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Abstract

In some previous papers, within the framework of the thermody-
namics of irreversible processes with internal variables, a linear theory
for magnetic relaxation phenomena in anisotropic mixtures, consisting
of n reacting fluid components, was developed. In particular, assuming
that the macroscopic magnetization m can be split in two irreversible
parts m = m(0) +m(1) a generalized Snoek equation was derived. In
this paper we derive for these reacting anisotropic mixtures the heat
conduction equation. We show that the heat dissipation function is due
to the chemical reactions, the magnetic relaxation, the electric conduc-
tion, the viscous, magnetic, temperature fields and the diffusion and
the concentrations of the n fluid components. Also, the Snoek and De
Groot special cases are studied. The obtained results find applications
in nuclear resonance, in biology, in medicine and other fields, where
different species of molecules have different magnetic susceptibilities
and relaxation times and contribute to the total magnetization.
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1 Introduction

In [1]-[7] a linear theory for magnetic relaxation phenomena in magneti-
zable continuous media was developed, based on the thermodynamics of
irreversible processes with internal variables [8]-[13]. In particular, in [1],
in linear approximation Kluitenberg, assuming that the total specific mag-
netization is given by the sum of one reversible part and one irreversible
part, derived for magnetizable isotropic media the classical Snoek equation
describing magnetic relaxation phenomena [14]. Subsequently, in [2], assum-
ing that the total specific magnetization m is composed of two irreversible
parts, i.e.,

m = m(0) +m(1), (1)

Kluitenberg obtained a more general magnetic relaxation equation. In [4],
in the assumption that an arbitrary number n of microscopic phenomena
give rise to the total specific magnetization m, that can be split in n + 1
irreversible parts, i.e.

m = m(0) +
n∑

k=1

m(k), (2)

in the isotropic case a generalized Snoek equation was obtained by Kluiten-
berg and one of the authors, having the form of a linear relation among the
magnetic field B, the first n time derivatives of this field, the total magneti-
zation M = ϱm, with ϱ the mass density, and the first n+1 time derivatives
of M, being n the number of phenomena giving rise to the magnetization.
In [5] and [6]) reviews about the results obtained in [4] were done.

In [7] the behaviour of anisotropic reacting fluid mixtures with magnetic
relaxation was investigated. The irreversible microscopic phenomena giving
rise to magnetic relaxation are described, assuming that the total specific
magnetization m given by two irreversible parts m(0) and m(1) as in (1),
and in the linear case the magnetic relaxation equation was derived.

In [15], [16] analogous studies for dielectric relaxation phenomena in po-
larizable media with internal variables were performed by using the same
methods of the classical thermodynamics of irreversible processes with in-
ternal variables.
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In [17] mixtures of n reacting fluid components, heat conducting and
presenting magnetic and dielectric relaxation, were described within the
same thermodynamic framework.

In this paper we derive the heat conduction equation and the heat dis-
sipation function for anisotropic mixtures, constituted by n reacting fluid
components, presenting magnetic relaxation. As in [7] we assume that the
total specific magnetization can be split in two irreversible parts (see (1)),
and we introducem(1) as internal variable in the thermodynamic state space.

The paper is organized as follows.
In Sections 2-4 and Section 6 we give, adding further considerations

on the fundamentals of thermodynamics of irreversible processes, a review
of the model of the considered media, derived by the authors in [7]. We
present the governing equations describing all the processes inside them,
the entropy balance equation, the phenomenological equations, the Onsager-
Casimir relations and the laws of state. In Section 5 the entropy production
is worked out, taking into account the phenomenological equations. Finally,
in Section 7 the derivation of the fieldB(1), conjugated to the internal specific
magnetization m(1), is obtained.

In Section 8 the specific internal energy and the specific entropy are
worked out.

In Section 9 the heat conduction equation and the heat dissipation func-
tion are derived and in Sections 10 and 11 the Snoek and De Groot cases
are studied.

The derived results find applications in several fields as in medicine,
in biology, in nuclear resonance, where different species of molecules have
different magnetic susceptibilities and relaxation times and contribute to the
total magnetization.

In [18] the heat conduction equation and the heat dissipation function
were derived for anisotropic magnetizable media with relaxation, in the as-
sumption (1).

In [19] and [20] the heat conduction equation and the heat dissipation
function were derived for anisotropic and isotropic polarizable media, re-
spectively, with dielectric relaxation in the linear case, within the same
thermodynamic framework.

A continuum phenomenological theory with internal variables for mag-
netizable media with relaxation phenomena and constitued by n different
ionic species was developed by Maugin in [21], [22] to explain the internal
mechanisms in these media (see also [23], [24]).
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2 Balance equations

In this Section we present the equations governing the behaviour of mix-
tures consisting of n reacting fluid components, in a current configuration
Kt [12]. We use the Cartesian tensor notation in a rectangular coordinate
system. The model for these media was developed by the authors within
the framework of classical irreversible thermodynamics with internal vari-
ables in [7]. All the processes occurring inside the considered mixtures are
governed by the balance equations and the Maxwell equations in Galilean
approximation.

The conservation of mass is given by

dϱ

dt
+ ϱ∇ · v = 0, (3)

where ϱ is the total mass density field, given by ϱ =
n∑

k=1

ϱ(k), the symbol

”∇ · ” denotes the divergence operator,
d

dt
is the material time derivative,

defined by
d

dt
=

∂

∂t
+ vi

∂

∂xi
, where Einstein convention for repeated indices

is used,
∂

∂t
is the time partial derivative,

∂

∂xi
is the spatial partial derivative

and vi (i = 1, 2, 3) are the cartesian components of the barycentric velocity
v of the fluid mixture under consideration, defined by

v =
1

ϱ

n∑
k=1

ϱ(k)v(k), (4)

being ϱ(k) the mass density and v(k) the velocity of the k-th fluid component.
Let us introduce the mass fractions c(k) of the n fluid components by

c(k) =
ϱ(k)

ϱ
(k = 1, . . . , n), with

n∑
k=1

c(k) = 1 (5)

(see (4)1).
Let us define the diffusion flux of the k-th fluid component with respect

to the barycentric motion by the expression

J
(k)
(diff) = ϱ(k)(v(k) − v) (k = 1, 2 . . . , n) with

n∑
k=1

J
(k)
(diff) = 0, (6)

(see (4)), i.e. only n− 1 of the n diffusion fluxes are independent.
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The balance equations for the mass fractions c(k) have the following form
[12]:

ϱ
dc(k)

dt
= −∇ · J(k)

(diff) +
r∑

h=1

ν(kh)J
(h)
(chem) (k = 1, . . . , n), (7)

where ν(kh)J
(h)
(chem) is the production of k-th fluid component per unit volume

and per unit time by the h-th chemical reaction, J
(h)
(chem) is the chemical

reaction rate of the h-th chemical reaction and the quantity ν(kh) divided
by the molecular mass M(k) of the k-th fluid component is proportional to
the stoichiometric coefficient with which the k-th fluid component appears
in the h-th chemical reaction.

From equations (7) we can obtain the following relation, by multiply-

ing both sides by
µ(k)

T
, summing over k and introducing the h-th quantity

A(h), representing the opposite of the so-called chemical affinity of each h-th

reaction, i.e., A(h) = −
n∑

k=1

µ(k)ν(kh) (h = 1, . . . , r),

ϱ

T

n∑
k=1

µ(k)dc
(k)

dt
= −∇ ·

(
1

T

n∑
k=1

µ(k)J
(k)
(diff)

)

+
n∑

k=1

J
(k)
(diff) · ∇

(
µ(k)

T

)
− 1

T

r∑
h=1

A(h)J
(h)
(chem). (8)

Maxwell’s equations, in Galilean approximation, for magnetizable media
(in the rationalized Gauss system) keep the form

∇×H− 1

c

∂E

∂t
=

1

c
I,

∇ ·E = ϱ(el),

∇×E+
1

c

∂B

∂t
= 0,

∇ ·B = 0,

(9)

where c is the light velocity, E and B are the electric and magnetic field
strengths, respectively, H is the magnetic displacement field, ϱ(el) is the
electric charge per unit volume (electric charge density) and I is the density
of the total electric current.

For magnetizable media the polarization vector, defined by P = D−E,
with D the electric displacement field, is null, then P = 0 and D = E in
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equations (9)1 and (9)2. Furthermore, we define the magnetization M and
the specific magnetization m by

M = B−H, m =
1

ϱ
M, (10)

that are axial vectors.
The total charge e per unit of mass of the system is given by

e =
1

ϱ

n∑
k=1

ϱ(k)e(k) =
n∑

k=1

c(k)e(k), (11)

being e(k) the charge per unit of mass of the k-th fluid component (see (4)1).
In equations (9)1,2 I and ϱ(el) are defined by

I =
n∑

k=1

ϱ(k)e(k)v(k), ϱ(el) = ϱe =
n∑

k=1

ϱ(k)e(k), (12)

and they satisfy the following charge conservation law

∂ϱ(el)

∂t
= −∇ · I. (13)

Equation (12)1 can be written in the form

I = ϱ(el)v +
n∑

k=1

e(k)J
(k)
(diff) (14)

(see (6)1 and (12)2).
On the right hand side of (14) the first term ϱ(el)v is the electric current

due to convection, the second one is the electric current due to the relative
motion of the n fluid components, called conduction current j(el) and given
by

j(el) =
n∑

k=1

e(k)J
(k)
(diff). (15)

The first law of thermodynamics for magnetizable media in an electro-
magnetic field, in Galilean approximation, see [12], has the form

ϱ
du

dt
= −∇ · J(q) + ταβ

dεαβ
dt

+ j(el) ·E+ ϱB · dm
dt

, (16)
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where u is the specific internal energy of the system, J(q) is the heat flux

density, ταβ is the symmetric mechanical stress tensor and
dεαβ
dt

is the small

strain rate tensor, given by

dεαβ
dt

=
1

2

(
∂vα
∂xβ

+
∂vβ
∂xα

)
(α, β = 1, 2, 3). (17)

On the right hand side of equation (16) there are present four contribu-
tions given by the heat supply, the work done by the mecanical stress, the
Joule heat and the work done by the magnetic field to change the magneti-
zation, respectively.

