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Abstract

Let L2
a(U+) be the Bergman space of the upper half plane U+.

In this paper, we consider the integral operator H from L2(U+) into

L2(U+) defined by (Hf)(w) = f̃(w) =

∫
U+

f(s)|dw(s)|2dÃ(s), w ∈ U+,

where dw(s) =
1√
π

w + i

w − i

(−2i)Im w

(s+ w)2
and dÃ is the area measure on

U+. We refer the map H as the Berezin transformation defined on
L2(U+). We have derived various algebraic properties of the operator

and showed that ||H|| ≤ 3π

4
considered as an operator on L2

a(U+).
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1 Introduction

The Berezin transform was first introduced by F.A. Berezin [1] as a tool in
quantization [2]. It has since found applications in many areas of mathe-
matics and mathematical physics [3]. The Berezin transform was studied
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systematically [11], [13] for a number of reproducing kernel Hilbert spaces.
It has become an indispensable tool in the study of operators in function
spaces, including Toeplitz, Hankel and composition operators.

The Berezin transform is the analog of the Poisson transform in the
Bergman space theory. On D, the only measure left invariant by all Mobius
transformations z → eiθ z−a

1−āz , θ ∈ R, a ∈ D, is the pseudo-hyperbolic measure

dη(z) = dA(z)
(1−|z|2)2 . It turns out that the Berezin transform behaves well with

respect to invariant measure. Berezin exhibited an explicit formula for the
Berezin transform B on L2(D, dη) in terms of the Laplace-Beltrami operator

△h := (1− |z|2)2 ∂2

∂z∂z̄ on D.
In the setting of Fock spaces (or Segal-Bargmann spaces) and when

parametrized appropriately, the Berezin transform is nothing but the heat
transform [11]. This connection with the heat equation makes the Berezin
transform on Fock space particularly useful. The Lebesgue measure dz on
CN is (up to multiplication by a constant factor) the only measure invariant
with respect to the group of the rigid motion of CN . An explicit formula
for Berezin transform has been established by Berger and Coburn [4] on

L2(CN , dz). They showed that Bf = f̃ = e
△
2 f, where f̃ is the solution of the

heat equation with the initial condition f at the time 1
2 ,△ :=

∏N
j=1 4

∂2

∂zj∂z̄j

on CN . There are several natural and successful applications of the Berezin
transform in operator theory, but the Berezin transform can also be studied
as an operator itself.

The Berezin transform is a contractive linear operator on certain Lp

spaces provided they are taken with respect to an appropriate measure – the
measure which is intrinsic for the Riemannian geometry of the

domain namely, the space Lp(CN , dµ), where dµ(z) = 1
(2π)N

e−
|z|2
2 dz and

dz denotes the Lebesgue measure in CN , for all N ≥ 1 or in Lp(D, dA),
where dA(z) = 1

πdxdy, respectively. It is known [6] that the Berezin trans-
form is a contractive linear operator on the space L2(D, dη) and in the space
L2(C, dÂ), where dÂ is the Euclidean area measure on [11] C, ∥B∥ = 1.
Further, Englis [6] has shown that the norm of the Berezin transform on

the spaces Lp(D, dA), 1 < p <∞ is equal to
2p

√
p√

p2−1
and B is not a bounded

operator on L1(D, dA).
As an integral transform, one can certainly apply the Berezin transform

B iterately many times to a ‘reasonably good’ function. In particular, Bnf
is well-defined for any f ∈ L∞(D) and any positive integer n. Since for any
p, 1 < p < ∞, the Berezin transform B is a bounded linear operator on
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Lp(D, dA), then we can also consider Bnf for f ∈ Lp(D, dA), p > 1, and
n ≥ 1. A natural question one can ask at this point is the following: Is
there anything we can say about Bnf as n → ∞ ? This describes various
ergodicity properties of the Berezin transform [6]. In this paper, we shall
investigate the boundeness of the Berezin transformation on the Bergman
space L2

a(U+, dÃ), where U+ is the upper half plane. Notice that in this case
the domain is unbounded and does not have a rectifiable boundary. More-
over, the symmetry properties of the two domains D and U+ are different
(although analogous).

