7, aﬁ dt
L dM, amsV
(ir) 2 (1) o (h) j(h)
+By" ==+ By — +hz_:1A +ZJ(dlff ), (117)
ie.,
dr 0 dMs @ dMécl) deags k) _ (k)
Qc(e)dt_Tla(MW drtna g TS Ty +Zb (<= <(o))
0 oT
- T_IL(%q)i -1 (h) 11
+0xa< af 3x5>+ 8$a< Z diff T, (118)
where
T n—1 (1)
(h) _ (vi)d€ap A 7(h) k) xt®) g 3Ma’ i Mo
o Tal +h§ J +§J(diff) + By — — + B —
— O'(R) + O_(chem) + O—(diff) + O'(M), (119)
with J J J
(R) _ (vi)0€aB _ (viwi) 4€aB AEx¢
g TaIB dt afByC dt dt ) (120)
chem) ZA J(h dsz) Z J X(k (121)
L dM, dM()
M) _ gin) 27 | p(1) 277
7 o g TP g
_(;00 dMg oy Lo\ dMa | Loy ;a0 Mz a1 L)
= <L<M>aa i LanesBs ) i B (Zats g, + LinasBs ) -
where we have used and .
. 0,1 1,0
LEM))oc,B = _LEM))ﬁon we have

Hence, using the Onsager-Casimir relation

o _ 00 dMadMg 11y 1) p(1)
oM = L s+ Liatjas B BS (122)
from which, taking into account equations and (| —, we obtain
) _ 00 dMadMg 1) | ) @ dM¢ | 3
o =Linas g gp T Eonas | PanacMe T Pinac g T PlanacBe
NGk (k) (R (1) (2 dM,
(e C<o>)] lD(m Mo+ Divnsn g
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n

(3) 4) (5,9) ; ()

+D(M)5an + D(M)B(T —Ty) + E 1 D(M])ﬁ (C(J) — c(é)ﬂ , or (123)
J:

20 dM,

wy _ g0 dMadMs oy | p) O s ©
« t «

( haialted =)
g T T MeB gt dt (M)w\[ (M)ya

M.+ D B,

0 NGk (k) (k) (1) 2 dMg
+D(any, (T = To) + ;D(Mw (C()_%))] [D(M)/\ﬁMrBJF D g

+D{3 5B + Diapa (T = To) + 3 DG, (9 = %)] (124)

Thus, using the Onsager-Casimir relation LEI 1)) = LE )) , we obtain

GO0 — g Mo dMs - (2)

dMpg
Mo Mg + AQIM "2 + AL M,B
aff dt dt afs /3+ + afs B

dt

dM,,

M,
4404 B+ A8} BaBg + AD(T — To) Mo + AP (T — Tp) =

aﬂd

= 5,k k
+AO(T = Ty) By + AYN(T - Ty)* + ;;—:1 D (e = ) ALY M,

(12) dMa (13 (14) ~ GE) (k) (R
[A/\a p B, + A (T—TO)};D(M)A(CU—C(O))
L) o 5g) GR) (G) DY (k) R
f;lL(M)aﬁD(M)aD(M)ﬁ (9 =) (W =), (125)
]7:
where
(1) _ 700 ERNCYRNC) @ _ 00 50 D)
Aap = Linas T L PiunyraLinns:  Aas = LD anyaPinrs
@) _or@) H1) @ @ o1 p  p)
Aap = 2L DianyyePivng Aap = 2L DianyyaPiinas

) a1 p@  pl) 6 _ (1) O
Aoz = 2Ly Dianyye Pinnss Aas = Lo Py (anas:

@) or(LD) )
As” = 2L Dy

© _or L) @ @
A7 = 2L DirryreLian

11) _ o7 (L) 5(5:k) (1) (12) _ 57 (L) ~(2)
A'(Y )= 2L’y)\ ‘D(M) D(M))\a’ A)\a 2L(M)'y)\D(M)7a’

(4) 8) _ o7 (1,1) 2 (4)
voPany Aa” = 2L Dy (a0

(10) — (L1) (4) (4)
A7 = LivnasDana (s
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AW oD pi®) 40D _or (LD @

(M)A (Myar I ona Py (126)

The physical quantity o) is called heat dissipation function. It is due to
the chemical reactions, the magnetic relaxation, the electric conduction, the
viscous, magnetic, temperature fields and the diffusion and the concentra-
tions of the n fluid components. o(®) is a generalized Rayleigh dissipation
function.