In (16) all the quantities are per unit of volume and per unit of time.
We note that (16) does not satisfy the requirements of the relativity

theory. However, we assume that the velocity of the medium under consid-
eration with respect to the observer is small compared with the velocity of
the light. In this case equation (16) is a good approximation for the first
law of thermodynamics (Galilean approximation). For the exact relativistic
formulation of the first law for viscous, magnetizable simple fluid mixtures
influenced by an electromagnetic field the reader may consult Kluitenberg
[25] and Kluitenberg and De Groot [26], [27].

In the following Section 3 we will introduce the entropy balance equation
and the phenomenological equations, derived in [7].

3 Choice of the state space variables, entropy pro-
duction and phenomenological equations

In this Section we give a review of some results obtained in [7], with some
considerations on the foundations of the irreversible processes thermody-
namics. Let us suppose that the total specific magnetization m is given
by two irreversible contributions, m(0) and m(1), due to two different types
of irreversible microscopic phenomena, that give rise to the magnetic re-
laxation and let us introduce m(1) in the thermodynamic state space as
internal variable to describe these phenomena. Thus, we assume that the
specific entropy s (the entropy per unit of mass) is a function of the specific
internal energy u, the strain tensor εαβ, the specific magnetization m(1), the
concentrations c(k) of the n fluid components (k = 1, . . . , n) (see [7])

s = s
(
u, εαβ,m,m(1), c(1), . . . , c(n)

)
. (18)
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The internal variables are a powerful tool to describe complex media. In
this paper we work within the classical irreversible thermodynamics (CIT),
see [8]-[13], where gradients and time derivatives of the physical fields, dis-
sipative fluxes are not included in the thermodynamic state space and the
local equilibrium hypothesis for the system is assumed (see[28]-[30]), i.e. out
of the equilibrium each point of the medium is considered as a thermody-
namic cell where the reversible thermodynamics is applicable. For some
remarks about the internal variables and some versions of non-equilibrium
thermodynamics see Section 2 of Reference [31]. We define the equilibrium

temperature T , the equilibrium stress tensor τ
(eq)
αβ , the equilibrium magnetic

field B(eq), the thermodynamic affinity B(1), conjugate to the internal vari-
able m(1), and the thermodynamic or chemical potential µ(k) of the k-th
fluid component, respectively, by

T−1 =
∂

∂u
s
(
u, εαβ,m,m(1), c(1), . . . , c(n)

)
,

τ
(eq)
αβ = ϱT

∂

∂εαβ
s
(
u, εαβ,m,m(1), c(1), . . . , c(n)

)
,

B(eq) = −T
∂

∂m
s
(
u, εαβ,m,m(1), c(1), . . . , c(n)

)
,

B(1) = T
∂

∂m(1)
s
(
u, εαβ,m,m(1), c(1), . . . , c(n)

)
,

µ(k) = −T
∂

∂c(k)
s
(
u, εαβ,m,m(1), c(1), . . . , c(n)

)
(k = 1, . . . , n).

Considering very small deviations with respect to a local equilibrium
state, we expand the entropy (18) into Taylor’s series with respect to this
state, and confining our consideration to the linear terms, we obtain the
differential of the entropy s in a point of the thermodynamic phase space
(see[32], [33]), i.e. in a local position in a current configuration Kt, in the
following form, called Gibbs relation,

Tds = du− 1

ϱ
τ
(eq)
αβ dεαβ −B(eq) · dm+B(1) · dm(1) −

n∑
k=1

µ(k)dc(k), (19)

where we have used Eqs. (3)2-(3)5. From (19) it follows that the time
derivative of the entropy s in the considered point of the thermodynamic
phase space takes the form

ds

dt
=

du

dt
− 1

ϱ
τ
(eq)
αβ

dεαβ
dt

−B(eq) · dm
dt

+B(1) · dm
(1)

dt
−

n∑
k=1

µ(k)dc
(k)

dt
. (20)
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From (20), using (8) and (16) we have

ϱ
ds

dt
= −∇ · J(s) +

1

T

(
− 1

T
J(q) · ∇T + τ

(vi)
αβ

dεαβ
dt

+ ϱB(ir) · dm
dt

+ϱB(1) · dm
(1)

dt
+

r∑
h=1

A(h)J
(h)
(chem)

)
−

n∑
k=1

J
(k)
(diff) ·∇

(
µ(k)

T

)
+

1

T
j(el) ·E, (21)

where J(s), τ
(vi)
αβ and B(ir) are the entropy flux, the viscous stress tensor and

the irreversible magnetic field, respectively, defined by

J(s) =
1

T

(
J(q) −

n∑
k=1

µ(k)J
(k)
(diff)

)
, (22)

τ
(vi)
αβ = ταβ − τ

(eq)
αβ (α, β = 1, 2, 3), B(ir) = B−B(eq). (23)

Defining the thermodynamic force χχ(k), conjugate to the diffusion flux

J
(k)
(diff), by

χχ(k) = −
[
T ∇

(
µ(k)

T

)
− e(k)E

]
(k = 1, . . . , n), (24)

and taking into account equation (15) we have

−
n∑

k=1

J
(k)
(diff) · ∇

(
µ(k)

T

)
+

1

T
j(el) ·E =

1

T

n∑
k=1

J
(k)
(diff) · χχ

(k) =

=
1

T

n−1∑
k=1

J
(k)
(diff) ·

(
χχ(k) − χχ(n)

)
=

1

T

n−1∑
k=1

J
(k)
(diff) ·X

(k), (25)

where we have used (6), (15) and definedX(k) = χχ(k)−χχ(n)(k = 1, . . . , n−1).
Using (25), the entropy balance equation (21) can be written in the

following form

ϱ
ds

dt
= −∇ · J(s) + σ(s), (26)

where σ(s) is the entropy production per unit volume and per unit time,
given by

σ(s) =
1

T

(
ϱB(ir) · dm

dt
+ ϱB(1) · dm

(1)

dt
− 1

T
J(q) · ∇T
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+
n−1∑
k=1

J
(k)
(diff)X

(k) +
r∑

h=1

A(h)J
(h)
(chem) + τ

(vi)
αβ

dεαβ
dt

)
. (27)

In the expression (27) σ(s) is the intrinsic entropy production defined as
non-negative quantity by the second law of thermodynamics: σ(s) ≥ 0.

σ(s) = 0 when the system is in thermodynamic equilibrium, i.e. when
irreversible processes inside the system are not present. In thermodynamic
equilibrium the sources (the body force, the energy source, the external
entropy production) are null, the velocity of the medium is constant or null,
the fluxes of physical quantities, the gradients and the time derivatives of
the fields are null, the internal variables ”become dependent on the variables
of the equilibrium subspace, but they are not determined by them, i.e., the
equilibrium subspace is many-valued” [34].

If we assume that the specific entropy s is a constitutive function of the
independent variables of the thermodynamic state space

C = C
(
u, εαβ,m

(0),m(1), c(1), . . . , c(n)
)
, i.e.

s = s
(
u, εαβ,m

(0),m(1), c(1), . . . , c(n)
)
, (28)

in (26) σ(s) assumes the following form

σ(s) =
1

T

[
− 1

T
J(q) · ∇T + τ

(vi)
αβ

dεαβ
dt

+ ϱB(ir) · dm
(0)

dt
+

+ϱ
(
B(1) +B(ir)

)
· dm

(1)

dt
+

r∑
h=1

A(h)J
(h)
(chem) +

n−1∑
k=1

J
(k)
(diff) ·X

(k)

]
. (29)

It is seen from (29) that if the magnetic field B equals the equilibrium
magnetic field B(eq), B(ir) vanishes and only the specific partial magneti-
zation m(1) contributes to the entropy production, i.e. changes in m(0)

become reversible and we are in the Snoek case (see Section 10). Thus, m(0)

is an irreversible part of the total magnetization only when the magnetizable
medium is not in a thermodynamic equilibrium state. Also, from (29) we
can obtain the De Groot-Mazur case (see Section 11), when m = m(0), i.e.
there is no internal variable m(1).

From (27) it is seen that the intrinsic entropy production

σ(in) = Tσ(s)

is a bilinear form composed of a sum of m terms, where each term is a
product of the components of a flux Ji, scalar, vector, tensor, and the com-
ponents of an affinity, or thermodynamic force Yi (conjugate to the flux Ji),
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scalar, vector, tensor, i.e.

σ(in) =
m∑
i=1

Ji. (30)

From (30), using the procedures of the classical irreversible thermody-
namics, the phenomenological equations can be written in the following
linear form (see [12], [13] and also [35]))

Ji =
m∑
k=1

LikYk (i = 1, . . . ,m), (31)

where the quantities Lik are called phenomenological coefficients and are
constant. In equations (31) it is seen that a thermodynamic flux does not
depend only on the corresponding force, but also on other forces.