Let U+ = {z = x + iy ∈ C : Im z > 0} be the upper half plane in C,
and let dÃ = dxdy be the area measure on U+. Let L2(U+, dÃ) denote
the Hilbert space of complex valued, absolutely square integrable, Lebesgue
measurable functions on U+ with the inner product

⟨f, g⟩ =
∫
U+

f(s)g(s)dÃ(s),

and

||f ||2 =
(∫

U+

|f(s)|2dÃ(s)
) 1

2

.

Let L2
a(U+) be the closed subspace of L2(U+, dÃ) consisting of those func-

tions in L2
a(U+) that are analytic. The space L2

a(U+) is called Bergman
space of the upper half plane. The functions Kw(z) = − 1

π(w−z)2
, w ∈ U+,

z ∈ U+ are the reproducing kernels [10] for L2
a(U+). The Bergman (orthogo-

nal) projection P+ from L2(U+, dÃ) onto L2
a(U+) is given by

(P+f)(w) = ⟨f,Kw⟩. Let L∞(U+) be the space of all complex valued,
essentially bounded, Lebesgue measurable functions on U+. Define for
φ ∈ L∞(U+), ||φ||∞ = ess sups∈U+

|φ(s)|. The space L∞(U+) is a Banach
space with respect to the essential supremum norm. Let D := {z ∈ C :
|z| < 1} be the open unit disk and dA(z) be the Lebesgue area measure
on the open unit disk D normalized so that the measure of the disk D is 1.
In rectangular and polar coordinates, we have dA(z) = 1

πdxdy = 1
π rdrdθ.

Let L2
a(D) be the space of all analytic functions that are in L2(D, dA). The

space L2
a(D) is called the Bergman space of the disk D and is a Hilbert space

with respect to the inner product ⟨f, g⟩ =

∫
D
f(z)g(z)dA(z), f, g ∈ L2

a(D).

The sequence of functions en(z) =
√
n+ 1 zn, n = 0, 1, 2, · · · , z ∈ D form

an orthonormal basis for L2
a(D). The Bergman kernel or the reproducing
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kernel of D of L2
a(D) is given by K(z, w) = 1

(1−zw)2
and the normalized re-

producing kernels of L2
a(D) is given by kz(w) = 1−|z|2

(1−zw)2
. Let L∞(D) be

the space of all complex-valued, essentially bounded, Lebesgue measurable
functions on D. Let L(L2

a(D)) be the space of all bounded linear operators
from L2

a(D) into itself. For f ∈ L1(D, dA), the Berezin transform of f is

defined by f̃(w) = ⟨fkw, kw⟩ =
∫
D

(1− |w|2)2

|1− wz|4
f(z)dA(z), w ∈ D. Notice that

kw ∈ L∞(D) for all w ∈ D, so the definition makes sense.

Define M : U+ → D by M(s) =
i− s

i+ s
= z. Then M is one-to-one, onto

and M−1 : D → U+ is given by M−1(z) = i
1− z

1 + z
. Further

M
′
(s) =

−2i

(i+ s)2
and (M−1)

′
(z) =

−2i

(1 + z)2
. Let W : L2

a(D) → L2
a(U+)

be defined by (Wg)(s) = g(Ms) (2i)√
π(i+s)2

. The mapW is one-to-one and onto.

Hence W−1 exists and W−1 : L2
a(U+) → L2

a(D) is given by

(W−1G)(z) = (2i)
√
πG(M−1(z))

1

(1 + z)2
.

The organization of the paper is as follows. In section 2, we introduce
certain elementary functions dw(s), Dw(s), D(s, w) which will be be used in
defining the integral operator H. In section 3, we derive certain algebraic
properties of the transformation H. In section 4, we establish that the
operator H is not a bounded operator on L1(U+, dÃ). Further, we prove

that the integral operator D given by (Df)(s) =

∫
U+

f(w)|dw(s)|2dÃ(w),

s ∈ U+ is a contraction on L1(U+, dÃ) which maps L∞(U+) boundedly into
Lp(U+, dÃ) for 1 ≤ p < ∞. In section 5, we derive certain asymptotic
properties of various related integral operators, using which we shall find

the norm of H. In section 6, we establish that ||H|| = 3π

4
and the map

L given by Lf(w) =
1

4

∫
U+

f(s)|dw(s)|2dÃ(s), w ∈ U+, f ∈ L2(U+) is a

strict contraction. Related maps are also considered in [12] and [7]. Here
we consider H ∈ L(L2(U+, dÃ)). Thus it follows from Theorem 6.1 that
||H|| ≤ 3π

4 if it considered on the Bergman space L2
a(U+).
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2 Preliminaries

In this section, we introduce certain elementary functions dw(s), Dw(s), D(s, w)
which will be used in defining the integral operator H.

