
Ann. Acad. Rom. Sci.
Ser. Math. Appl.

ISSN 2066-6594 Vol. 16, No. 2/2024

EXISTENCE, STABILITY AND NUMERICAL

ANALYSIS OF A FRACTIONAL NEUTRAL

IMPLICIT DELAY DIFFERENTIAL SYSTEM

WITH AN EXPONENTIAL KERNEL*

Velusamy Kavitha� Ravi Deepa� Balakrishnan Ganesh Priya§

Seenith Sivasundaram¶ Mani Mallika Arjunan�

Abstract

This article addresses the existence, uniqueness and stability anal-
ysis for various classes of implicit fractional neutral delay (finite and in-
finite) differential systems (IFNDDSs) employing the Caputo-Fabrizio
operator (CFO). The findings rely on the application of specific fixed-
point theorems. Additionally, illustrative numerical examples are pre-
sented in the concluding section to clarify and demonstrate the derived
results.
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1 Introduction

Fractional calculus, an advanced mathematical framework, introduces
the concept of derivatives and integrals with non-integer orders, providing a
nuanced perspective on the behaviour of dynamic systems. This unconven-
tional approach has garnered attention for its capacity to model complex
phenomena in diverse scientific and engineering domains [32, 42, 44]. Unlike
classical calculus, fractional calculus offers a more inclusive representation of
dynamic behaviours by accounting for non-local and hereditary effects. Its
applications extend to physics, biology, control theory, and signal processing,
where it excels in capturing intricate features like memory and long-term de-
pendencies [13, 39]. The smooth transition it facilitates between derivatives
and integrals contributes to its versatility in solving differential equations,
making fractional calculus a pivotal tool in understanding and addressing
real-world intricacies. Recently, researchers have extensively explored the
application of fixed point theory to establish results related to the existence,
uniqueness, and controllability of solutions for various fractional initial value
problems [7, 19, 21–23, 31, 37].

Implicit fractional differential equations (IFDEs) constitute a special-
ized class of mathematical expressions where the fractional derivatives are
applied implicitly. In these equations, the unknown function and its deriva-
tives are intertwined in a non-explicit manner, often involving fractional
orders. This distinctive formulation adds complexity but captures intricate
relationships in various systems [1, 5, 18]. The advantages of IFDEs include
their enhanced capacity to model phenomena with non-local dependencies
and complex dynamics. The implicit approach allows for a more accurate
representation of systems with memory effects and long-term dependencies.
These equations provide a versatile framework for describing processes ex-
hibiting anomalous diffusion, viscoelastic behaviours, and other intricate
dynamics that traditional differential equations may struggle to capture.
IFDEs have proven effective in modelling real-world scenarios across disci-
plines such as physics, engineering, and biology, making them valuable in
understanding and analyzing complex systems [25, 30, 34, 41].

A neutral differential system is a differential system that incorporates
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the state variables’ current and delayed values in its evolution. This delayed
influence introduces an additional layer of complexity, distinguishing it from
ordinary and delay differential systems. Mathematically, a neutral differen-
tial system can be represented as follows. Consider a system of first-order
neutral differential equations involving a vector of state variables ω(7) and
their delayed values:

ω′(7) = 𭟋(ω(7), ω(7− θ), ω′(7), ω′(7− θ)),

where ω(7) represents the current state variables, ω(7 − θ) denotes the de-
layed state variables, ω′(7) is the current derivative concerning time, ω′(7−θ)
is the delayed derivative, θ is the time delay and 𭟋 is a vector-valued function
defining the dynamics of the system.

The literature about ordinary neutral differential equations (NDEs) is
vast. For a comprehensive overview, we direct the reader to Hale and Lunel
[27], along with the accompanying references. Their emergence is notable in
the context of partial neutral differential equations featuring finite delays,
particularly in transmission line theory. In a significant contribution, Wu
and Xia [43] demonstrated that a ring array comprising identical resistively
coupled loss-less transmission lines gives rise to a system of neutral func-
tional differential equations. This system involves discrete diffusive coupling
and manifests diverse types of discrete waves, showcasing the intriguing and
varied nature of such equations. Recently, the authors have found some
exciting existence results on fractional NDEs [12, 14, 18, 29, 33, 37, 38, 40].

Fractional delay differential equations (FDDEs) represent differential
equations incorporating fractional derivatives and delays. In these equa-
tions, the evolution of a system is influenced not only by the current state
but also by past states with fractional delays. This mathematical frame-
work provides a more nuanced description of dynamic processes exhibiting
delays, offering advantages in modelling various phenomena. The fractional
aspect allows for a more flexible and accurate portrayal of systems with de-
lays, contributing to a comprehensive understanding of complex dynamics.
Additionally, FDDEs provide a versatile tool for analyzing and solving prob-
lems that involve delayed interactions and response dynamics in real-world
applications [12, 20, 28, 33, 37].

In 2015, Fabrizio and Caputo introduced a novel CF derivative incor-
porating an exponential function. This derivative has garnered significant
recognition and has been widely applied across diverse disciplines, including
bio-medicine, dynamic systems, mechanics, signal processing, electromag-
netism, and fluid dynamics. The CF derivative is defined by an integral
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operator without a singular kernel, as outlined in [16, 35]. Its unique prop-
erties distinguish it from alternative derivatives, augmenting its efficacy in
accurately modelling real-world problems. Extensive research efforts have
been devoted to exploring fractional differential systems, resulting in a sub-
stantial body of specialized research papers that address various applications
of these derivatives [1–4, 9, 10, 15–17, 30, 34, 35].

Recently, the authors have found some interesting existence and stability
results on ICFFDS [1, 11, 22, 25, 30, 33, 34, 41]. In [34], Krim et al. analyzed
the existence theory for the subsequent system{

CF
0 Dθ

ωω(7) = f
(
7, ω(7), CF

0 Dθ
ωω(7)

)
, 7 ∈ J = [0, T ]

u(0) = u0, u0 ∈ R, (1.1)

where CF
0 Dθ

ω is the CFFD of order 0 < θ ≤ 1, f : J × R× R −→ R.
Later, Eiman et al. [22] examined the existence and stability results for

the subsequent system(
CFDθ

0ω
)
(7) = f

(
7, ω(7),

(
CFDθ

0ω
)
(7)
)
, 7 ∈ I := [0, T ],

with the boundary conditions

cω(0) + dω(T ) = e,

where CF
0 Dθ

0 is the CFFD of order 0 < θ ≤ 1, f : J × R× R −→ R.
In [25], Gul et al. generalized the results of the system (1.1) for 1 <

ρ ≤ 2 under appropriate conditions and FP theorems. In [36], Lazreg et al.
investigated the existence results for the subsequent system