In equation (27) σ(in) is the sum of six terms, thus the phenomenolog-
ical equations, in which the irreversible fluxes are linear functions of the
thermodynamic forces, have the following form (see [7])

B(ir)
α = ϱL

(0,0)
(M)αβ

dmβ

dt
+ L

(0,1)
(M)αβB

(1)
β − 1

T
L
(0,q)
(M)αβ

∂T

∂xβ
+

n−1∑
k=1

L
(0,k)
(MD)αβX

(k)
β

+
r∑

h=1

L
(0,h)
(MC)αA

(h) + L
(0,vi)
(M)αβγ

dεβγ
dt

, (32)

ϱ
dm

(1)
α

dt
= ϱL

(1,0)
(M)αβ

dmβ

dt
+ L

(1,1)
(M)αβB

(1)
β − 1

T
L
(1,q)
(M)αβ

∂T

∂xβ
+

n−1∑
k=1

L
(1,k)
(MD)αβX

(k)
β

+
r∑

h=1

L
(1,h)
(MC)αA

(h) + L
(1,vi)
(M)αβγ

dεβγ
dt

, (33)

J (q)
α = ϱL

(q,0)
(M)αβ

dmβ

dt
+ L

(q,1)
(M)αβB

(1)
β − 1

T
L
(q,q)
αβ

∂T

∂xβ
+

n−1∑
k=1

L
(q,k)
(D)αβX

(k)
β

+
r∑

h=1

L
(q,h)
(C)αA

(h) + L
(q,vi)
αβγ

dεβγ
dt

, (34)

J
(j)
(diff)α = ϱL

(j,0)
(DM)αβ

dmβ

dt
+L

(j,1)
(DM)αβB

(1)
β − 1

T
L
(j,q)
(D)αβ

∂T

∂xβ
+

n−1∑
k=1

L
(j,k)
(DD)αβX

(k)
β

+
r∑

h=1

L
(j,h)
(DC)αA

(h) + L
(j,vi)
(D)αβγ

dεβγ
dt

(j = 1, . . . , n− 1), (35)
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J
(l)
(chem) = ϱL

(l,0)
(CM)β

dmβ

dt
+ L

(l,1)
(CM)βB

(1)
β − 1

T
L
(l,q)
(C)β

∂T

∂xβ
+

n−1∑
k=1

L
(l,k)
(CD)βX

(k)
β

+
r∑

h=1

L
(l,h)
(CC)A

(h) + L
(l,vi)
(C)βγ

dεβγ
dt

(l = 1, ..., r), (36)

τ
(vi)
αβ = ϱL

(vi,0)
(M)αβγ

dmγ

dt
+ L

(vi,1)
(M)αβγB

(1)
γ − 1

T
L
(vi,q)
αβγ

∂T

∂xγ
+

n−1∑
k=1

L
(vi,k)
(D)αβγX

(k)
γ

+
r∑

h=1

L
(vi,h)
(C)αβA

(h) + L
(vi,vi)
αβγδ

dεγδ
dt

. (37)

In principle, all irreversible phenomena described by (32)-(37) can in-
fluence each other. For instance, the third, fourth, fifth and sixth term
on the right-hand side of (33) describe the influences of the heat flux, dif-
fusion fluxes, chemical reactions and viscous flow on magnetic relaxation.
These phenomena are called cross effects. Equations (32) and (33) describe
irreversible changes in the magnetization, the phenomenological equations
(34)-(36) describe the irreversible processes of the heat flux, diffusion fluxes
and chemical reactions. Equation (37) is a generalization of Newton’s law

for viscous fluid flow. The quantities L
(0,0)
(MM)αβ, L

(0,1)
(MM)αβ, L

(0,q)
(M)αβ, . . ., that

are present in (32)-(37) are called phenomenological tensors. L
(0,0)
(MM)αβ and

L
(0,1)
(MM)αβ are polar tensors of second order connected with the magnetic re-

laxation, L
(0,vi)
(M)αβγ and L

(1,vi)
(M)αβγ are pseudotensors of third order connected

with the influence of the viscous flow on the magnetic relaxation. L
(q,q)
αβ is

the heat conductivity polar tensor of order two, L
(vi,vi)
αβγδ is the viscosity polar

tensor of order four, L
(j,k)
(DD)αβ (j, k = 1, . . . , n− 1) is a polar tensor of order

two connected with the diffusion flow of the k-th fluid component, L
(l,h)
(CC) is a

scalar connected with the chemical affinity of the reaction h (l, h = 1, . . . , r),

having taken into account that ϱ
dm

dt
, ϱ

dm(1)

dt
, B(ir) and B(1) are pseudovec-

tors (or axial vectors) while T−1∇T , X(k) (k = 1, . . . , n− 1) and τ
(vi)
αβ , J(q),

J
(k)
(diff), (k = 1, . . . , n−1),

dεαβ
dt

are polar tensors and J (l), A(l) (l = 1, . . . , r),

T are scalar quantities.
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4 Onsager-Casimir reciprocity relations and sym-
metry relations

The macroscopic quantities, which are present in a phenomenological theory
come from statistical averages of functions of the coordinates and momenta
of the microscopic particles constituting the system at mesoscopic level (see
[13]). From the microscopic point of view a macroscopic quantity is called
even (or odd), if it is a even (or odd) function of the speed of the micro-
scopic particles. Macroscopic quantities which do not depend on the velocity
of these microscopic particles are considered even, the thermodynamic force
conjugated to an even flux is an odd quantity, while the affinity conjugate
to an odd flux is an even quantity. The heat flux, the time derivative of
the small strain tensor, the time derivative of an even quantity, the spa-
tial derivative of an odd quantity are examples of odd functions; the tem-
perature, the mass density, the kinetic energy, the stress tensor, the time
derivative of an odd quantity, the spatial derivative of an even quantity are
examples of even functions. From the macroscopic point of view we distin-
guish the macroscopic quantities in even and odd functions when they are
even or odd under time reversal. Introducing the symbols ”(o)” and ”(e)”
to indicate odd and even macroscopic quantities, respectively, the intrinsic
entropy production (30) can be written in the form

σ(in) =
p∑

i=1

J
(o)
i Y

(e)
i +

q∑
k=1

J
(e)
k Y

(o)
k , with p+ q = m, (38)

where the odd quantities J
(o)
i and the even quantities J

(e)
k are components

of vectors, tensors, which represent the fluxes, while the even quantities

Y
(e)
i and the odd quantities Y

(o)
k are components of vectors, tensors, which

represent the thermodynamic forces conjugated to the corresponding fluxes.
From (29), since T is an even function, σ(in) is an odd quantity. By virtue
of (38) the phenomenological equations (31) take the following expression

J
(o)
i =

p∑
j=1

L
(o,e)
ij Y

(e)
j +

q∑
k=1

L
(o,o)
ik Y

(o)
k (i = 1, . . . , p), (39)

J
(e)
l =

p∑
j=1

L
(e,e)
lj Y

(e)
j +

q∑
k=1

L
(e,o)
lk Y

(o)
k (l = 1, . . . , q), (40)

with p+ q = m.
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In (27) ϱ
dm

dt
, ϱ

dm(1)

dt
, A(h) (h = 1, . . . , r), T−1∇T , τ

(vi)
αβ and

X(k) (k = 1, . . . , n − 1) are even functions of the microscopic particle ve-

locities, while B(ir), B(1), J(q), J
(k)
(diff) (k = 1, . . . , r), J (l) (l = 1, . . . , r),

dεαβ
dt

are odd functions of these velocities.

Thus, we can write

(
B(ir)

α

)(o)
= ϱ

(
L
(0,0)
(M)αβ

)(o,e) (dmβ

dt

)(e)

+
(
L
(0,1)
(M)αβ

)(o,o) (
B

(1)
β

)(o)

− 1

T

(
L
(0,q)
(M)αβ

)(o,e)( ∂T

∂xβ

)(e)

+
n−1∑
k=1

(
L
(0,k)
(MD)αβ

)(o,e) (
X

(k)
β

)(e)

+
r∑

h=1

(
L
(0,h)
(MC)α

)(o,e) (
A(h)

)(e)
+
(
L
(0,vi)
(M)αβγ

)(o,o) (dεβγ
dt

)(o)

, (41)

ϱ

(
dm

(1)
α

dt

)(e)

= ϱ
(
L
(1,0)
(M)αβ

)(e,e) (dmβ

dt

)(e)

+
(
L
(1,1)
(M)αβ

)(e,o) (
B

(1)
β

)(o)

− 1

T

(
L
(1,q)
(M)αβ

)(e,e)( ∂T

∂xβ

)(e)

+
n−1∑
k=1

(
L
(1,k)
(MD)αβ

)(e,e) (
X

(k)
β

)(e)

+
r∑

h=1

(
L
(1,h)
(MC)α

)(e,e) (
A(h)

)(e)
+
(
L
(1,vi)
(M)αβγ

)(e,o) (dεβγ
dt

)(o)

, (42)

(
J (q)
α

)(o)
= ϱ

(
L
(q,0)
(M)αβ

)(o,e) (dmβ

dt

)(e)

+
(
L
(q,1)
(M)αβ

)(o,o) (
B

(1)
β

)(o)
− 1

T

(
L
(q,q)
αβ

)(o,e)( ∂T

∂xβ

)(e)

+
n−1∑
k=1

(
L
(q,k)
(D)αβ

)(o,e) (
X

(k)
β

)(e)

+
r∑

h=1

(
L
(q,h)
(C)α

)(o,e) (
A(h)

)(e)
+
(
L
(q,vi)
αβγ

)(o,o) (dεβγ
dt

)(o)

, (43)

(
J
(j)
(diff)α

)(o)
= ϱ

(
L
(j,0)
(DM)αβ

)(o,e) (dmβ

dt

)(e)

+
(
L
(j,1)
(DM)αβ

)(o,o) (
B

(1)
β

)(o)
− 1

T

(
L
(j,q)
(D)αβ

)(o,e)( ∂T

∂xβ

)(e)

+
n−1∑
k=1

(
L
(j,k)
(DD)αβ

)(o,e) (
X

(k)
β

)(e)
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+
r∑

h=1

(
L
(j,h)
(DC)α

)(o,e) (
A(h)

)(e)
+
(
L
(j,vi)
(D)αβγ

)(o,o) (dεβγ
dt

)(o)

(44)

(j = 1, . . . , n− 1),(
J
(l)
(chem)

)(o)
= ϱ

(
L
(l,0)
(CM)β

)(o,e) (dmβ

dt

)(e)

+
(
L
(l,1)
(CM)β

)(o,o) (
B

(1)
β

)(o)
− 1

T

(
L
(l,q)
(C)β

)(o,e)( ∂T

∂xβ

)(e)

+
n−1∑
k=1

(
L
(l,k)
(CD)β

)(o,e) (
X

(k)
β

)(e)

+
r∑

h=1

(
L
(l,h)
(CC)

)(o,e) (
A(h)