For a ∈ D, define the functions τa(s) from U+ onto U+ given by

τa(s) = (c−1)+sd
(1+c)s−d , where a = c + id ∈ D and s ∈ U+. It is not difficult

to see that τa(s) are automorphisms of the upper half plane U+. Fur-

ther τ
′
a(s) =

1− |a|2

[(1 + c)s− d]2
. Further for s, w ∈ U+, define the elementary

functions dw(s) =
1√
π

w + i

w − i

(−2i)Im w

(s+ w)2
. If w = i

1− a

1 + a
∈ U+, then a ∈ D

and a =
i− w

i+ w
= Mw. That is, M−1a = w. Define D(s, w) = Dw(s) =

1
π
(1+a)2

(i+s)2
1

(1−aMs)2
. Lemma 2.1 describes the relation between these elemen-

tary functions.

Lemma 2.1. Let s, w ∈ U+. The following relations hold:

(i) (dw(−w))2 = D(w,w).

(ii) |dw(s)| ||Dw|| = |Dw(s)|.
Proof. An easy calculation shows that

dw(−w) =
1√
π

w + i

w − i

(−2i)(Im w)

(−w + w)2

=
(−2i)√

π

M−1a+ i

M−1a− i

Im w

(w − w)2

=
(−2i)√

π

i1−a
1+a + i(
i1−a
1+a

)
− i

w − w

(2i)(w − w)2

= − 1√
π

i
[
1−a
1+a + 1

]
[−i1−a

1+a − i]

1

w − w

=
1√
π

2

1 + a

1 + a

2

1

i1−a
1+a + i1−a

1+a

=
1√
π

1 + a

(1 + a)

(1 + a)(1 + a)

i[(1− a)(1 + a) + (1− a)(1 + a)]

=
1

i
√
π

(1 + a)2

[1 + a− a− |a|2 + 1 + a− a− |a|2]

=
1

i
√
π

(1 + a)2

2(1− |a|2)
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=
1

(2i)
√
π

(1 + a)2

(1− |a|2)
.

Now

dw(s)dw(−w) =
(−2i)√

π

w + i

w − i

Im w

(s+ w)2
1

(2i)
√
π

(1 + a)2

1− |a|2

=
(−2i)√

π

(
i1−a
1+a + i

−i1−a
1+a − i

) (
w−w
2i

)
(s+ i1−a

1+a)
2

1

(2i)
√
π

(1 + a)2

1− |a|2

=
(−2i)√

π

(
1−a
1+a + 1

)
−
(
1−a
1+a + 1

)
[(
i1−a
1+a

)
−
(
−i1−a

1+a

)]
(1 + a)2

(2i)[s(1 + a) + i(1− a)]2
1

(2i)
√
π

(1 + a)2

1− |a|2

=
1

(2i)π

(
1−a+1+a

1+a
1−a+1+a

1+a

)
i
[
1−a
1+a + 1−a

1+a

]
[s(1 + a) + i(1− a)]2

(1 + a)2

1− |a|2
(1 + a)2

=
1

2π

1 + a

1 + a

(1 + a)2

(1− |a|2)
2(1− |a|2)

(1 + a)(1 + a)

(1 + a)2

[s(1 + a) + i(1− a)]2

=
1

π

(
1 + a

1 + a

)2 (1 + a)2

[i+ s+ a(s− i)]2

=
1

π

(
1 + a

1 + a

)2 (1 + a)2

[i+ s− a(i− s)]2

=
1

π

(
1 + a

1 + a

)2 (1 + a)2

(i+ s)2
[
1− a

(
i−s
i+s

)]2
=

1

π

(1 + a)2

(i+ s)2
1

(1− aMs)2

= D(s, w)

= Dw(s).

Hence

dw(s) =
D(s, w)

dw(−w)
and (dw(−w))2 = D(w,w).

This proves (i). Now to prove (ii), notice that

||Dw||2 = ⟨Dw, Dw⟩

=

∫
U+

|Dw(s)|2dÃ(s)

=

∫
U+

|D(s, w)|2dÃ(s)
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=

∫
U+

|dw(−w)|2|dw(s)|2dÃ(s)

= |dw(−w)|2
∫
U+

|dw(s)|2dÃ(s)

= |dw(−w)|2||dw||22
= |dw(−w)|2 Since ||dw||2 = 1.