(
CFDρ

7pω
)
(7) = f(7, ω(7)), 7 ∈ Ip, p = 0, . . . , ℓ,

ω
(
7
+
p

)
= ω

(
7
−
p

)
+ Lp

(
ω
(
7
−
p

))
, p = 1, . . . , ℓ,

ω(0) = ω0,
(1.2)

where I0 = [0, 71] , Ip = (7p, 7p+1] , p = 1, . . . , ℓ, 0 = 70 < 71 < · · · < 7ℓ <
7ℓ+1 = T, ω0 ∈ R, f : Ip × R → R, p = 0, . . . , ℓ, Lp : R → R, p = 1, . . . , ℓ are
given continuous functions, CFDρ

7p is the CFFD of order ρ ∈ (0, 1).
In [41], Sitthiwirattham et al. extends the results of (1.2) to the implicit

system with ω(0) = g(ω), where g is a continuous function under suitable
FP theorems. Very recently, in [33], Krim et al. established the existence
results of the system (1.1) with different types of delays under suitable FP
theorems.
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In the present study, we shall investigate the existence and uniqueness
of IFNDDSs of the system

CFDρ
0 [ω(7)− h(7, ω7)] = 𭟋

(
7, ω7,

CFDρ
0 [ω(7)− h(7, ω7)]

)
, 7 ∈ I, (1.3)

ω(7) = ξ(7), 7 ∈ [−d, 0], d > 0, (1.4)

where I = [0, T ], T > 0, ξ ∈ C,𭟋 : I × C × R → R, h : I × C → R are
continuous functions, CFDρ

0 is the CFFD of order ρ ∈ (0, 1), and C :=
C([−d, 0],R) is the space of continuous functions on [−d, 0]. Here, for any
7 ∈ I, we define ω7 by

ω7(θ) = ω(7+ θ), for θ ∈ [−d, 0].

In addition, we establish the stability results for the system (1.3)-(1.4)
under Ulam-Hyers (U-H) and generalized U-H (G-U-H).

Furthermore, we also investigate the existence results with infinite delay
for the system (1.3)-(1.4) . In particular, we examine the subsequent system

CFDρ
0 [ω(7)− h(7, ω7)] = 𭟋

(
7, ω7,

CFDρ
0 [ω(7)− h(7, ω7)]

)
, 7 ∈ I, (1.5)

ω(7) = ξ(7), 7 ∈ (−∞, 0], (1.6)

where ξ : (−∞, 0] → R, 𭟋 : I× B × R → R, h : I× B → R are continuous
functions, and B is denoted as a phase space, and its specifications will be
detailed subsequently. In this situation, for any 7 ∈ I, we designate ω7 ∈ B
in such a way that

ω7(θ) = ω(7+ θ), for θ ∈ (−∞, 0].

The remainder of this paper is structured as follows: Section 2 provides
comprehensive background information utilized in this study, including the
definition of CFFD and various properties of generalized Banach spaces
and fixed-point theory. In Sections 3 and 5, we establish the existence and
uniqueness of solutions for systems (1.3)-(1.4) and (1.5)-(1.6) with finite and
infinite delay, respectively. Stability results for the system (1.3)-(1.4) is also
discussed in Section 4. In the concluding section, we include illustrative
numerical examples to help clarify and explain the findings of this work.

2 Preliminaries

This section will begin by presenting fundamental concepts, terminology,
and preliminary information.
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Consider the interval I = [0, T ] within the real numbers, where T > 0.
Let C(I,R) denote the space of continuous functions ω : I −→ R. This
space, C(I,R), is a Banach space equipped with the supremum norm ∥ · ∥,
described as:

∥ω∥∞ = sup{|ω(7)| : 7 ∈ I}.

The functions designated by the notation L1([0, T ], ω) that are integrable
in the Bochner concept with reference to the Lebesgue measure and come
furnished with the notation

∥ω∥L1 =

∫ T

0
|ω(7)|d7

is referred to as ω : I → R.

Definition 2.1. The CFF integral of order 0 < ρ < 1 for a function g ∈
L1(I) is defined as:

(CFIρ0g)(7) =
2(1− ρ)

N(ρ)(2− ρ)
g(7) +

2ρ

N(ρ)(2− ρ)

∫
7

0
g(ω)dω, 7 ≥ 0. (2.1)

Remark 2.1. (i) According to the authors [35], the integral of order one
for a function g and its average is the fractional integral of CF type of
a function of order ρ ∈ (0, 1). We get an explicit formula for N(ρ) by
imposing

2(1− ρ)

N(ρ)(2− ρ)
+

2ρ

N(ρ)(2− ρ)
= 1.

Then

N(ρ) =
2

2− ρ
, 0 ≤ ρ ≤ 1.

(ii) If we take N(ρ) =
2

2− ρ
, then becomes

(CF Iρ0g)(7) = (1− ρ)g(7) + ρ

∫
7

0
g(σ)dσ, 7 ≥ 0.

Definition 2.2. [4] The CFFD of order 0 < ρ < 1 for a function g ∈ C1(I)
is defined as:

(CFDρ
0g)(7) =

(2− ρ)N(ρ)

2(1− ρ)

∫
7

0
e

(
−

ρ

1− ρ
(7− σ)

)
g′(σ)dσ, 7 ∈ I, (2.2)
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where a constant N(ρ) is depending on ρ. Note that CFDρ
0g = 0 iff g is a

constant function. For N(ρ) =
2

2− ρ
, one has

(CFDρ
0g)(7) =

1

(1− ρ)

∫
7

0
e

(
−

ρ

1− ρ
(7− σ)

)
g′(σ)dσ, 7 ∈ I. (2.3)

Lemma 2.1. [6, Theorem 2] Let g ∈ L1(I). Then, a function ω ∈ C(I) is
a solution of the following system:

(CFDρ
0ω)(7) = g(7), 7 ∈ I,

ω(0) = ω0,
(2.4)

if and only if ω satisfies the following integral equation:

ω(7) = ω0 +
2(1− ρ)

(2− ρ)N(ρ)
[g(7)− g(0)] +

2ρ

(2− ρ)N(ρ)

∫
7

0
g(σ) dσ. (2.5)

From this point onwards, for simplicity, we take

Aρ =
2(1− ρ)

(2− ρ)N(ρ)
and Bρ =

2ρ

(2− ρ)N(ρ)
.

Then (2.5) can be written as

ω(7) = ω0 +Aρ(g(7)− g(0)) + Bρ

∫
7

0
g(σ)dσ. (2.6)

Lemma 2.2. Suppose h : I × R → R is a continuous function and 𭟋 ∈
L1(I). Then, a function ω ∈ C(I) is a solution of the following system:

CFDρ
0[ω(7)− h(7, ω(7))] = 𭟋 (7, ω(7)) , 7 ∈ I, 0 < ρ < 1, (2.7)

ω(0) = ω0, (2.8)

if and only if ω satisfies the following integral equation:

ω(7) = ω0 − h(0, ω0) + h(7, ω(7)) +Aρ𭟋(7, ω(7))

+ Bρ

∫
7

0
𭟋(s, ω(s)) ds, (2.9)

provided that 𭟋(0, ω0) = 0.
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Note 1: To establish the aforementioned lemma, it is essential to revisit
the Laplace transform of the CFO, as detailed in [16]. We have

L{CFDρ
0ω(7)}(s) =

(2− ρ)N(ρ)

2(s+ ρ(1− s))
[sL{ω(7)}(s)− ω(0)],

L{CFDρ
0h(7, ω(7))}(s) =

(2− ρ)N(ρ)

2(s+ ρ(1− s))
[sL{h(7, ω(7))}(s)− h(0, ω(0))].