)(e)
+
(
L
(l,vi)
(C)βγ

)(o,o) (dεβγ
dt

)(o)

(l = 1, . . . , r), (45)

(
τ
(vi)
αβ

)(e)
= ϱ

(
L
(vi,0)
(M)αβγ

)(e,e) (dmγ

dt

)(e)

+
(
L
(vi,1)
(M)αβγ

)(e,o) (
B(1)

γ

)(o)
− 1

T

(
L
(vi,q)
αβγ

)(e,e)( ∂T

∂xγ

)(e)

+
n−1∑
k=1

(
L
(vi,k)
(D)αβγ

)(e,e) (
X(k)

γ

)(e)

+
r∑

h=1

(
L
(vi,h)
(C)αβ

)(e,e) (
A(h)

)(e)
+
(
L
(vi,vi)
αβγδ

)(e,o) (dεγδ
dt

)(o)

. (46)

Let us introduce the Onsager symmetry relations for the phenomenolog-
ical coefficients coming from microscopic considerations [36], [37] (the minus
sign which occurs in (49) is called the Casimir minus sign), see also [12], [13]:

L
(o,e)
ij = L

(o,e)
ji (i, j = 1, . . . , p), (47)

L
(e,o)
kl = L

(e,o)
lk (k, l = 1, . . . , q), (48)

L
(o,o)
ik = −L

(e,e)
ki (i = 1, . . . , p; k = 1, . . . , q). (49)

Thus, we have the following Onsager-Casimir reciprocity relations for
the phenomenological coefficients present in (32)-(37) (see [7] where they
were derived)

L
(0,0)
(M)αβ = L

(0,0)
(M)βα, L

(1,1)
(M)αβ = L

(1,1)
(M)βα, L

(q,q)
αβ = L

(q,q)
βα ,

L
(0,1)
(M)αβ = −L

(1,0)
(M)βα, L

(0,q)
(M)αβ = L

(q,0)
(M)βα, L

(q,vi)
αβγ = −L

(vi,q)
βγα ,

L
(0,k)
(MD)αβ = L

(k,0)
(DM)βα, L

(j,k)
(DD)αβ = L

(k,j)
(DD)βα (j, k = 1, . . . , n− 1),
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L
(0,h)
(MC)α = L

(h,0)
(CM)α, L

(j,h)
(DC)α = L

(h,j)
(CD)α (j = 1, . . . , n− 1), (h = 1, . . . , r),

L
(1,k)
(MD)αβ = −L

(k,1)
(MD)βα, L

(k,vi)
(D)αβγ = −L

(vi,k)
(D)βγα (k = 1, . . . , n− 1),

L
(1,q)
(M)αβ = −L

(q,1)
(M)βα, L

(q,k)
(D)αβ = L

(k,q)
(D)βα (k = 1, . . . , n− 1)

L
(1,h)
(MC)α = −L

(h,1)
(CM)α, L

(l,h)
(CC) = L

(h,l)
(CC) (l, h = 1, . . . , r)

L
(q,h)
(C)α = L

(h,q)
(C)α, L

(0,vi)
(M)αβγ = −L

(vi,0)
(M)βγα,

L
(h,vi)
(C)αβ = −L

(vi,h)
(C)αβ (h = 1, . . . , r), L

(1,vi)
(M)αβγ = L

(vi,1)
(M)βγα, L

(vi,vi)
αβγδ = L

(vi,vi)
γδαβ .

(50)
The Onsager-Casimir reciprocity relations reduce the number of inde-

pendent components of the phenomenological tensors.

Because of the symmetry of εαβ, τ
(eq)
αβ and the viscous stress τ

(vi)
αβ one

has the following symmetry relations

L
(1,vi)
(M)αβγ = L

(1,vi)
(M)αγβ, L

(vi,1)
(M)αβγ = L

(vi,1)
(M)βαγ ,

L
(q,vi)
αβγ = L

(q,vi)
αγβ , L

(vi,q)
αβγ = L

(vi,q)
βαγ ,

L
(0,vi)
(M)αβγ = L

(0,vi)
(M)αγβ, L

(vi,0)
(M)αβγ = L

(vi,0)
(M)βαγ ,

L
(l,vi)
(C)αβ = L

(l,vi)
(C)βα, L

(vi,h)
(C)αβ = L

(vi,h)
(C)βα (l, h = 1, . . . , r),

L
(j,vi)
(D)αβγ = L

(j,vi)
(D)αγβ, L

(vi,k)
(D)αβγ = L

(vi,k)
(D)βαγ (j, k = 1, . . . , n− 1),

L
(vi,vi)
αβγδ = L

(vi,vi)
αβδγ = L

(vi,vi)
βαγδ = L

(vi,vi)
βαδγ .

From the last symmetry relations, by virtue of Onsager relations (50)3, we
have

L
(vi,vi)
αβγδ = L

(vi,vi)
αβδγ = L

(vi,vi)
βαγδ = L

(vi,vi)
βαδγ = L

(vi,vi)
γδαβ = L

(vi,vi)
γδβα = L

(vi,vi)
δγαβ = L

(vi,vi)
δγβα .

5 Derivation of the intrinsic entropy production

In this section we work out the intrinsic entropy production σ(in) = Tσ(s)

as a bilinear form.
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From (27) and the phenomenological equations (32)-(37) we have

σ(in) =

(
ϱL

(0,0)
(M)αβ

dmβ

dt
+ L

(0,1)
(M)αβB

(1)
β − 1

T
L
(0,q)
(M)αβ

∂T

∂xβ

+
n−1∑
k=1

L
(0,k)
(MD)αβX

(k)
β +

r∑
h=1

L
(0,h)
(MC)αA

(h) + L
(0,vi)
(M)αβγ

dεβγ
dt

)
ϱ
dmα

dt

+

(
ϱL

(1,0)
(M)αβ

dmβ

dt
+ L

(1,1)
(M)αβB

(1)
β − 1

T
L
(1,q)
(M)αβ

∂T

∂xβ

+
n−1∑
k=1

L
(1,k)
(MD)αβX

(k)
β +

r∑
h=1

L
(1,h)
(MC)αA

(h) + L
(1,vi)
(M)αβγ

dεβγ
dt

)
B(1)

α

− 1

T

(
ϱL

(q,0)
(M)αβ

dmβ

dt
+ L

(q,1)
(M)αβB

(1)
β − 1

T
L
(q,q)
αβ

∂T

∂xβ
+

n−1∑
k=1

L
(q,k)
(D)αβX

(k)
β

+
r∑

h=1

L
(q,h)
(C)αA

(h) + L
(q,vi)
αβγ

dεβγ
dt

)
∂T

∂xα

+
n−1∑
j=1

(
ϱL

(j,0)
(DM)αβ

dmβ

dt
+ L

(j,1)
(DM)αβB

(1)
β − 1

T
L
(j,q)
(D)αβ

∂T

∂xβ

+
n−1∑
k=1

L
(j,k)
(DD)αβX

(k)
β +

r∑
h=1

L
(j,h)
(DC)αA

(h) + L
(j,vi)
(D)αβγ

dεβγ
dt

)
X(j)

α

+
r∑

l=1

(
ϱL

(l,0)
(CM)β

dmβ

dt
+ L

(l,1)
(CM)βB

(1)
β − 1

T
L
(l,q)
(C)β

∂T

∂xβ

+
n−1∑
k=1

L
(l,k)
(CD)βX

(k)
β +

r∑
h=1

L
(l,h)
(CC)A

(h) + L
(l,vi)
(C)βγ

dεβγ
dt

)
A(l)

+

(
ϱL

(vi,0)
(M)αβγ

dmγ

dt
+ L

(vi,1)
(M)αβγB

(1)
γ − 1

T
L
(vi,q)
αβγ

∂T

∂xγ

+
n−1∑
k=1

L
(vi,k)
(D)αβγX

(k)
γ +

r∑
h=1

L
(vi,h)
(C)αβA

(h) + L
(vi,vi)
αβγδ

dεγδ
dt

)
dεαβ
dt

. (51)

Using Onsager-Casimir relations we obtain

σ(in) =

(
ϱL

(0,0)
(M)αβ

dmβ

dt
− 1

T
L
(0,q)
(M)αβ

∂T

∂xβ
+

n−1∑
k=1

L
(0,k)
(MD)αβX

(k)
β
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+
r∑

h=1

L
(0,h)
(MC)αA

(h)

)
ϱ
dmα

dt
+

(
L
(1,1)
(M)αβB

(1)
β + L

(1,vi)
(M)αβγ

dεβγ
dt

)
B(1)

α

1

T

(
ϱL

(q,0)
(M)αβ

dmβ

dt
− 1

T
L
(q,q)
αβ

∂T

∂xβ
+

n−1∑
k=1

L
(q,k)
(D)αβX

(k)
β

+
r∑

h=1

L
(q,h)
(C)αA

(h)

)
∂T

∂xα
+

n−1∑
j=1

(
ϱL

(j,0)
(DM)αβ

dmβ

dt

− 1

T
L
(j,q)
(D)αβ

∂T

∂xβ
+

n−1∑
k=1

L
(j,k)
(DD)αβX

(k)
β +

r∑
h=1

L
(j,h)
(DC)αA

(h)

)
X(j)

α

+
r∑

l=1

(
ϱL

(l,0)
(CM)β

dmβ

dt
− 1

T
L
(l,q)
(C)β

∂T

∂xβ
+

n−1∑
k=1

L
(l,k)
(CD)βX

(k)
β

+
r∑

h=1

L
(l,h)
(CC)A

(h)

)
A(l) +

(
L
(vi,1)
(M)αβγB

(1)
γ + L

(vi,vi)
αβγδ

dεγδ
dt

)
dεαβ
dt

, (52)

and finally

σ(in) = ϱ2L
(0,0)
(M)αβ

dmβ

dt

dmα

dt
− 2ϱ

1

T
L
(0,q)
(M)αβ

∂T

∂xβ

dmα

dt

+2ϱ
n−1∑
k=1

L
(0,k)
(MD)αβX

(k)
β

dmα

dt
+ 2ϱ

r∑
h=1

L
(0,h)
(MC)αA

(h)dmα

dt
+ L

(1,1)
(M)αβB

(1)
β B(1)