Thus ||Dw|| = |dw(−w)| and |dw(s)| ||Dw|| = |Dw(s)|.

Lemma 2.2. Let l = 1+ c, where c ∈
(
0, 12
)
and θc(w) =

(Im w)
c−1
2

(i+ w)l
. Then

||θc||2 ∼
√
π

c
as c→ 0+.

Proof. The proof is straightforward.

3 The Berezin transformation

Let w ∈ U+ and Mw = a, a ∈ D. For f ∈ L1(U+, dÃ), define (Hf)(w) =

f̃(w) =

∫
U+

f(s)|dw(s)|2dÃ(s), w ∈ U+, where dw(s) =
1√
π

w + i

w − i

(−2i)Im w

(s+ w)2
.

Notice that dw ∈ L∞(U+) for all w ∈ U+. Let D(s, w) = Dw(s) =
1
π

(1+a)2

(1−aMs)2
1

(i+s)2
and dµ(w) = |D(w,w)|dÃ(w), w ∈ U+. In the sequel we

shall refer the map H as the Berezin map on L2
a(U+) for obvious reason. It

is defined in the same way as the Berezin transformation defined on L2
a(D),

the Bergman space of the disk D [13]. In this section we derive certain
algebraic properties of the transformation H.

Theorem 3.1. Let f ∈ L1(U+, dÃ). The following hold:

(i) If f is bounded, then so is Hf = f̃ and ||f̃ ||∞ ≤ ||f ||∞. In other
words, H is a contraction in L∞(U+).

(ii) The norm of H on L∞(U+, dÃ), is equal to 1.

(iii) If f ≥ 0, then f̃ ≥ 0; if f ≥ g, then f̃ ≥ g̃.

(iv) The mapping H : f → f̃ is a contractive linear operator on each of the
spaces Lp(U+, dµ(z)), 1 ≤ p ≤ ∞, where dµ(w) = |D(w,w)|dÃ(w).

(v) For arbitrary f ∈ L1(U+, dÃ), f̃(w) =
1
π

∫
U+

(f◦τa◦M)(s)dÃ(s), where

a =Mw.
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Proof. (i) For proof of (i), assume f ∈ L∞(U+). Then

|f̃(w)| = ⟨fdw, dw⟩ ≤ ||fdw||2||dw||2 ≤ ||f ||∞||dw||22 = ||f ||∞.

(ii) Since f = f̃ when f is a constant function, hence the norm of H on
L∞(U+, dÃ) is equal to 1.

(iii) The operator H is an integral operator with positive kernel. Thus if
f ≥ 0, then f̃ ≥ 0. If f ≥ g, let h = f − g. Then h ≥ 0 and therefore
h̃ ≥ 0. Hence f̃ ≥ g̃.

(iv) Since L1(U+, dµ) ⊂ L1(U+, dÃ), the operator H is defined on the
former space, and∣∣f̃(w)| = |

∫
U+

f(s)|dw(s)
∣∣2dÃ(s)| ≤ H(|f |)(s).

Hence since Dw(s) =
−1
2πi

(1+a)2

(1−aMs)2
M

′
(s), therefore∫

U+

|f̃(w)||D(w,w)|dÃ(w)

≤
∫
U+

(∫
U+

|f(s)||dw(s)|2dÃ(s)
)
|D(w,w)|dÃ(w)

=

∫
U+

|f(s)|
∫
U+

|Dw(s)|2dÃ(w)dÃ(s)

=

∫
U+

|f(s)|⟨Dw, Dw⟩dÃ(s)

=

∫
U+

|f(s)||D(s, s)|dÃ(s),

the change of order of integration being justified by the positivity of
the integrand. It thus follows that H is a contraction on L1(U+, dµ).
The same is true for L∞(U+), and so the result follows from the
Marcinkiewicz interpolation theorem [8].

(v) f ∈ L1(U+, dÃ) and let a =Mw ∈ D. Then

f̃(w) =

∫
U+

f(s)|dw(s)|2dÃ(s)

=

∫
U+

(f ◦ τa(s))|dw(τa(s))|2|la(s)|2dÃ(s)

=

∫
U+

(f ◦ τa(s))|Vadw(s)|2dÃ(s)
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=

∫
U+

(f ◦ τa(s))|
(−1)√
π
M

′
(s)|2dÃ(s)

=

∫
D
(f ◦ τa ◦M−1)(z)|(−1)√

π
(M

′ ◦M−1)(z)|2|(M−1)
′
(z)|2dÃ(z)

=
1

π

∫
D
(f ◦ τa ◦M−1)(z)dÃ(z)

=

∫
D
(f ◦ τa ◦M−1)(z)dA(z).