Proof. We apply the Laplace transform to both sides of (2.7):

L{CFDρ
0[ω(7)− h(7, ω(7))]}(s) = L{𭟋 (7, ω(7))}(s)

(2− ρ)N(ρ)

2(s+ ρ(1− s))
[sL{ω(7)}(s)− ω(0)]− (2− ρ)N(ρ)

2(s+ ρ(1− s))
[sL{h(7, ω(7))}(s)

− h(0, ω(0))] = L{f (7, ω(7))}(s)

=⇒ L{ω(7)}(s)− L{h(7, ω(7))}(s) = 1

s
ω(0)− 1

s
h(0, ω(0))

+
2ρ

s(2− ρ)N(ρ)
L{𭟋 (7, ω(7))}(s) + 2(1− ρ)

(2− ρ)N(ρ)
L{𭟋 (7, ω(7))}(s).

(2.10)

Applying inverse Laplace transform on both sides of (2.10), we get

ω(7) = ω0 − h(0, ω0) + h(7, ω(7)) +Aρ𭟋 (7, ω(7)) + Bρ

∫
7

0
𭟋 (s, ω(s)) ds.

We will now show that the solution (2.9) satisfies the given system (2.7).
To do this, we rewrite the solution (2.9) as follows.

ω(7)− h(7, ω(7)) = ω0 − h(0, ω0) +
2(1− ρ)

(2− ρ)N(ρ)
𭟋 (7, ω(7))

+
2ρ

(2− ρ)N(ρ)

∫
7

0
𭟋 (s, ω(s)) ds.

Then

ω′(7)− h′(7, ω(7)) =
2(1− ρ)

(2− ρ)N(ρ)
𭟋′ (7, ω(7))

+
2ρ

(2− ρ)N(ρ)
𭟋 (7, ω(7)) , if 𭟋(0, ω0) = 0.
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Multiply by
(2− ρ)N(ρ)

2(1− ρ)
and integrate from 0 to 7, we have

(2− ρ)N(ρ)

2(1− ρ)

∫
7

0
ω′(s)ds− (2− ρ)N(ρ)

2(1− ρ)

∫
7

0
h′(s, ω(s))ds

=

∫
7

0
𭟋′(s, ω(s))ds+

∫
7

0

ρ

1− ρ
𭟋(s, ω(s))ds.

Multiply the integrand by e
− ρ(7−s)

1−ρ in the above equation, we have

(2− ρ)N(ρ)

2(1− ρ)

∫
7

0
ω′(s)e

− ρ(7−s)
1−ρ ds− (2− ρ)N(ρ)

2(1− ρ)

∫
7

0
h′(s, ω(s))e

− ρ(7−s)
1−ρ ds

=

∫
7

0
𭟋′(s, ω(s))e

− ρ(7−s)
1−ρ ds+

∫
7

0

ρ

1− ρ
𭟋(s, ω(s))e

− ρ(7−s)
1−ρ ds

=

∫
7

0

d

ds

[
𭟋(s, p(s))e

− ρ(7−s)
1−ρ

]
ds.

Considering the definition of the CFFD, if 𭟋(0, ω0) = 0, the aforementioned
equation becomes:

CFDρ
0[ω(7)− h(7, ω(7))] = 𭟋 (7, ω(7)) , 7 ∈ I, 0 < ρ < 1

ω(0) = ω0.

Remark 2.2. (i) The above Lemma 2.2 is true only when 𭟋(0, ω0) = 0.

(ii) If 𭟋(0, ω0) ̸= 0, then

ω(7) = ω0 − h(0, ω0) + h(7, ω(7))−Aρ𭟋 (0, ω0) +Aρ𭟋 (7, ω(7))

+ Bρ

∫
7

0
𭟋 (s, ω(s)) ds

is the solution of the following system

CFDρ
0[ω(7)− h(7, ω(7))] = 𭟋 (7, ω(7))−𭟋(0, ω0)e

− ρ
1−ρ

7

, 7 ∈ I,

ω(0) = ω0,

where 0 < ρ < 1.
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Before describing the solution to the given system (1.3)-(1.4), we first
define the following Banach space:

Ω =
{
ω : (−d, T ] → R, ω|[−d,0] ≡ ξ, ω|I ∈ C(I)

}
.

Thus, we have
∥ω∥Ω = max{∥ξ∥C , ∥ω∥∞}.

We are now ready to present the solution for the system (1.3)-(1.4).
Considering Lemma 2.2, the following statement holds:

Definition 2.3. A solution to the system (1.3)-(1.4) is described as a func-
tion ω ∈ Ω such that

ω(7) =

ξ(7), if 7 ∈ [−d, 0],

ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds, if 7 ∈ I,

(2.11)

where W (7) ∈ C(I) and W (7) = 𭟋(7, ω7,W (7)) with W (0) = 0.

3 Existence results: finite delay

In this section, we systematically present and establish the results re-
garding the existence and uniqueness of solutions to the system (1.3)-(1.4).
The methodology employed involves the application of the Banach contrac-
tion principle [3] and Schauder’s theorem [24], complemented by the use of
Krasnoselskii’s fixed-point theorem [12, 22].

To apply the aforementioned fixed-point theorems, it is crucial to specify
the following conditions:

(A1) The function 𭟋 : I×C ×R → R is continuous and there exist M𭟋 > 0

and 0 < M̃𭟋 < 1 in a way that

|𭟋(7, ω1, ω2)−𭟋(7, ω1, ω2)| ≤ M𭟋∥ω1 − ω1∥C + M̃𭟋|ω2 − ω2|

for each 7 ∈ I, ω1, ω1 ∈ C, ω2, ω2 ∈ R.

(A2) The function h : I× C → R is continuous and there exists a constant
0 <Mh < 1 in a way that

|h(7, ω1)−h(7, ω2)| ≤ Mh∥ω1−ω2∥C , for any ω1, ω2 ∈ C, for a.e., 7 ∈ I.
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(A3) For any bounded set E ⊂ Ω, the set:{
7 7→ 𭟋

(
7, ω7,

(
CFDρ

0ω
)
(7)
)
: ω ∈ E

}
.

is equi-continuous in Ω.