α

+2L
(1,vi)
(M)αβγ

dεβγ
dt

B(1)
α − 2

T

n−1∑
k=1

L
(q,k)
(D)αβX

(k)
β

∂T

∂xα
− 2

T

r∑
h=1

L
(q,h)
(C)αA

(h) ∂T

∂xα

+
1

T 2
L
(q,q)
αβ

∂T

∂xα

∂T

∂xβ
+ 2

n−1∑
j=1

r∑
h=1

L
(j,h)
(DC)αA

(h)X(j)
α +

n−1∑
j,k=1

L
(j,k)
(DD)αβX

(k)
β X(j)

α

+
r∑

l,h=1

L
(l,h)
(CC)A

(h)A(l) + L
(vi,vi)
αβγδ

dεγδ
dt

dεαβ
dt

. (53)

Relation (53) shows that the entropy production is a quadratic form in
the components of the time derivative of the total specific magnetization

axial vector
dm

dt
, the components of the thermodynamic force conjugate to

the partial specific magnetization axial vector B(1), the k-th thermodynamic

force X(k) conjugate to the k-th diffusion flux J
(k)
(diff) (k = 1, . . . , n − 1),

the chemical affinity of h-th reaction Ah (h = 1, . . . , r), the components of
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the temperature gradient, and the components of the time derivative of the
strain tensor. The entropy production is a positive definite quadratic form,
i.e.

σ(s) ≥ 0. (54)

From the positive definite character of the entropy production several
inequalities may be derived for the components of the phenomenological
coefficients, resulting from the fact that all the elements of the main diagonal
of the matrix associated to the quadratic form (53) must be non-negative and
all principal minors of this matrix must be non-negative (see [38], [39] and
[35], as examples in the case of three-dimensional isotropic and anisotropic
rigid media and isotropic magnetizable media). For instance, we have

L
(0,0)
(M)αα ≥ 0, L

(1,1)
(M)αα ≥ 0,

L
(q,q)
αα ≥ 0, L

(k,k)
(DD)αα ≥ 0 (k = 1, . . . , n− 1), L

(vi,vi)
αβαβ ≥ 0.

(55)

Also, from the fifth of the inequalities we obtain, by virtue of symmetry
and Onsager-Casimir relations,

L
(vi,vi)
αββα ≥ 0, L

(vi,vi)
βααβ ≥ 0, L

(vi,vi)
βαβα ≥ 0. (56)

6 Linear equations of state for anisotropic reacting
fluid mixtures with magnetic relaxation

In this Section we give a review of the results obtained in the paper [7]. In
order to obtain the linear equations of state we use the specific free energy
f as thermodynamic potential, defined by

f = u− Ts. (57)

Using the Gibbs relation (19), we obtain the following expression for the
differential of f ,

df = −sdT + vτ
(eq)
αβ dεαβ +B(eq) · dm−B(1) · dm(1) +

n∑
k=1

µ(k)dc(k). (58)

Therefore, the following definitions are valid

s = − ∂

∂T
f
(
T, εαβ,m,m(1), c(1), . . . , c(n)

)
, (59)
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τ
(eq)
αβ = ϱ

∂

∂εαβ
f
(
T, εαβ,m,m(1), c(1), . . . , c(n)

)
, (60)

B(eq) =
∂

∂m
f
(
T, εαβ,m,m(1), c(1), . . . , c(n)

)
, (61)

B(1) = − ∂

∂m(1)
f
(
T, εαβ,m,m(1), c(1), . . . , c(n)

)
, (62)

µ(k) =
∂

∂c(k)
f
(
T, εαβ,m,m(1), c(1), . . . , c(n)

)
(k = 1, . . . , n). (63)

Let us consider a reference state of the medium (indicated by the symbol
”(0)”) and we also require that this reference state is a state of thermody-
namic equilibrium. We assume that in this state there is an uniform tem-
perature, that has an arbitrary (but fixed) value T(0), the concentrations

c(k) (k = 1, . . . , n) of the n fluid components have fixed values c
(k)
(0) and

the values of the strain tensor ε(0)αβ, the m(0) and m
(1)
(0) are null. Then,

we assume that the mechanical stress tensor ταβ, the magnetic field B, B(1)

and the µ(k) vanish in this state, i.e. we assume that

τ
(eq)
αβ

(
T(0), ε(0)αβ,m(0),m

(1)
(0), c

(1)
(0), . . . , c

(n)
(0)

)
= 0, (64)

B(eq)
(
T(0), ε(0)αβ,m(0),m

(1)
(0), c

(1)
(0), . . . , c

(n)
(0)

)
= 0, (65)

B(1)
(
T(0), ε(0)αβ,m(0),m

(1)
(0), c

(1)
(0), . . . , c

(n)
(0)

)
= 0, (66)

µ(k)
(
T(0), ε(0)αβ,m(0),m

(1)
(0), c

(1)
(0), . . . , c

(n)
(0)

)
= 0 (k = 1, . . . , n). (67)

if
T = T(0), c(k) = c

(k)
(0) (k = 1, . . . , n),

ε(0)αβ = 0, m(0) = 0, m
(1)
(0) = 0.

(68)

Let us expand the free energy f into Taylor’s series with respect to the
considered reference state and we consider very small deviations with respect
to this state.

We postulate the following form for the specific free energy f

f = f (1) + f (2), (69)

where

f (1) = v(0)

[
1

2
aαβγζεαβεγζ + aαβεαβ(T − T(0))
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+
n∑

k=1

b(k)
(
c(k) − c

(k)
(0)

)
(T − T0) +

n∑
k=1

b
(k)
αβ

(
c(k) − c

(k)
(0)

)
εαβ

+
1

2

n∑
i,k=1

b(i,k)
(
c(i) − c

(i)
(0)

) (
c(k) − c

(k)
(0)

)]
− φ(T ) (70)

and

f (2) =
1

2
ϱ(0)

[
a
(0,0)
(M)αβmα

(
mβ − 2m

(1)
β

)
+ a

(1,1)
(M)αβ m(1)

α m
(1)
β

]
+

+
(
a
(0)
(M)αmα − a

(1)
(M)αm

(1)
α

)
(T − T(0))

+
n∑

k=1

(
b
(0,k)
(M)αmα + b

(1,k)
(M)αm

(1)
α

) (
c(k) − c

(k)
(0)

)
. (71)

In (70) φ(T ) is some function of the temperature, v(0) is the specific

volume in the reference state, defined by v(0) =
1

ϱ(0)
, that in the following

will be replaced by v =
1

ϱ
, supposed constant. Furthermore, in (70) the

scalars b(k) and the tensors aαβγζ , aαβ, b
(k)
αβ , b

(i,k) are constant and satisfy
the following symmetry relations

aαβγζ = aβαγζ = aαβζγ = aβαζγ = aγζαβ = aγζβα = aζγαβ = aζγβα,

aαβ = aβα, b
(k)
αβ = b

(k)
βα , b(i,k) = b(k,i) (i, k = 1, . . . , n). (72)

In (71) the tensors a
(0,0)
(M)αβ, a

(1,1)
(M)αβ are constant and satisfy the following

symmetry relations

a
(0,0)
(M)αβ = a

(0,0)
(M)βα, a

(1,1)
(M)αβ = a

(1,1)
(M)βα (73)

and the vector components a
(0)
(M)α, a

(1)
(M)α, b

(0,k)
(M)α, b

(1,k)
(M)α (k = 1, . . . , n) are

constant. The symmetry properties of the above phenomenological coeffi-
cients come from the physical interpretation of the second partial derivatives
of the free energy with respect to the considered independent variables, with
their properties of invariance respect to the priority of derivation with re-
spect to the considered variables. Furthermore, the symmetry of the small
strain tensor εαβ is taken into consideration. All these constants are deter-
mined by the physical properties of the medium in the reference state.
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From (60) and (69)-(71) we have the following state equation for the

equilibrium stress tensor τ
(eq)
αβ

τ
(eq)
αβ = aαβγζεγζ + aαβ(T − T(0)) +

n∑
k=1

b
(k)
αβ

(
c(k) − c

(k)
(0)

)
. (74)

Finally, from (61), (62), (63) and (69)-(71) we have the following equa-
tions of state

B(eq)
α = a

(0,0)
(M)αβ

(
Mβ −M

(1)
β

)
+ a

(0)
(M)α(T − T(0)) +

n∑
k=1

b
(0,k)
(M)α

(
c(k) − c

(k)
(0)

)
,

(75)

B(1)
α = a

(0,0)
(M)αβMβ − a

(1,1)
(M)αβM

(1)
β + a

(1)
(M)α(T −T(0))+

n∑
k=1

b
(1,k)
(M)α

(
c(k) − c

(k)
(0)

)
,

(76)

µ(k) = v

[
b(k)(T − T0) + b

(k)
αβεαβ +

n∑
i=1

b(i,k)
(
c(i) − c

(i)
(0)

)

+b
(0,k)
(M)αMα − b

(1,k)
(M)αM

(1)
α

]
, (77)

where we have defined the fields M(0) and M(1) as

M(0) = ϱm(0), M(1) = ϱm(1). (78)

If in equations (32)-(37) all cross effects are neglected, except for possible
interactions among the different types of magnetic relaxation phenomena,
taking into consideration the state equations, we obtain the following equa-
tions for the irreversible magnetic relaxation phenomena, the stress tensor,
the electric flux and the heat flux, respectively

Bα = B(eq)
α + L

(0,0)
(M)αβ

dMβ

dt
+ L

(0,1)
(M)αβB

(1)
β , (79)

dM
(1)
α

dt
= L

(1,0)
(M)αβ

dMβ

dt
+ L

(1,1)
(M)αβB

(1)
β , (80)