4 Boundedness of the Berezin map

In this section we establish that the operator H is not a bounded operator
on L1(U+, dÃ). Further, we prove that the integral operator D given by

(Df)(s) =

∫
U+

f(w)|dw(s)|2dÃ(w), s ∈ U+ is a contraction on L1(U+, dÃ)

which maps L∞(U+) boundedly into Lp(U+, dÃ) for 1 ≤ p <∞.

Proposition 4.1. The operator H is not a bounded operator on L1(U+, dÃ).

Proof. If it were, its adjoint Hd ≡ D, where

(Df)(s) =
∫
U+

f(w)|dw(s)|2dÃ(w), s ∈ U+, (1)

would be a bounded operator on L∞(U+). Let f ∈ L∞(U+). Now if z =Ms
and a =Mw, then

(Df)(s) =

∫
U+

f(w)|dw(s)|2dÃ(w)

=

∫
U+

f(w)|Wka(s)|2dÃ(w)

=
1

π

∫
U+

f(w)|ka(Ms)|2|M ′
(s)|2dÃ(w)

=
|M ′

(s)|2

π

∫
D
(f ◦M−1)(a)|ka(z)|2dÃ(M−1a)

= |M ′
(s)|2

∫
D
(f ◦M−1)(a)|ka(z)|2|(M−1)

′
(a)|2dA(a).
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Hence

(D1)(s) =

∫
U+

|dw(s)|2dÃ(w)

= |M ′
(s)|2

∫
D
|ka(z)|2|(M−1)

′
(a)|2dA(a)

≤ ||M ′ ||4∞
∫
D
|ka(z)|2dA(a)

= 24
∫
D
|ka(z)|2dA(a).

Now ∫
D
|ka(z)|2dA(a) =

∫
D

(1− |a|2)2

|1− az|4
dA(a)

=

∫ 1

0
(1− r2)2

1

2π

∫ 2π

0

1

|1− zreit|4
dt 2r dr

=

∫ 1

0
(1− r2)2

∞∑
n=0

(n+ 1)2r2n|z|2n 2r dr.

Since ∫ 2π

0

1

|1− zreit|4
dt =

1 + |z|2r2

(1− |z|2r2)3

=

∞∑
n=0

(n+ 1)2r2n|z|2n,

for z ∈ D and r ∈ (0, 1). Thus

|(D1)(s)| ≤ 24
∫ 1

0

∞∑
n=0

(n+ 1)2(1− t)2tn|z|2ndt

≤ 24
∞∑
n=0

2(n+ 1)

(n+ 2)(n+ 3)
|z|2n,

where s = M−1z. As |z| → 1, this expression behaves (asymptotically) like
−24 log(1 − |z|2), hence D1 /∈ L∞(U+), so D ≡ Hd cannot be a bounded
operator on L∞(U+).

Lemma 4.1. The integral operator D given by (1) is a contraction on
L1(U+, dÃ) which maps L∞(U+) boundedly into Lp(U+, dÃ) for 1 ≤ p <∞.
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Proof. For arbitrary f ∈ L1(U+, dÃ), by Fubini’s theorem [9] it follows that∫
U+

|(Df)(s)|dÃ(s) ≤
∫
U+

∫
U+

|dw(s)|2|f(w)|dÃ(w)dÃ(s)

=

∫
U+

|f(w)|
∫
U+

|dw(s)|2dÃ(s)dÃ(w)

=

∫
U+

|f(w)|⟨dw, dw⟩dÃ(w)

=

∫
U+

|f(w)|dÃ(w),

so D is a contraction on L1(U+, dÃ). If f ∈ L∞(U+), then

|(Df)(s)| ≤ ||f ||∞
∫
U+

|dw(s)|2dÃ(w) = ||f ||∞|(D1)(s)|.