Theorem 3.1. If 𭟋 and h are satisfy the conditions (A1)-(A2), and

C1 :=

(
Mh + (Aρ + BρT )

M𭟋

1− M̃𭟋

)
< 1, (3.1)

then there exists a unique solution to system (1.3)-(1.4) over the interval
[−d, T ].
Proof. Consider the operator Υ : Ω → Ω by

(Υω)(7) =

ξ(7), if 7 ∈ [−d, 0],

ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds, if 7 ∈ I,

(3.2)

where W (7) ∈ C(I) and W (7) = 𭟋(7, ω7,W (7)) with W (0) = 0.

Now, we show that ΥBQ ⊂ BQ. To do this, let 𭟋(·, 0, 0) = 0, M̃h =
|h(7, 0)| and let BQ = B(0, Q) = {ω ∈ Ω(I,R) : ∥ω∥Ω ≤ Q}, be the ball
centered at the origin with radius

Q > max

∥ξ∥C ,
|ξ(0)|+ M̃h

1−
(
Mh + (Aρ + BρT )

M𭟋
1−M̃𭟋

)
 .

For each 7 ∈ [−d, 0] and ω ∈ BQ, then |(Υω)(7)| ≤ ∥ξ∥C ≤ Q. For any
7 ∈ I, we have

|(Υω)(7)| =
∣∣∣∣ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds

∣∣∣∣
≤ |ξ(0)|+ |h(7, ω7)|+Aρ|W (7)|+ Bρ

∫
7

0
|W (s)|ds. (3.3)

Since

|W (7)| = |𭟋(7, ω7,W (7))|
≤ |𭟋(7, ω7,W (7))−𭟋(7, 0, 0)|+ |𭟋(7, 0, 0)|

≤ M𭟋∥ω7∥C + M̃𭟋|W (7)|

≤ M𭟋∥ω∥Ω + M̃𭟋|W (7)|

≤ M𭟋Q

1− M̃𭟋
,
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and

|h(7, ω7)| ≤ |h(7, ω7)− h(7, 0)|+ |h(7, 0)|

≤ Mh∥ω7∥C + M̃h

≤ Mh∥ω∥Ω + M̃h

≤ MhQ+ M̃h.

Then (3.3) becomes

|(Υω)(7)| ≤ |ξ(0)|+MhQ+ M̃h +Aρ
M𭟋Q

1− M̃𭟋
+ BρT

M𭟋Q

1− M̃𭟋

≤ |ξ(0)|+ M̃h +

(
Mh + (Aρ + BρT )

M𭟋

1− M̃𭟋

)
Q

≤ Q.

Hence
∥Υ(ω)∥Ω ≤ Q.

This proves that Υ transforms the ball BQ into itself. Next, for ω1, ω2 ∈
Ω and for 7 ∈ [−d, 0], we have

|(Υω1)(7)− (Υω2)(7)| = 0,

and for 7 ∈ I, we have

|(Υω1)(7)− (Υω2)(7)| ≤ |h(7, ω17)− h(7, ω27)|+Aρ|Wω1(7)−Wω2(7)|

+ Bρ

∫
7

0
|Wω1(s)−Wω2(s)|ds, (3.4)

where Wω1(7),Wω2(7) ∈ C(I,R) such that Wω1(7) = 𭟋(7, ω17 ,Wω1(7)) and
Wω2(7) = 𭟋(7, ω27 ,Wω2(7)). From (A1)-(A2), we have

|Wω1(7)−Wω2(7)| ≤ M𭟋∥ω17 − ω27∥C + M̃𭟋|Wω1(7)−Wω2(7)|

≤ M𭟋

1− M̃𭟋
∥ω1 − ω2∥Ω, (3.5)

and

|h(7, ω17)− h(7, ω27)| ≤ Mh∥ω17 − ω27∥C
≤ Mh∥ω1 − ω2∥Ω. (3.6)



A fractional neutral implicit delay differential system 194

Then (3.4) becomes

|(Υω1)(7)− (Υω2)(7)| ≤ Mh∥ω1 − ω2∥Ω +Aρ
M𭟋

1− M̃𭟋
∥ω1 − ω2∥Ω

+ BρT
M𭟋

1− M̃𭟋
∥ω1 − ω2∥Ω

≤

(
Mh + (Aρ + BρT )

M𭟋

1− M̃𭟋

)
∥ω1 − ω2∥Ω

≤ C1∥ω1 − ω2∥Ω. (3.7)

As a result, we have

∥Υ(ω1)−Υ(ω2)∥Ω ≤ C1∥ω1 − ω2∥Ω.

In light of the expression (3.1) and within the framework of Banach’s
fixed-point theorem [3], it is evident that the operator Υ has a unique fixed
point.

Remark 3.1. (i) In the case where h = 0 in 𭟋 from (1.3), and ac-
counting for the transition from Caputo-Fabrizio to Caputo fractional
derivatives, the system (1.3)-(1.4) with impulsive conditions, as ana-
lyzed in [14] under the framework of Theorem 3.3, represents a specific
instance that illustrates the principles outlined in Theorem 3.1.

(ii) When h = 0 in (1.3), the system (1.3)-(1.4) explored in [33], within the
context of Theorem 3.2 concerning Caputo-Fabrizio derivatives, serves
as a particular case encompassed by Theorem 3.1.

Next, utilizing Schauder’s FP theorem [24], we can establish the existence
of solutions for the system (1.3)-(1.4).

Theorem 3.2. Suppose that the conditions (A1)-(A3) hold with

C1 :=

(
Mh + (Aρ + BρT )

M𭟋

1− M̃𭟋

)
< 1. (3.8)

As a result, the structure (1.3)-(1.4) has at least one solution over the in-
terval [−d, T ].

Proof. Let us define the operator Υ as in (3.2). With reference to Theorem
3.1, we divide the proof of this theorem into three steps.
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Step 1: Υ is continuous
Let {ωn}n be a sequence in such a way that ωn → ω on BQ, where BQ

is same as defined in Theorem 3.1. For any 7 ∈ [−d, 0], then we sustain

|(Υωn)(7)− (Υω)(7)| = 0,

and for any 7 ∈ I, one has

|(Υωn)(7)− (Υω)(7)| ≤ |h(7, ωn7)− h(7, ω7)|+Aρ|Wn(7)−W (7)|

+ Bρ

∫
7

0
|Wn(s)−W (s)|ds,

whereWn(7),W (7) ∈ C(I) in a way thatWn(7) = 𭟋(7, ωn7,Wn(7)) and
W (7) = 𭟋(7, ω7,W (7)).

Due to ∥ωn − ω∥Ω → 0 as n → ∞ and the functions 𭟋, h,W and Wn

are continuous, by utilizing Lebesgue dominated convergence theorem, it
suggests

∥Υ(ωn)−Υ(ω)∥Ω → 0 as n→ ∞.

Consequently, the operator Υ is continuous.
Step 2: Υ(BQ) ⊂ BQ.