ταβ = aαβγζεγζ + aαβ(T − T(0)) +
n∑

k=1

b
(k)
αβ

(
c(k) − c

(k)
(0)

)
+ L

(vi,vi)
αβγζ

dεγζ
dt

(81)

(being τ
(vi)
αβ = ταβ − τ

(eq)
αβ ),

J (q)
α = − 1

T
L
(q,q)
αβ

∂T

∂xβ
, J

(j)
(diff)α =

n−1∑
k=1

L
(j,k)
(DD)αβX

(k)
β (j, k = 1, . . . , n− 1),
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J
(l)
(chem) =

r∑
h=1

L
(l,h)
(CC)A

(h) (l = 1, . . . , r). (82)

Taking into account (75), (76), equations (79) and (80) may be written,
respectively, in the form (see [7])

c
(1)
αβM

(1)
β = Q

(1)
(0,0)α, (83)

where
c
(1)
αβ = a

(0,0)
(M)αβ + L

(0,1)
(M)αγ

a
(1,1)
(M)γβ, (84)

Q
(1)
(0,0)α =

(
a
(0,0)
(M)αβ + L

(0,1)
(M)αγa

(0,0)
(M)γβ

)
Mβ + L

(0,0)
(M)αβ

dMβ

dt
−Bα

+
(
a
(0)
(M)α + L

(0,1)
(M)αβa

(1)
(M)β

)
(T − T(0))

+
n∑

k=1

(
b
(0,k)
(M)α + L

(0,1)
(M)αβb

(1,k)
(M)β

) (
c(k) − c

(k)
(0)

)
(85)

and
dM

(1)
β

dt
+ hβγM

(1)
γ = Q(1,0)β, (86)

where
hβγ = L

(1,1)
(M)βηa

(1,1)
(M)ηγ (87)

and

Q(1,0)β = L
(1,1)
(M)βηa

(0,0)
(M)ηγMγ + L

(1,0)
(M)βγ

dMγ

dt

+L
(1,1)
(M)βγa

(1)
(M)γ(T − T(0)) +

n∑
k=1

L
(1,1)
(M)βγb

(1,k)
(M)γ

(
c(k) − c

(k)
(0)

)
. (88)

Assuming that it is possible to define the inverse matrix
(
c
(1)
αβ

)−1
, such

that (
c
(1)
αβ

)−1
c
(1)
βγ = c

(1)
αβ

(
c
(1)
βγ

)−1
= δαγ , (89)

the partial magnetization field M(1) is given by (see (84)) and (85)

M (1)
α =

(
c
(1)
αβ

)−1
Q

(1)
(0,0)β. (90)

In [7] from (83) and (86), using (90), the magnetic relaxation equation for
anisotropic reacting fluid mixtures under consideration was obtained, having
the form of a linear relation among the components of the magnetic field, the
components of the total magnetization, the temperature, the concentrations
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of the n fluid components, the first time derivative of the components of
the magnetic field, of the temperature, of the concentrations of the n fluid
components, of the total magnetization field, and the second derivative with
respect to time of this last axial vector.

7 Derivation of the field B(1)

In this Section we work out the expression for the field B(1), conjugate to
the internal variable m(1).

Using (90) and (85) we see that B(1) can be written as follows

B
(1)
α = a

(0,0)
(M)αβMβ − a

(1,1)
(M)αβ

(
c
(1)
βγ

)−1
[(

a
(0,0)
(M)γζ + L

(0,1)
(M)γηa

(0,0)
(M)ηζ

)
Mζ

+L
(0,0)
(M)γζ

dMζ

dt
−Bγ +

(
a
(0)
(M)γ + L

(0,1)
(M)γζa

(1)
(M)ζ

)
(T − T0)

+
n∑

k=1

(
b
(0,k)
(M)γ + L

(0,1)
(M)γζb

(1,k)
(M)ζ

) (
c(k) − c

(k)
(0)

)]

+a
(1)
(M)α(T − T0) +

n∑
k=1

b
(1,k)
(M)α

(
c(k) − c

(k)
(0)

)
, (91)

where c
(0)
αβ is defined by

c
(0)
αβ = a

(0,0)
(M)αβ + L

(0,1)
(M)αγa

(0,0)
(M)γβ (92)

and c
(1)
αβ is given by (84). We have

B
(1)
α = a

(0,0)
(M)αβ

(
c
(1)
βγ

)−1
c
(1)
γζ Mζ−a

(1,1)
(M)αβ

(
c
(1)
βγ

)−1 (
a
(0,0)
(M)γζ + L

(0,1)
(M)γηa

(0,0)
(M)ηζ

)
Mζ

−a
(1,1)
(M)αβ

(
c
(1)
βγ

)−1
L
(0,0)
(M)γζ

dMζ

dt
+ a

(1,1)
(M)αβ

(
c
(1)
βγ

)−1
Bγ

−a
(1,1)
(M)αβ

(
c
(1)
βγ

)−1 (
a
(0)
(M)γ + L

(0,1)
(M)γηa

(1)
(M)η

)
(T − T0) + a

(1)
(M)α(T − T0)

−a
(1,1)
(M)αβ

(
c
(1)
βγ

)−1
n∑

k=1

(
b
(0,k)
(M)γ + L

(0,1)
(M)γηb

(1,k)
(M)η

) (
c(k) − c

(k)
(0)

)
+

n∑
k=1

b
(1,k)
(M)α

(
c(k) − c

(k)
(0)

)
, (93)

i.e.

B(1)
α = D

(1)
(M)αζMζ +D

(2)
(M)αζ

dMζ

dt
+D

(3)
(M)αζBζ
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+D
(4)
(M)α(T − T0) +

n∑
k=1

D
(5,k)
(M)α

(
c(k) − c

(k)
(0)

)
, (94)

where

D
(1)
(M)αζ =

(
c
(1)
βγ

)−1 [
a
(0,0)
(M)αβc

(1)
γζ − a

(1,1)
(M)αβ

(
a
(0,0)
(M)γζ + L

(0,1)
(M)γηa

(0,0)
(M)ηζ

)]
, (95)

D
(2)
(M)αζ = −

(
c
(1)
βγ

)−1
a
(1,1)
(M)αβL

(0,0)
(M)γζ , (96)

D
(3)
(M)αζ =

(
c
(1)
βζ

)−1
a
(1,1)
(M)αβ. (97)

D
(4)
(M)α = −

(
c
(1)
βγ

)−1
a
(1,1)
(M)αβ

(
a
(0)
(M)γ + L

(0,1)
(M)γηa

(1)
(M)η

)
+ a

(1)
(M)α, (98)

D
(5,k)
(M)α = −

(
c
(1)
βγ

)−1
a
(1,1)
(M)αβ

(
b
(0,k)
(M)γ + L

(0,1)
(M)γηb

(1,k)
(M)η

)
+ b

(1,k)
(M)α. (99)

8 First law of thermodynamics

In this section we work out the first law of thermodynamics for the anisotropic
reacting fluid mixtures under consideration.

From (57) and (69)-(71) we have

u = f + Ts = f (1) + f (2) + Ts. (100)

From (59) we have the following form for the specific entropy s

s = −
[
a
(0)
(M)αmα − a

(1)
(M)αm

(1)
α +

n∑
k=1

b(k)
(
c(k) − c

(k)
(0)

)]
− vaαβεαβ +

dφ

dT
.

(101)
Thus, from (100) we obtain

u = v

[
1

2
aαβγζεαβεγζ − T(0)aαβεαβ − T(0)

n∑
k=1

b(k)
(
c(k) − c

(k)
(0)

)
+

n∑
k=1

b
(k)
αβ

(
c(k) − c

(k)
(0)

)
εαβ +

1

2

n∑
i,k=1

b(i,k)
(
c(i) − c

(i)
(0)

) (
c(k) − c

(k)
(0)

)]

+
1

2
ϱ
[
a
(0,0)
(M)αβ mα

(
mβ − 2m

(1)
β

)
+ a

(1,1)
(M)αβ m(1)

α m
(1)
β

]
−φ(T )− T(0)

(
a
(0)
(M)α mα − a

(1)
(M)αm

(1)
α

)
+ T

dφ

dT

+
n∑

k=1

(
c(k) − c

(k)
(0)

) (
b
(0,k)
(M)αmα + b

(1,k)
(M)αm

(1)
α

)
, (102)
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i.e.,

u =
1

2
ϱ
[
a
(0,0)
(M)αβ mα

(
mβ − 2m

(1)
β

)
+ a

(1,1)
(M)αβ m(1)

α m
(1)
β

]
−T(0)

(
a
(0)
(M)α mα − a

(1)
(M)αm

(1)
α

)
+v

(
1

2
aαβγζεαβεγζ − T(0)aαβεαβ

)
+ T

dφ

dT
− φ(T )

−vT(0)

n∑
k=1

b(k)
(
c(k) − c

(k)
(0)

)
+ v(0)

n∑
k=1

b
(k)
αβ

(
c(k) − c

(k)
(0)

)
εαβ

+
v

2

n∑
i,k=1

b(i,k)
(
c(i) − c

(i)
(0)

) (
c(k) − c

(k)
(0)

)
+

n∑
k=1

(
c(k) − c

(k)
(0)

) (
b
(0,k)
(M)αmα + b

(1,k)
(M)αm

(1)
α

)
. (103)

The specific heat at constant deformation c(ε) can be defined by

c(ε) =
∂u

∂T

(
T, εαβ,m,m(1), c(1), . . . , c(n)

)
, (104)

c(ε) =
d

dT

(
T
dφ

dT
− φ(T )

)
=

d

dT

(
T
dφ

dT

)
− dφ

dT
, (105)

i.e.

c(ε) = T
d2φ

dT 2.

If c(ε) is constant one obtains the result

φ = c(ε)T log
T

T(0)
+ s(0)T − c(ε)(T − T(0))− u(0), (106)

where s(0) =

(
dφ

dT

)
T=T(0)

(see (101)) and u(0) = T(0)

(
dφ

dT

)
T=T(0)

− φ(T(0))

(see (103)) are the specific entropy and the specific internal energy in the
reference state respectively.