Hence, to prove the second assertion of the lemma, it suffices to check that
D1 belongs to Lp(U+, dÃ) for each p ∈ [1,∞). We have already observed
that (D1)(s) behaves like −24 log(1 − |Ms|2) as |Ms| → 1, so it is enough
to show that log(1− |z|2) ∈ Lp(D, dA) for all p ∈ [1,∞). Now,∫
D
| log(1 − |z|2)|pdA(z) =

∫ 1

0
| log(1 − r2)|p2rdr =

∫ 1

0
| log(1 − t)|pdt =∫ 1

0
| log t|pdt, and, changing the varriable to y = − log t, this reduces to∫ ∞

0
ype−ydy = Γ(p+ 1) <∞.

5 Asymptotic estimates

In this section, we derive certain asymptotic properties of various related
integral operators, using which we shall find the norm of H.

Theorem 5.1. Let l = 1 + c, where c ∈ (0, 1). For fixed r > 0, let ψc(w) =∫ ∞

r

y2+
c−1
2

(y + Im w)3

(
1

(2iy + i+ w)l
− 1

(i+ w)l

)
dy. Then lim

c→0

√
c ||ψc||2 = 0.

Proof. Since Im w > 0, we obtain |2iy+ i+w| ≥ |i+w| and hence |ψc(w)| ≤
2

|i+ w|l

∫ ∞

r

y2+
c−1
2

(y + Im w)3
dy =

2

|i+ w|l
(Im w)

c−1
2 Fc

( r

Im w

)
, where Fc(δ) =
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∫ ∞

δ

x2+
c−1
2

(1 + x)3
dx. Thus we have

||ψc||22 =

∫
U+

|ψc(w)|2dÃ(s)

≤ 4

∫
U+

(Im w)c−1

|i+ w|2(1+c)
F 2
c

( r

Im w

)
dÃ(w)

= 4

∫ ∞

0
γc−1F 2

c

(
r

γ

)
dγ

∫ ∞

−∞

dx

(x2 + (γ + 1)2)1+c

= 8

∫ ∞

0

γc−1

(γ + 1)1+2c
F 2
c

(
r

γ

)
dγ

∫ ∞

0

dl

(1 + l2)1+c

≤ 8π

2

∫ ∞

0

γc−1

(γ + 1)1+2c
F 2
c

(
r

γ

)
dγ

= 4π

∫ ∞

0

γc−1

(γ + 1)1+2c
F 2
c

(
r

γ

)
dγ

= 4πrc
∫ ∞

0

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ.

We shall now show that

lim
c→0

c

∫ ∞

0

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ = 0.

Notice that

Fc(ρ) ≤
∫ ∞

0

x2+
c−1
2

(1 + x)3
dx

= B

(
3 +

c− 1

2
,
1− c

2

)
≤ δ

for all c ∈ (0, 12), where δ does not depend on c ∈ (0, 12) and B(., .) is the
Euler’s Beta function. Hence we get the inequality

c

∫ 1

0

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ ≤ δ2c

∫ 1

0

ρc

(r + ρ)1+2c
dρ.

Thus

lim
c→0

c

∫ 1

0

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ = 0.

We shall now show that

lim
c→0

∫ ∞

1

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ = 0.
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If ρ ≥ 1, then, for 0 < c < 1
2 , we have

Fc(ρ) =

∫ ∞

ρ

x2+
c−1
2

(1 + x)3
dx ≤

∫ ∞

ρ

x2−
1
4

(1 + x)3
dx

≤
∫ ∞

1

x2−
1
4

(1 + x)3
dx = R

and for a given µ > 0 there exists ρ0 > 1 such that

∫ ∞

ρ0

x2−
1
4

(1 + x)3
dx ≤ µ

2
.

Consequently, if ρ > ρ0, then we obtain Fc(ρ) <
µ
2 for every c ∈

(
0, 12
)
.

Thus

c

∫ ∞

1

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ = c

∫ ρ0

1

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ+ c

∫ ∞

ρ0

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ

< cR2

∫ ρ0

1

ρc

(r + ρ)1+2c
dρ+ c

µ

2

∫ ∞

ρ0

ρc

(r + ρ)1+2c
dρ

< cR2

∫ ρ0

1

ρc

(r + ρ)1+2c
dρ+ c

µ

2

∫ ∞

0

ρc

(r + ρ)1+2c
dρ

= cR2

∫ ρ0

1

ρc

(r + ρ)1+2c
dρ+ c

µ

2
r−cΓ(c)Γ(1 + c)

Γ(1 + 2c)

= cR2

∫ ρ0

1

ρc

(r + ρ)1+2c
dρ+

µ

2
r−c Γ

2(1 + c)

Γ(1 + 2c)
→ µ

2
,

when c → 0. It follows that for µ > 0 there exists a ϵ ∈
(
0, 12
)
such that if

c ∈ (0, ϵ), then

c

∫ ∞

1

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ < µ.