The proof of this step is already given in the first part of Theorem 3.1,
so we omit here.
Step 3: Υ(BQ) is equi-continuous.

Now, for any υ1, υ2 ∈ I with υ1 < υ2 and let ω ∈ BQ. Then, we get

|Υ(ω)(υ2)−Υ(ω)(υ1)| ≤ |h(υ2, ωυ2)− h(υ1, ωυ1)|

+

∣∣∣∣Bρ

∫ υ2

0
W (s)ds− Bρ

∫ υ1

0
W (s)ds

∣∣∣∣
≤ |h(υ2, ωυ2)− h(υ1, ωυ1)|+ Bρ

∫ υ2

υ1

|W (s)|ds

≤ |h(υ2, ωυ2)− h(υ1, ωυ1)|+ Bρ

(
M𭟋Q

1− M̃𭟋

)
(υ2 − υ1).

From the above, we see that if υ2 → υ1, then the right-hand side of
aforementioned equation goes to zero, so ∥(Υω)(υ2) − (Υω)(υ1)∥ → 0 as
υ2 → υ1. Also Υ(BQ) ⊂ BQ, therefore Υ is completely continuous, due to
Arzela-Ascoli theorem. Consequently, from Schauder’s FPT [24], Υ has at
least one fixed point.
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Remark 3.2. (i) In the case where h = 0 in 𭟋 from (1.3), and consid-
ering the transition from Caputo-Fabrizio to Caputo fractional deriva-
tives, the system (1.3)-(1.4) with impulsive conditions, as investigated
in [14] within the framework of Theorem 3.4, represents a particular
instance exemplifying the principles laid out in Theorem 3.1.

(ii) In the case where h = 0 in (1.3), the system (1.3)-(1.4) studied in
[33] under the purview of Theorem 3.3, dealing with CF derivatives,
constitutes a specific scenario covered by Theorem 3.1.

Now, by utilizing Krasnoselskii’s fixed-point theorem [22], we can con-
clusively establish the existence of solutions to the system (1.3)-(1.4).

Theorem 3.3. Suppose that the conditions (A1)-(A3) hold with

C2 :=

(
Mh +Aρ

M𭟋

1− M̃𭟋

)
< 1. (3.9)

As a result, the structure (1.3)-(1.4) has at least one solution over the in-
terval [−d, T ].

Proof. Let us define the operators denoted by (3.2) as follows:

(Υ1ω)(7) =

{
ξ(7), if 7 ∈ [−d, 0],
ξ(0) + h(7, ω7) +AρW (7) if 7 ∈ I,

and

(Υ2ω)(7) = Bρ

∫
7

0
W (s)ds, if 7 ∈ I,

where W (7) = 𭟋(7, ω7,W (7)) with W (0) = 0.
In view of Theorem 3.1, we easily prove that Υ1(ω) + Υ2(ω) ∈ BQ.

Subsequently, we establish the contraction property of Υ1. Given the conti-
nuity of 𭟋 and h, and considering ω1, ω2 ∈ BQ based on (3.5)-(3.7), for each
7 ∈ [−d, 0], we sustain

|(Υ1ω1)(7)− (Υ1ω2)(7)| = 0,

and for any 7 ∈ I, we sustain

|(Υ1ω1)(7)− (Υ1ω2)(7)| ≤ |h(7, ω17)− h(7, ω27)|+Aρ|Wω1(7)−Wω2(7)|,
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where Wω1(7) and Wω2(7) are same as defined in Theorem 3.1. Thus, we
have

∥Υ1ω1 −Υ1ω2∥Ω ≤

(
Mh +Aρ

M𭟋

1− M̃𭟋

)
∥ω1 − ω2∥Ω.

By using (3.9), Υ1 is a contraction. Next, we establish that Υ2 is com-
pletely continuous. Since the function 𭟋 is continuous, so the operator Υ2 is
also continuous (refer step 1 of Theorem 3.1). Also Υ2 is uniformly bounded
on BQ as

|(Υ2ω)(7)| ≤
∣∣∣∣Bρ

∫
7

0
W (s)ds

∣∣∣∣
≤ BρT

(
M𭟋Q

1− M̃𭟋

)
= A,

which suggest that ∥Υ2ω∥ ≤ A, demonstrating the uniform boundedness of
Υ2. To establish the compactness of the operator Υ2, we need to demon-
strate that Υ2 is equi-continuous. From Step 3 of Theorem 3.2, we notice
that the operator Υ2 is equi-continuous. Consequently, from KFPT [22], Υ
has at least one fixed point.

4 Stability analysis

In this section, we examine the stability aspects related to U-H and
G-U-H for the specified model (1.3)-(1.4).

Definition 4.1. The problem represented by equation (1.3) is deemed U-
H stable if, for any ε > 0, the following inequality holds under the given
conditions:∣∣CFDρ

0 [ω(7)− h(7, ω7)]−𭟋
(
7, ω7,

CFDρ
0 [ω(7)− h(7, ω7)]

)∣∣ ≤ ε ∀ 7 ∈ I.

In such a case, there exists a unique solution ω(7) accompanied by a constant
K, satisfying the condition:

|ω(7)− ω(7)| ≤ Kε ∀ 7 ∈ I.

Definition 4.2. The problem represented by equation (1.3)-(1.4) is deemed
G-U-H stable if there exists non-decreasing function ψ : (0, T ) → (0,∞)
such that

|ω(7)− ω(7)| ≤ Kψ(ε), ∀7 ∈ I

with ψ(0) = 0, ψ(T ) = 0.
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Remark 4.1. Assuming the presence of a function Φ(7), dependent on ω ∈
Ω, where Φ(0) = 0 and Φ(T ) = 0,

(1) |Φ(7)| ≤ ϵ, ∀ 7 ∈ I,

(2) CFDρ
0 [ω(7)− h(7, ω7)] = 𭟋

(
7, ω7,

CFDρ
0 [ω(7)− h(7, ω7)]

)
+Φ(7),

∀ 7 ∈ I.

Lemma 4.1. The solution of the presented model

CFDρ
0 [ω(7)− h(7, ω7)] = 𭟋

(
7, ω7,

CFDρ
0 [ω(7)− h(7, ω7)]

)
+Φ(7), 7 ∈ I,

(4.1)

ω(7) = ξ(7), 7 ∈ [−d, 0], d > 0 (4.2)

is

ω(7) =


ξ(7), if 7 ∈ [−d, 0],

ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds+AρΦ(7)

+Bρ

∫
7

0
Φ(s)ds, if 7 ∈ I,

(4.3)

where W (7) ∈ C(I) and W (7) = 𭟋(7, ω7,W (7)) with W (0) = 0.
Further, for each 7 ∈ I and ω ∈ BQ, we find∣∣∣∣∣ω(7)−

[
ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds

]∣∣∣∣∣ ≤ (Aρ + BρT )ε.