Thus, φ(T(0)) = T(0)s(0) − u(0).
The result (106) was derived in [40] but without demonstration.
Indeed, from equation (105)1, one has

T
dφ

dT
− φ− c(ε)T = A(0) (107)
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and taking into account that
d

dT

(
φ

T

)
=

1

T

(
dφ

dT

)
− φ

T 2
,

dφ

dT
= T

d

dT

(
φ

T

)
+

φ

T
. (108)

From (107) one gets
dφ

dT
− φ

T
− c(ε) =

A(0)

T
, (109)

from which, by virtue of (108), one has

T
d

dT

(
φ

T

)
− c(ε) =

A(0)

T
, (110)

d

dT

(
φ

T

)
− c(ε)

T
=

A(0)

T 2
,

φ

T
= c(ε) log T −

A(0)

T
+B(0), (111)

φ = Tc(ε) log T −A(0) +B(0)T, (112)

with A(0) and B(0) integration constants calculated in the reference state for
T = T(0). From (109) and (111)2 A(0) = u(0) − c(ε)T(0),
B(0) = s(0) − c(ε) log T(0) − c(ε)T(0) and, thus, from (112) the result (106) is
obtained.

Then, the first law of thermodynamics (16) becomes
1

2
a
(0,0)
(M)αβ

d

dt

[
Mα

(
Mβ − 2M

(1)
β

)]
+ a

(1,1)
(M)αβM

(1)
α

d

dt
M

(1)
β

−T(0)

(
a
(0)
(M)α

d

dt
Mα − a

(1)
(M)α

d

dt
M (1)

α

)
+
1

2
aαβγζ

d

dt
(εαβεγζ)− T(0)aαβ

d

dt
εαβ + ϱc(ε)

d

dt
T

−T(0)

n∑
k=1

b(k)
d

dt
c(k) +

n∑
k=1

b
(k)
αβ

d

dt

[(
c(k) − c

(k)
(0)

)
εαβ

]
+
1

2

n∑
i,k=1

b(i,k)
d

dt

[(
c(i) − c

(i)
(0)

) (
c(k) − c

(k)
(0)

)]
+

n∑
k=1

d

dt

[(
c(k) − c

(k)
(0)

) (
b
(0,k)
(M)αMα + b

(1,k)
(M)αM

(1)
α

)]
=

=
∂

∂xα

(
T−1L

(q,q)
αβ

∂T

∂xβ

)
+ τ

(vi)
αβ

dεαβ
dt

+ J (el)
α Eα +Bα

dMα

dt
,

where we have supposed that J
(el)
α , J

(q)
α , τ

(eq)
αβ are given by (81) and (82).
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9 Heat conduction equation and the heat dissipa-
tion function

In this Section we work out the heat conduction equation and the heat
dissipation function for the media under consideration.

From (101) we have

ϱ
ds

dt
= −a

(0)
(M)α

dMα

dt
+ a

(1)
(M)α

dM
(1)
α

dt

−
n∑

k=1

b(k)ϱ
(
c(k) − c

(k)
(0)

)
− aαβ

dεαβ
dt

+ ϱ
d2φ

dT 2

dT

dt
(113)

By using (105) we obtain

ϱT
ds

dt
= T

[
−a

(0)
(M)α

dMα

dt
+ a

(1)
(M)α

dM
(1)
α

dt

−
n∑

k=1

b(k)ϱ
(
c(k) − c

(k)
(0)

)
− aαβ

dεαβ
dt

]
+ ϱc(ε)

dT

dt
. (114)

From the balance equation (26) we have

ϱT
ds

dt
= −T∇ · J(s) + Tσ(s) =

−∇ · J(q) +
1

T
J(q) · ∇T + T∇ ·

(
1

T

n∑
k=1

µ(k)J
(k)
(diff)

)
+ Tσ(s), (115)

being J(s) and σ(s) given by (22) and (27).
Taking into consideration equation (82), in components (115) takes the

following form

ϱT
ds

dt
=

∂

∂xα

(
T−1L

(q,q)
αβ

∂T

∂xβ

)
− T−2L

(q,q)
αβ

∂T

∂xα

∂T

∂xβ

+T
∂

∂xα

(
T−1

n∑
k=1

µ(k)J
(k)
(diff)α

)
+ Tσ(s). (116)

Thus, comparing (114) and (116) we have

ϱc(ε)
dT

dt
= T

[
a
(0)
(M)α

dMα

dt
−a

(1)
(M)α

dM
(1)
α

dt
+aαβ

dεαβ
dt

+
n∑

k=1

b(k)ϱ
(
c(k) − c

(k)
(0)

)]
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+
∂

∂xα

(
T−1L

(q,q)
αβ

∂T

∂xβ

)
+ T

∂

∂xα

(
T−1

n∑
k=1

µ(k)J
(k)
(diff)α

)
+ τ

(vi)
αβ

dεαβ
dt

+B(ir)
α

dMα

dt
+B(1)

α

dM
(1)
α

dt
+

r∑
h=1

A(h)J (h) +
n−1∑
k=1

J
(k)
(diff) ·X

(k), (117)

i.e.,

ϱc(ε)
dT

dt
= T

[
a
(0)
(M)α

dMα

dt
−a

(1)
(M)α

dM
(1)
α

dt
+aαβ

dεαβ
dt

+
n∑

k=1

b(k)ϱ(0)
(
c(k) − c

(k)
(0)

)]

+
∂

∂xα

(
T−1L

(q,q)
αβ

∂T

∂xβ

)
+ T

∂

∂xα

(
T−1

n∑
k=1

µ(k)J
(k)
(diff)α

)
+ σ(h), (118)

where

σ(h) = τ
(vi)
αβ

dεαβ
dt

+
r∑

h=1

A(h)J (h) +
n−1∑
k=1

J
(k)
(diff) ·X

(k) +B(1)
α

dM
(1)
α

dt
+B(ir)

α

dMα

dt

= σ(R) + σ(chem) + σ(diff) + σ(M), (119)

with

σ(R) = τ
(vi)
αβ

dεαβ
dt

= L
(vi,vi)
αβγζ

dεαβ
dt

dεγζ
dt

, (120)

σ(chem) =
r∑

h=1

A(h)J (h), σ(diff) =
n−1∑
k=1

J
(k)
(diff) ·X

(k), (121)

σ(M) = B(ir)
α

dMα

dt
+B(1)

α

dM
(1)
α

dt

=

(
L
(0,0)
(M)αβ

dMβ

dt
+ L

(0,1)
(M)αβB

(1)
β

)
dMα

dt
+B(1)

α

(
L
(1,0)
(M)αβ

dMβ

dt
+ L

(1,1)
(M)αβB

(1)
β

)
,

where we have used (79) and (80).

Hence, using the Onsager-Casimir relation L
(0,1)
(M)αβ = −L

(1,0)
(M)βα, we have

σ(M) = L
(0,0)
(M)αβ

dMα

dt

dMβ

dt
+ L

(1,1)
(M)αβB

(1)
α B

(1)
β , (122)

from which, taking into account equations (94) and (95)-(99), we obtain

σ(M) = L
(0,0)
(M)αβ

dMα

dt

dMβ

dt
+ L

(1,1)
(M)αβ

[
D

(1)
(M)αζMζ +D

(2)
(M)αζ

dMζ

dt
+D

(3)
(M)αζBζ

+D
(4)
(M)α(T − T0) +

n∑
k=1

D
(5,k)
(M)β

(
c(k) − c

(k)
(0)

)][
D

(1)
(M)βηMη +D

(2)
(M)βη

dMη

dt
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+D
(3)
(M)βηBη +D

(4)
(M)β(T − T0) +

n∑
j=1

D
(5,j)
(M)β

(
c(j) − c

(j)
(0)

)]
, or (123)

σ(M) = L
(0,0)
(M)αβ

dMα

dt

dMβ

dt
+L

(1,1)
(M)γλ

[
D

(1)
(M)γαMα +D

(2)
(M)γα

dMα

dt
+D

(3)
(M)γαBα

+D
(4)
(M)γ(T − T0) +

n∑
k=1

D
(5,k)
(M)γ

(
c(k) − c

(k)
(0)

)][
D

(1)
(M)λβMβ +D

(2)
(M)λβ

dMβ

dt

+D
(3)
(M)λβBβ +D

(4)
(M)λ(T − T0) +

n∑
j=1

D
(5,j)
(M)λ

(
c(j) − c

(j)
(0)

)]
. (124)

Thus, using the Onsager-Casimir relation L
(1,1)
(M)αβ = L

(1,1)
(M)βα, we obtain

σ(M) = A
(1)
αβ

dMα

dt

dMβ

dt
+A

(2)
αβMαMβ +A

(3)
αβMα

dMβ

dt
+A

(4)
αβ MαBβ

+A
(5)
αβ

dMα

dt
Bβ +A

(6)
αβBαBβ +A(7)

α (T − T0)Mα +A(8)
α (T − T0)

dMα

dt

+A(9)
α (T − T0)Bα +A(10)(T − T0)

2 +
n∑

k=1

D
(5,k)
(M)λ

(
c(k) − c

(k)
0

)
A

(11)
λα Mα

+

[
A

(12)
λα

dMα

dt
+A

(13)
λα Bα +A

(14)
λ (T − T0)

] n∑
k=1

D
(5,k)
(M)λ

(
c(k) − c

(k)
(0)

)

+
n∑

j,k=1

L
(1,1)
(M)αβD

(5,j)
(M)αD

(5,k)
(M)β

(
c(j) − c

(j)
(0)

) (
c(k) − c

(k)
(0)