Hence

lim
c→0+

c

∫ ∞

1

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ = 0.

Further since

lim
c→0

c

∫ 1

0

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ = 0,

we obtain

lim
c→0

c

∫ ∞

0

ρc

(r + ρ)1+2c
F 2
c (ρ)dρ = 0.
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Theorem 5.2. Let Ac(w) =

∫ ∞

0

y2+
c−1
2

(y + Im w)3

(
1

(2iy + i+ w)l
− 1

(i+ w)l

)
dy,

where l = 1 + c, 0 < c < 1
2 . Then lim

c→0

||Ac||2
||θc||2

= 0.

Proof. From Lemma 2.2, it follows that ||θc||2 ∼
(
π
c

) 1
2 as c→ 0. Hence it is

enough to prove that lim
c→0

c
1
2 ||Ac||2 = 0. Let f(t) = (2ity+i+w)−l, 0 ≤ t ≤ 1.

Then since |f(1)−f(0)| ≤
∫ 1

0
|f ′

(t)|dt ≤ 2yl

∫ 1

0

dt

|2ity + i+ w|l+1
, it follows

that
∣∣ 1

(2iy + i+ w)l
− 1

(i+ w)l
∣∣ ≤ 2yl

|i+ w|l
< 3

y

|i+ w|l
as y, t, c are positive

and c ∈
(
0, 12
)
. Now there exists a constant C such that B

(
3 + c−1

2 , 1−c
2

)
≤

C, for every c ∈
(
0, 12
)
. Since c

1
2 ||θc||2 →

√
π as c → 0, there exists a

constant N0 independent of C such that
√
c||θc||2 ≤ N0 for every c ∈

(
0, 12
)
.

Let µ > 0 be arbitrary and l0 =
2µ

12CN0
and

Gc(w) =

∫ l0

0

y2+
c−1
2

(y + Im w)3

(
1

(2iy + i+ w)l
− 1

(i+ w)l

)
dy.

Thus it follows that

|Gc(w)| ≤ 3
1

|i+ w|l

∫ l0

0

y2+
c−1
2 y

(y + Im w)3
dy

≤ 3l0
1

|i+ w|l

∫ ∞

0

y2+
c−1
2

(y + Im w)3
dy

< 3l0
1

|i+ w|l

∫ ∞

0

y2+
c−1
2

(y + Im w)3
dy

= 3l0
1

|i+ w|l
(Im w)

c−1
2 B

(
3 +

c− 1

2
,
1− c

2

)
< 3l0C|θc(w)|.

Hence we obtain
||Gc||2 ≤ 3l0C||θc||2.

Thus we obtain that for every c ∈
(
0, 12
)
, C

1
2 ||Gc||2 < µ

2 . Now consider the
function

Θc(w) =

∫ ∞

l0

y2+
c−1
2

(y + Im w)3

(
1

(2iy + i+ w)l
− 1

(i+ w)l

)
dy.
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From Theorem 5.1, it follows that lim
c→0

c
1
2 ||Θc|| = 0. This implies that there

exists a ϵ ∈
(
0, 12
)
such that if c ∈ (0, ϵ), then C

1
2 ||Θc||2 < µ

2 .

Since Ac = Gc + Θc for c ∈ (0, ϵ), we obtain that C
1
2 ||Ac||2 < µ. That

is, C
1
2 ||Ac||2 → 0 as c→ 0. The lemma follows.

Theorem 5.3. Let l = 1+c, c ∈
(
0, 12
)
and Φc(w) =

∫ ∞

0

y2+
c−1
2

(y + Im w)3
dy

(2iy + i+ w)l
.

Then lim
c→0

||Φc||2
||θc||2

=
Γ(3− 1

2)Γ(
1
2)

Γ(3)
=

Γ(21
2)Γ(

1
2)

Γ(3)
.