(4.4)

Theorem 4.1. According to Lemma 4.1, the solution to the model (1.3)-
(1.4) is stable in both U-H and G-U-H senses if

K =
(Aρ + BρT )

1−
(
Mh + (Aρ + BρT )

M𭟋
1−M̃𭟋

) < 1. (4.5)

Proof. Suppose ω(7) ∈ C(I) is any solution of (1.3)-(1.4) and ω(7) ∈ C(I)
is a unique solution of (1.3)-(1.4), then we need to consider for each 7 ∈ I
and ω ∈ BQ,

|ω(7)− ω(7)| =
∣∣∣∣ω(7)− [ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds

]∣∣∣∣ ,
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where W (7) = 𭟋(7, ω7,W (7)). Thus, we have

|ω(7)− ω(7)| =

∣∣∣∣∣ω(7)−
[
ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds

]
+

[
ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds

]
−
[
ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds

] ∣∣∣∣∣
≤
∣∣∣∣ω(7)− [ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds

]∣∣∣∣
+ |h(7, ω7)− h(7, ω7)|+Aρ|W (7)−W (7)|

+ Bρ

∫
7

0
|W (s)−W (s)|ds.

By utilizing (4.4) and assumptions (A1)-(A2), we sustain

|ω(7)− ω(7)| ≤ (Aρ + BρT )ε+

(
Mh + (Aρ + BρT )

M𭟋

1− M̃𭟋

)
∥ω − ω∥C .

Hence

∥ω − ω∥Ω ≤ (Aρ + BρT )ε+

(
Mh + (Aρ + BρT )

M𭟋

1− M̃𭟋

)
∥ω − ω∥Ω.

This implies that

∥ω − ω∥Ω ≤ (Aρ + BρT )ε

1−
(
Mh + (Aρ + BρT )

M𭟋
1−M̃𭟋

)
≤ Kε. (4.6)

Therefore, the solution is U-H stable. Furthermore, there exists a non-
decreasing function ψ ∈ C(I), then from (4.6), we have

∥ω − ω∥PC ≤ Kψ(ε),

with ψ(0) = ψ(T ) = 0. Thus, we conclude that the solution of (1.3)-(1.4) is
G-U-H.

Remark 4.2. For the case where h = 0 in 𭟋 of (1.3), and considering
the transition from Caputo-Fabrizio to Caputo fractional derivatives, the
system (1.3)-(1.4) with impulsive conditions, as explored in [14] under the
framework of Theorem 4.2, stands out as a particular case exemplifying the
principles laid out in Theorem 4.1.
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5 Existence results: infinite delay

To analyze a system with infinite delay, it is necessary to formulate the
phase space axioms. Consider the space denoted as (B, ∥ · ∥B), a semi-
normed linear space comprising functions that map the interval (−∞, T ] to
the real numbers R. These functions adhere to fundamental axioms derived
and modified from the principles initially proposed by Hale and Kato [26].

(C1) If ω : (−∞, T ] → R and ω0 = ξ(0) ∈ B, there exist positive constants
Θ,Θ, Θ̃ such that, for every 7 ∈ I, the subsequent inequalities hold:

(a) ω7 ∈ B,

(b) ∥ω7∥B ≤ Θ ∥ω0∥B +Θsupθ∈[0,7] |ω(θ)|,

(c) |ω(t)| ≤ Θ̃ ∥ω7∥B. Furthermore, we have |ξ(0)| ≤ Θ̃∥ξ∥B.

(C2) In the context of condition C1, the function ω(·), implies that ω7 is a
continuous function mapping to the space B over the interval I.

(C3) The completeness of the space s is assured.

Before describing the solution to the given system (1.5)-(1.6), we first
define the following Banach space:

Ω1 =
{
ω : (−∞, T ] → R, ω|(−∞,0] ∈ B, ω|I ∈ C(I)

}
.

In consideration of Lemma 2.2, the ensuing statement stands:

Definition 5.1. A solution to the system (1.5)-(1.6) is defined as a function
ω ∈ Ω1 such that

ω(7) =

ξ(7), if 7 ∈ (−∞, 0],

ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds, if 7 ∈ I,

(5.1)

where W (7) ∈ C(I) and W (7) = 𭟋(7, ω7,W (7)) with W (0) = 0.

To utilize the stated fixed-point theorems, it is crucial to specify the
subsequent conditions:

(A4) The function 𭟋 : I×B×R → R is continuous and there exist M𭟋1 > 0

and 0 < M̃𭟋1 < 1 in a way that

|𭟋(7, ω1, ω2)−𭟋(7, ω1, ω2)| ≤ M𭟋1∥ω1 − ω1∥B + M̃𭟋1 |ω2 − ω2|

for each 7 ∈ I, ω1, ω1 ∈ B, ω2, ω2 ∈ R.
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(A5) The function h : I×B → R is continuous and there exists a constant
0 <Mh1 < 1 in a way that

|h(7, ω1)−h(7, ω2)| ≤ Mh1∥ω1−ω2∥B, for any ω1, ω2 ∈ B, for a.e., 7 ∈ I.

(A6) For any bounded set E ⊂ Ω1, the set:{
7 7→ 𭟋

(
7, ω7,

(
CFDρ

0ω
)
(7)
)
: ω ∈ E

}
is equi-continuous in Ω1.

At this point, we are able to derive the outcomes of existence and unique-
ness for the system represented by equations (1.5)-(1.6) through the appli-
cation of Banach’s FP theorem.

Theorem 5.1. Let 𭟋 and h satisfy conditions (A4)-(A5). If the following
inequality holds:

C̃1 := Θ

(
Mh1 + (Aρ + BρT )

M𭟋1

1− M̃𭟋1

)
< 1, (5.2)

then the system (1.5)-(1.6) admits a unique solution on the interval (−∞, T ].

Proof. Consider the operator Υ̃ : Ω1 → Ω1 by

(Υ̃ω)(7) =

ξ(7), if 7 ∈ (−∞, 0],

ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds, if 7 ∈ I,

(5.3)

where W (7) ∈ C(I) and W (7) = 𭟋(7, ω7,W (7)) with W (0) = 0.
Consider the function u(·) : (−∞, T ] → R defined as follows:

u(7) =

{
ξ(7); for 7 ∈ (−∞, 0],

ξ(0); for 7 ∈ I.

Then u0 = ξ. For any υ ∈ C(I) satisfying υ(0) = 0, let υ be the function
described as follows:

υ(7) =

{
0; for 7 ∈ (−∞, 0],

υ(7); for 7 ∈ I.
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We assume that ω(·) fulfills the integral equation:

ω(7) = ξ(0) + h(7, ω7) +AρW (7) + Bρ

∫
7

0
W (s)ds.

We represent ω(·) as ω(7) = υ(7) + u(7) for 7 ∈ I. Consequently, it
follows that ω7 = υ7+u7 holds for all 7 ∈ I. Furthermore, the function υ(·)
satisfies the following condition:

υ(7) = h(7, υ7 + u7) +AρW (7) + Bρ

∫
7

0
W (s)ds,

where
W (7) = 𭟋 (7, υ7 + u7,W (7)) for 7 ∈ I.