10 Heat dissipation function in the Snoek case,
where m¥) is reversible

In this Section we work out the heat conduction equation and the heat
dissipation function in the Snoek case.
In this special case B = B(¢), B(") vanishes (see 2 ) and from (79)),

and one gets

00 01 00 _
Liyimg =0 and Ly o= —Liyps, = 0. (127)

From equations and in this case we have

1) _ (0,0 _ oy (1) @\t _ /00 \7!
CEW)_Q(M)M’ h¢ = Liaryn®atne: (CCB) _(a(M)gﬁ) - (128)

Taking into account the expression for B(!) in the Snoek case, from
|D and ((128))1, we have the following form for the coefficients D(l)

(M)
Dihac: Pianac: Dana and Dy,
Diina =~ (“%)m>_l a(anyasary, + (0o
I R N T

In the Snoek case the heat conduction equation (L18)) takes the form

dr © dMa ) ;1) p0)
ocle) o = T[Q(M)a 7 A0nal(nasBs

deny &
s+ S0 - )



On the heat conduction equation 258

0 T 1L(q q 0T T 9 -1 . (k) 7(k) (h)
+8.ﬁlf aB 8 + o Z H J(diff)a +av, (130)
o k=1

Lo

where we have used equation and in ¢ given by (119)), oB) | glchem)
o(diff) keep the same form and o™, from (125), (127) and (129), becomes

o§" = AQ)MoMp + AS) M B + AL BoBs + AD(T — Ty)M,
+AO(T — Ty) By + AT — T))? + ZD(5 k) (C —C(()k)) A&S)Ma

+ [A(Alj) B, + AE\M) (T — To)} Z Dk (c(k) B c(k;)

(M)A (0
k=1
# 30 Lo PRALORE (9 - ) (0 -). s
where
A8~ A8 = A8 = A2 —0, AP o

A = LapaDinePams A = 2L Dty Dianage

443 = L DD Ay—QQ%%D&w#%%w
AQY = 2Ly ”DE‘A’f? D&l&w A&A)_ZLS\;)LADE?\})WM A0 QLﬁwﬂlaDEE‘wi?Z)

For the magnetic relaxation equation in this Snoek case see [7].

11 Heat dissipation function in De Groot - Mazur
case, where m") is null

In this Section we work out the heat conduction equation and the heat
dissipation function in De Groot - Mazur case.
In this special case

(1,1) 0) 0,1)
Liyps =0, and L)) o =—L{

es = ~Lidnas =0 (133)
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equations and become

(1)
(r) _ 7(00) dMg dMa
B = Lines—g, and 7

= 0. (134)

It is seen that M) is constant and it can be supposed that M(1) = 0 (i.e.
there is no internal variable). From equations and in this case we
have c((lly) = ag?\’f))m, hye = 0.
Taking into account the expression . for B in the de Groot-Mazur
case, from . and 1, We have the following form for the coeffi-
5.k) .

cients D

ac’ M Dianac: (M Ja (M)
Défl\}) _QE%)« a&’}))ag, M)ac (E(J)\f)m)i }\41))&,3[’5(1)\’40))74’
Dinac = (insc) 1“E Vs
Diihe == (a5) " aliasaliny, + Al
D3t == (afoh) " alisbay + o 9

In the de Groot-Mazur case the heat conduction equation ((118]) takes the
form

24T _plo dMa S (B deag

k=1

0 17 (g.0) OT -1 (h)
5o (T L 25 +T 8xa Z Jiina |+ (135)
where we have used equation and in o(") given by 1D o) glchem)

o(@iff) keep the same form and o) becomes

S0 _ (00 dMa dMpg
4G (M)af g dt

In this case from ([126]) we have

(136)

1) _ 109 @)
Aug = Linnngs  Aap = Aag = Ao = 403

AP = A9 0, AL -
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12 Conclusions

In this paper anisotropic magnetizable reacting fluid mixtures, where dif-
ferent types of irreversible microscopic phenomena give rise to magnetic
relaxation, are taken into consideration, using a model devoped in [7]. Also
a model for magnetizable media with relaxation was given by Maugin, that
described the internal mechanism in these media using particular internal
variables. In this paper the total specific magnetization is the sum of two
irreversible parts and, linearizing the theory, the heat conduction equation
and the heat dissipation function for these magnetizable anisotropic media
are derived. The Snoek special case, where changes in m(®) become re-
versible, and the De Groot-Mazur special case, where there is no internal
variable m(!), are studied. The obtained results can be applied in several
physical situations, in nuclear magnetic resonance in medicine and biology
and other different fields of applied sciences, where complex media are used.

In [19], [20] and [41] the heat conduction equation and the heat dissi-
pation function were derived for anisotropic and isotropic polarizable media
with dielectric relaxation and for anisotropic mechanical media with relax-
ation, respectively, within the same thermodynamic framework and using
the same standard procedures of irreversible thermodynamics with internal
variables.
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