)
, (125)

where

A
(1)
αβ = L

(0,0)
(M)αβ + L

(1,1)
(M)γλD

(2)
(M)γαD

(2)
(M)λβ, A

(2)
αβ = L

(1,1)
(M)γλD

(1)
(M)γαD

(1)
(M)λβ,

A
(3)
αβ = 2L

(1,1)
(M)γλD

(1)
(M)γαD

(2)
(M)λβ, A

(4)
αβ = 2L

(1,1)
(M)γλD

(1)
(M)γαD

(3)
(M)λβ,

A
(5)
αβ = 2L

(1,1)
(M)γλD

(2)
(M)γαD

(3)
(M)λβ, A

(6)
αβ = L

(1,1)
(M)γλD

(3)
(M)γαD

(3)
(M)λβ,

A(7)
α = 2L

(1,1)
(M)γλD

(1)
(M)γαD

(4)
(M)λ, A(8)

α = 2L
(1,1)
(M)γλD

(2)
(M)γαD

(4)
(M)λ,

A(9)
γ = 2L

(1,1)
(M)γλ D

(3)
(M)γαD

(4)
(M)λ, A(10)

γ = L
(1,1)
(M)αβD

(4)
(M)αD

(4)
(M)β,

A(11)
γ = 2L

(1,1)
γλ D

(5,k)
(M)γD

(1)
(M)λα, A

(12)
λα = 2L

(1,1)
(M)γλD

(2)
(M)γα,
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A
(13)
λ = 2L

(1,1)
(M)γλD

(3)
(M)γα, A

(14)
λ = 2L

(1,1)
(M)γλD

(4)
(M)γ . (126)

The physical quantity σ(h) is called heat dissipation function. It is due to
the chemical reactions, the magnetic relaxation, the electric conduction, the
viscous, magnetic, temperature fields and the diffusion and the concentra-
tions of the n fluid components. σ(R) is a generalized Rayleigh dissipation
function.

10 Heat dissipation function in the Snoek case,
where m(0) is reversible

In this Section we work out the heat conduction equation and the heat
dissipation function in the Snoek case.

In this special case B = B(eq), B(ir) vanishes (see (23)2 ) and from (79),
(80) and (29) one gets

L
(0,0)
(M)αβ = 0 and L

(0,1)
(M)αβ = −L

(1,0)
(M)βα = 0. (127)

From equations (84) and (87) in this case we have

c(1)αγ = a
(0,0)
(M)αγ , hγζ = L

(1,1)
(M)γηa

(1,1)
(M)ηζ ,

(
c
(1)
ζβ

)−1
=
(
a
(0,0)
(M)ζβ

)−1
. (128)

Taking into account the expression (94) for B(1) in the Snoek case, from

(95)-(99) and (128)1, we have the following form for the coefficients D
(1)
(M)αζ ,

D
(2)
(M)αζ , D

(3)
(M)αζ , D

(4)
(M)α and D

(5,k)
(M)α

D
(1)
(M)αζ = a

(0,0)
(M)αζ − a

(1,1)
(M)αζ , D

(2)
(M)αζ = 0, D

(3)
(M)αζ =

(
a
(0,0)
(M)βζ

)−1
a
(1,1)
(M)αβ,

D
(4)
(M)α = −

(
a
(0,0)
(M)βγ

)−1
a
(1,1)
(M)αβa

(0)
(M)γ + a

(1)
(M)α,

D
(5,k)
(M)α = −

(
a
(0,0)
(M)βγ

)−1
a
(1,1)
(M)αβb

(0,k)
(M)γ + b

(1,k)
(M)α. (129)

In the Snoek case the heat conduction equation (118) takes the form

ϱc(ε)
dT

dt
= T

[
a
(0)
(M)α

dMα

dt
− a

(1)
(M)αL

(1,1)
(M)αβB

(1)
β

+aαβ
dεαβ
dt

+
n∑

k=1

b(k)ϱ
(
c(k) − c

(k)
(0)

)]
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+
∂

∂xα

(
T−1L

(q,q)
αβ

∂T

∂xβ

)
+ T

∂

∂xα

(
T−1

n∑
k=1

µ(k)J
(k)
(diff)α

)
+ σ(h), (130)

where we have used equation (80) and in σ(h) given by (119), σ(R), σ(chem),
σ(diff) keep the same form and σ(M), from (125), (127) and (129), becomes

σ
(M)
S = A

(2)
αβMαMβ +A

(4)
αβMαBβ +A

(6)
αβBαBβ +A(7)

α (T − T0)Mα

+A(9)
α (T − T0)Bα +A(10)(T − T0)

2 +
n∑

k=1

D
(5,k)
(M)λ

(
c(k) − c

(k)
0

)
A

(11)
λα Mα

+
[
A

(13)
λα Bα +A

(14)
λ (T − T0)

] n∑
k=1

D
(5,k)
(M)λ

(
c(k) − c

(k)
(0)

)

+
n∑

j,k=1

L
(1,1)
(M)αβD

(5,j)
(M)αD

(5,k)
(M)β

(
c(j) − c

(j)
(0)

) (
c(k) − c

(k)
(0)

)
, (131)

where
A

(1)
αβ = A

(3)
αβ = A

(5)
αβ = A

(12)
αλ = 0, A(8)

α = 0,

A
(2)
αβ = L

(1,1)
(M)γλD

(1)
(M)γαD

(1)
(M)λβ, A

(4)
αβ = 2L

(1,1)
(M)γλD

(1)
(M)γαD

(3)
(M)λβ,

A
(6)
αβ = L

(1,1)
(M)γλD

(3)
(M)γαD

(3)
(M)λβ, A(7)

α = 2L
(1,1)
(M)γλD

(1)
(M)γαD

(4)
(M)λ,

A(9)
α = 2L

(1,1)
(M)γλD

(3)
(M)γαD

(4)
(M)λ, A(10) = L

(1,1)
(M)αβD

(4)
(M)αD

(4)
(M)β,

A(11)
α = 2L

(1,1)
γλ D

(5,k)
(M)γD

(1)
(M)λα, A

(13)
αλ = 2L

(1,1)
(M)γλD

(3)
(M)γα, A(14)

α = 2L
(1,1)
(M)γαD

(4)
(M)γ .

(132)

For the magnetic relaxation equation in this Snoek case see [7].

11 Heat dissipation function in De Groot - Mazur
case, where m(1) is null

In this Section we work out the heat conduction equation and the heat
dissipation function in De Groot - Mazur case.

In this special case

L
(1,1)
(M)αβ = 0, and L

(1,0)
(M)αβ = −L

(0,1)
(M)αβ = 0, (133)
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equations (79) and (80) become

B(ir)
α = L

(0,0)
(M)αβ

dMβ

dt
and

dM
(1)
α

dt
= 0. (134)

It is seen that M(1) is constant and it can be supposed that M(1) = 0 (i.e.
there is no internal variable). From equations (84) and (87) in this case we

have c
(1)
αγ = a

(0,0)
(M)αγ , hγζ = 0.

Taking into account the expression (94) for B(1) in the de Groot-Mazur
case, from (95)-(99) and (128)1, we have the following form for the coeffi-

cients D
(1)
(M)αζ , D

(2)
(M)αζ , D

(3)
(M)αζ , D

(4)
(M)α, D

(5,k)
(M)α:

D
(1)
(M)αζ = a

(0,0)
(M)αζ − a

(1,1)
(M)αζ , D

(2)
(M)αζ = −

(
a
(0,0)
(M)βγ

)−1
a
(1,1)
(M)αβL

(0,0)
(M)γζ ,

D
(3)
(M)αζ =

(
a
(0,0)
(M)βζ

)−1
a
(1,1)
(M)αβ,

D
(4)
(M)α = −

(
a
(0,0)
(M)βγ

)−1
a
(1,1)
(M)αβa

(0)
(M)γ + a

(1)
(M)α,

D
(5,k)
(M)α = −

(
a
(0,0)
(m)βγ

)−1
a
(1,1)
(M)αβb

(0,k)
(M)γ + b

(1,k)
(M)α.

In the de Groot-Mazur case the heat conduction equation (118) takes the
form

ϱc(ε)
dT

dt
= T

[
a
(0)
(M)α

dMα

dt
+

n∑
k=1

b(k)ϱ
(
c(k) − c

(k)
(0)

)
+ aαβ

dεαβ
dt

]

+
∂

∂xα

(
T−1L

(q,q)
αβ

∂T

∂xβ

)
+ T

∂

∂xα

(
T−1

n∑
k=1

µ(k)J
(k)
(diff)α

)
+ σ(h), (135)

where we have used equation (80) and in σ(h) given by (119), σ(R), σ(chem),
σ(diff) keep the same form and σ(M) becomes

σ
(M)
dG = L

(0,0)
(M)αβ

dMα

dt

dMβ

dt
. (136)

In this case from (126) we have

A
(1)
αβ = L

(0,0)
(M)αβ, A

(2)
αβ = A

(3)
αβ = A

(4)
αβ = A

(7)
αβ = 0, A(5)

α = A(6)
α = 0,

A(8)
α = A(9)

α = 0, A
(10)
αβ = A

(11)
αλ = A

(12)
αλ = 0, A(13)

α = 0, A(14) = 0.
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12 Conclusions

In this paper anisotropic magnetizable reacting fluid mixtures, where dif-
ferent types of irreversible microscopic phenomena give rise to magnetic
relaxation, are taken into consideration, using a model devoped in [7]. Also
a model for magnetizable media with relaxation was given by Maugin, that
described the internal mechanism in these media using particular internal
variables. In this paper the total specific magnetization is the sum of two
irreversible parts and, linearizing the theory, the heat conduction equation
and the heat dissipation function for these magnetizable anisotropic media
are derived. The Snoek special case, where changes in m(0) become re-
versible, and the De Groot-Mazur special case, where there is no internal
variable m(1), are studied. The obtained results can be applied in several
physical situations, in nuclear magnetic resonance in medicine and biology
and other different fields of applied sciences, where complex media are used.

In [19], [20] and [41] the heat conduction equation and the heat dissi-
pation function were derived for anisotropic and isotropic polarizable media
with dielectric relaxation and for anisotropic mechanical media with relax-
ation, respectively, within the same thermodynamic framework and using
the same standard procedures of irreversible thermodynamics with internal
variables.
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