Define Ω0 = {υ ∈ C(I) : υ0 = 0 ∈ B}. Let υ ∈ Ω0, then

∥υ∥T = ∥υ0∥B + sup
7∈I

|υ(7)| = sup
7∈I

|υ(7)|.

As a result, (Ω0, ∥ · ∥T ) is a Banach space. Next, Υ : Ω0 → Ω0 is defined by:

(Υυ)(7) = ξ(0) + h(7, υ7 + u7) +AρW (7) + Bρ

∫
7

0
W (s)ds. (5.4)

The operator Υ̃ possesses a fixed point denoted as Υ. Now, it is time to
demonstrate that Υ also has a fixed point.

We will show that the mapping Υ : Ω0 → Ω0 possesses contraction
properties. Let υ and υ′ be any elements of Ω0. For each 7 ∈ I, the
following inequality holds:

|(Υυ)(7)− (Υυ′)(7)| ≤ |h(7, υ7 + u7)− h(7, υ′
7
+ u7)|+Aρ|Wυ(7)−Wυ′(7)|

+ Bρ

∫
7

0
|Wυ(s)−Wυ′(s)|ds, (5.5)

Wυ(7),Wυ′(7) ∈ C(I,R) such that Wυ(7) = 𭟋 (7, υ7 + u7,Wυ(7)) and
Wυ′(7) = 𭟋

(
7, υ′7 + u7,Wυ′(7)

)
. From (A4)-(A5), we have

|Wυ(7)−Wυ′(7)| ≤ M𭟋1∥υ7 − υ′7∥B + M̃𭟋1 |Wυ(7)−Wυ′(7)|

=⇒ |Wυ(7)−Wυ′(7)| ≤ M𭟋1

1− M̃𭟋1

∥υ7 − υ′7∥B,

where

∥υ7 − υ′7∥B ≤ Θ∥υ0 − υ′0∥B +Θ sup
7∈[0,T ]

|υ(7)− υ′(7)| = Θ sup
7∈[0,T ]

|υ(7)− υ′(7)|,



V. Kavitha, R. Deepa, B.G. Priya, S. Sivasundaram, M.M. Arjunan 203

and

|h(7, υ7 + u7)− h(7, υ′
7
+ u7)| ≤ Mh1∥υ7 − υ′7∥B

≤ Mh1Θ sup
7∈[0,T ]

|υ(7)− υ′(7)|.

Then (5.5) becomes

|(Υυ)(7)− (Υυ′)(7)| ≤ Θ

(
Mh1 + (Aρ + BρT )

M𭟋1

1− M̃𭟋1

)
∥υ − υ′∥T .

Consequently, we have

∥(Υυ)− (Υυ′)∥T ≤ C̃1∥υ − υ′∥T .

In light of the expression (5.2) and in the framework of Banach’s FP
Theorem [3], it becomes evident that the operator Υ possesses a unique
fixed point.

Remark 5.1. In the case where h = 0 in (1.3), the system (1.5)-(1.6), as
studied in [33] under Theorem 4.2 concerning CF derivatives, represents a
special case encompassed by Theorem 5.1.

Next, utilizing Schauder’s FP theorem [24], we can establish the existence
of solutions for the system (1.5)-(1.6).

Theorem 5.2. Suppose that conditions (A4)-(A6) hold. Then the system
(1.5)-(1.6) has at least one solution over the interval (−∞, T ].

Proof. Let us define operator Υ as in (5.4). Furthermore, we can easily
establish the continuity and equicontinuity of the operator Υ by applying the
principles outlined in Theorem 3.2. To complete the proof of this theorem,
the following two steps must be established:
Step 1: Boundedness of the operator Υ.

Indeed, it is enough to show that there exists a positive constant Λ such
that for each υ ∈ BQ = {υ ∈ Ω0 : ∥υ∥T ≤ Q}, one has ∥Υυ∥T ≤ Λ. Thus
from (A4)-(A5), we have

|(Υυ)(7)| ≤ |ξ(0)|+ |h(7, υ7 + u7)|+Aρ|W (7)|+ Bρ

∫
7

0
|W (s)|ds, (5.6)
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where

|W (7)| ≤ |𭟋 (7, υ7 + u7,W (7))−𭟋(7, 0, 0)|+ |𭟋(7, 0, 0)|

≤ M𭟋1∥υ7 + u7∥B + M̃𭟋1 |W (7)| (∵ 𭟋(7, 0, 0) = 0)

=⇒ |W (7)| ≤ M𭟋1

1− M̃𭟋1

∥υ7 + u7∥B,

and

∥υ7 + u7∥B ≤ Θ∥υ0∥B +Θ sup
7∈[0,T ]

|υ(7)|+Θ∥u0∥B +Θ sup
7∈[0,T ]

|u(7)|

≤ ΘQ+Θ∥ξ∥B +Θ|ξ(0)|

≤ ΘQ+
(
Θ+ΘΘ̃

)
∥ξ∥B.

Furthermore

|h(7, υ7 + u7)| ≤ |h(7, υ7 + u7)− h(7, 0)|+ |h(7, 0)|

≤ Mh1∥υ7 + u7∥B + M̃h1 ,

where M̃h1 = sup
7∈I

|h(7, 0)|.

Thus (5.6) becomes

|(Υυ)(7)|

≤ |ξ(0)|+ |h(7, υ7 + u7)|+Aρ|W (7)|+ Bρ

∫
7

0
|W (s)|ds

≤ Θ̃∥ξ∥B +

(
Mh1 + (Aρ + BρT )

M𭟋1

1− M̃𭟋1

)
∥υ7 + u7∥B + M̃h1

≤ Θ̃∥ξ∥B +

(
Mh1 + (Aρ + BρT )

M𭟋1

1− M̃𭟋1

)(
ΘQ+

(
Θ+ΘΘ̃

)
∥ξ∥B

)
+ M̃h1

:= Λ.

Step 2: The set

S = {ω ∈ Ω0 : υ = νΥ(ω) for some ν ∈ (0, 1)}

is bounded.
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Let υ ∈ Ω0 and for any 7 ∈ I, we have

υ(7) = ν(Υω)(7) = ξ(0) + h(7, υ7 + u7) +AρW (7) + Bρ

∫
7

0
W (s)ds, (5.7)

where

|W (7)| ≤
M𭟋1

(
Θ∥υ∥T +

(
Θ+ΘΘ̃

)
∥ξ∥B

)
1− M̃𭟋1

:= µ.

Then (5.7) becomes

|υ(7)| ≤ |ξ(0)|+ |h(7, υ7 + u7)|+Aρ|W (7)|+ Bρ

∫
7

0
|W (s)|ds

≤ Θ̃∥ξ∥B +Mh1µ
′ + (Aρ + BρT )µ+ M̃h1

≤ µ,

where µ′ =
(
Θ∥υ∥T +

(
Θ+ΘΘ̃

)
∥ξ∥B

)
. Thus the set S is bounded. Con-

sequently, from Schauder’s FPT [24], Υ has at least one fixed point for the
system (1.5)-(1.6).

Remark 5.2. When h = 0 in (1.3), the system (1.5)-(1.6), as studied in
[33] under Theorem 4.3 concerning CF derivatives, represents a specific case
encompassed by Theorem 5.1.

Remark 5.3. Numerous researchers have explored the existence of solutions
for models similar to equations (1.3)-(1.6), involving conditions with or with-
out neutral, impulses, delays, implicitness, and the Caputo-Fabrizio (CF)
framework in Banach spaces [14, 29, 33, 34, 40]. For instance, Ren et al.
[40] investigated the existence of solutions for fractional integro-differential
equations with infinite delay under certain conditions. Similarly, [29] es-
tablished results on the existence and controllability of fractional neutral
integro-differential equations with state-dependent delay in Banach spaces.
In another study, the authors in [14] examined the existence, uniqueness,
and stability of implicit neutral fractional differential equations with impul-
sive and finite delay conditions in Banach spaces. More recently, Krim et
al. [34] focused on the existence of solutions for a system under CF deriva-
tives in Banach spaces, and further extended their work to various delay
types under CF derivatives [33]. Despite these advances, the specific sys-
tem described by equations (1.3)-(1.6) has not been thoroughly investigated
in the existing literature, which serves as the primary motivation for this
study. This work builds upon and generalizes the findings of earlier studies
[14, 33, 34].
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6 Applications

Example 6.1. Academic Example

Consider the subsequent CF fractional system(
CFD

1
4
0

)[
ω(7)−

(
7

1
4

2
+

1

9(1 + ∥ω7∥)

)]
=

7

1
4

2
+

1

16(1 + ∥ω7∥)
(6.1)

+
1

36

(
1 +

∣∣∣∣(CFD
1
4
0

)[
ω(7)−

(
7

1
4

2 + 1
9(1+∥ω7∥)

)]∣∣∣∣) , 7 ∈ [0, 2],

ω(7) = 1 + 7
2, 7 ∈ [−1, 0].

Set ρ =
1

4
, T = 2,Aρ =

3

4
,Bρ =

1

4
, N

(
1

4

)
=

8

7
, and

𭟋
(
7, ω7,

CFD
1
4
0 [ω(7)− h(7, ω7)]

)
=

7

1
4

2
+

1

16(1 + ∥ω7∥)

+
1

36

(
1 +

∣∣∣∣(CFD
1
4
0

)[
ω(7)−

(
7

1
4

2 + 1
9(1+∥ω7∥)

)]∣∣∣∣)
h(7, ω7) =

7

1
4

2
+

1

9(1 + ∥ω7∥)

are continuous for all 7 ∈ [0, 2]. Moreover, let u, u ∈ C; v, v ∈ R and 7 ∈ [0, 1].
Then one has

𭟋(7, u, v) =
7

1
4

2
+

1

16(1 + ∥u∥)
+

1

36(1 + |v|)
,

h(7, u) =
7

1
4

2
+

1

9(1 + ∥u∥)
.

Then, we have

|𭟋(7, u, v)−𭟋(7, u, v)| ≤ 1

16
∥u− u∥[−1,0] +

1

36
|v − v|.

Thus, assumption (A1) holds with M𭟋 =
1

16
and M̃𭟋 =

1

36
. We also have

|h(t, u)− h(t, u)| ≤ 1

9
∥u− u∥[−1,0].
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Thus assumption (A2) holds with Mh =
1

9
.

Furthermore[
Mh + (Aρ + BρT )

M𭟋

1− M̃𭟋

]
=

1

9
+ (1.25)

1
16

1− 1
36

= 0.19 < 1.

Therefore, all the conditions stipulated in Theorem 3.1 are fulfilled.
Hence, the system (6.1) has a unique solution on [−1, 2].

Example 6.2. Numerical Examples

To illustrate the proposed theory, two numerical examples are presented
in this section. To approximate the integration in (2.11), we employ the
Haar wavelet method, as described in Remark 6.1. Here is a rephrased
version of the remark with a more formal mathematical tone:

Remark 6.1. Let f(x) be a function defined over the interval [a, b]. The
numerical integration of f(x) using the Haar wavelet method is expressed as
follows [8]: ∫ b

a
f(x) dx =

b− a

2M

2M−1∑
k=0

f

(
a+ (b− a)

k + 0.5

2M

)
.

Example 6.3. Consider the Caputo-Fabrizio fractional-order neutral delay
shown below:

CFDρ
0 [ω(7)− ω(7− θ)] =

2ω(7− θ)

1 + [ω(7− θ)]9.65
, 7 ∈ [0, T ]. (6.2)

From the solution equation defined in (2.11), the solution trajectory for
the system (6.2) is displayed in Figure (1).

Example 6.4. Consider the following Caputo-Fabrizio fractional-order neu-
tral delay system

CFDρ
0 [ω(7)− ω(7− θ)] =

1− ω(7− θ)

1 + ω(7− θ)
, 7 ∈ [0, T ]. (6.3)

Figure (2) represents the numerical solution of the system (6.3) by using
the derived integral equation given in (2.11).
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Figure 1: The graph of the numerical solutions of Example (6.3) of various
fractional order with M = 10: (a) θ = 1;ω(7) = e7, 7 ∈ [−1, 0], T = 2; (b)
θ = 0.5, ω(7) = 1 + 7, 7 ∈ [−0.5, 0], T = 1.
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Figure 2: The graph of the numerical solutions of Example (6.4) of various
fractional order with M = 10: (a) θ = 1;ω(7) = 7

2, 7 ∈ [−1, 0], T = 2; (b)
θ = 0.5, ω(7) = 7

2, 7 ∈ [−0.5, 0], T = 1.

7 Conclusion

In recent years, Caputo and Fabrizio [16] introduced the CF operator,
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a novel fractional derivative approach characterized by an exponentially de-
caying kernel. This innovative concept has unlocked new avenues for re-
search, particularly in exploring the qualitative and quantitative behaviors
of various systems. Building on their pioneering work from [16], we applied
this operator to our system (1.3)-(1.6). Using Banach’s, Schaefer’s, and
Krasnoselskii’s fixed-point theorems, we successfully established Theorems
3.1-3.3 and 5.1-5.2 for cases involving finite and infinite delays, respectively.
Additionally, we demonstrated the stability of the system (1.3)-(1.4) in terms
of U-H and G-U-H stability as outlined in Theorem 4.1. These results pave
the way for future research, potentially applying similar fixed-point meth-
ods to demonstrate controllability with non-instantaneous impulses across
a range of models.
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