Proof. Since

|Φc(w)| =

∫ ∞

0

y2+
c−1
2

(y + Im w)3
dy

|i+ w|l

=
(Im w)

c−1
2

|i+ w|l
B

(
3 +

c− 1

2
,
1− c

2

)
,

we obtain

||Φc||2 ≤ ||θc||2 =
Γ(3 + c−1

2 )Γ(1−c
2 )

Γ(3)

and hence

limc→0
||Φc||2
||θc||2

≤
Γ(3− 1

2)Γ(
1
2)

Γ(3)
.

Since Φc(w) = θc(w)
Γ(3 + c−1

2 )Γ(1−c
2 )

Γ(3)
+Ac(w) we conclude that

||Φc||2 ≥ ||θc||2
Γ(3 + c−1

2 )Γ(1−c
2 )

Γ(3)
− ||Ac||2.

That is,
||Φc||2
||θc||2

≥
Γ(3 + c−1

2 )Γ(1−c
2 )

Γ(3)
− ||Ac||2

||θc||2
.

From Theorem 5.2, it follows that

limc→0

||Φc||2
||θc||2

≥
Γ(3− 1

2)Γ(
1
2)

Γ(3)
.

Hence the Theorem follows.
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Theorem 5.4. Let l = 1 + c, where c ∈
(
0, 12
)
, n ∈ N ∪ {0} and

Ξc
m(w) =

∫ ∞

0

y2n+
c−1
2

(y + Im w)n+1+m

dy

(2iy + i+ w)n+l−m
. Then lim

c→0

||Ξc
m||2

||θc||2
= 0.

Proof. From Theorem 5.1, it follows that ||θc|| ∼
√
π

c
as c → 0. Hence it

is enough to prove that for m = 0, 1, · · · , n − 1, we have lim
c→0

c
1
2 ||Ξc

m||2 = 0.

Thus it is sufficient to show that there exists a constant K independent of
c such that ||Ξc

m||2 ≤ K for every c ∈
(
0, 12
)
. Since

||Ξc
m||2 ≤

∫
U+

dÃ(w)

∣∣∣∣∣
∫ ∞

0

y2n+
c−1
2

(y + Im w)3
dy

(2iy + y + w)n+l−m

∣∣∣∣∣
2
 1

2

by applying Minkowski’s integral inequality we get

||Ξc
m||2 ≤

∫ ∞

0
y2n+

c−1
2 Z(y)

1
2dy,

where Z(y) =

∫
U+

dÃ(w)

(y + Im w)(n+1+m)2|2iy + i+ w|2(n+l−m)
. A straightfor-

ward calculation gives

Z(y) =

∫ ∞

0

dγ

(y + γ)2(n+1+m)(2y + 1 + γ)2(n+l−m)−1

∫ ∞

−∞

dt

(1 + t2)n+l−m

≤ µ0X(y),

where µ0 =

∫ ∞

−∞

dt

(1 + t2)
3
2

andX(y) =

∫ ∞

0

dγ

(y + γ)2(n+1+m)(2y + 1 + γ)2(n+l−m)−1
.

If y ∈ (0, 1), we have

X(y) =

∫ 1

0
. dy +

∫ ∞

1
. dy ≤

∫ 1

0

dγ

(y + γ)2(n+1+m)
+

∫ ∞

1

dγ

(γ)2(n+1+m)(γ)2(n+l−m)−1

≤ τn,my
1−2(n+1+m),

where τn,m is a constant which does not depend on y and c.
If y ≥ 1, then

X(y) ≤
∫ ∞

0

dγ

(y + γ)2(n+1+m)(y + γ)2(n+l−m)−1

=
1

y2(2n+1)+2c

∫ ∞

0

dγ

(1 + ρ)2(2n+1)+2c+1

≤ βn

y2(2n+1)+2c
,
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where βn does not depend on y and c. Then

Z(y) ≤ µ0X(y) ≤

{
µ0τn,my

1−2(n+1+m), y ∈ (0, 1)

µ0βny
−2(2n+1)−2c, y ≥ 1 .

That is,

Z(y)
1
2 ≤

{
(µ0τn,m)

1
2 y

1
2
−n−m−1, y ∈ (0, 1)

(µ0βn)
1
2 y−(2n+1)−c, y ≥ 1 .

Thus we obtain

||Ξc
m||2 ≤

∫ ∞

0
y2n+

c−1
2 (Z(y))

1
2dy

≤ (µ0τn,m)
1
2

1

n−m+ c
2

+ (Q0βn)
1
2

2

1 + c
= Rn,m(c) (let).

Now for m = 0, 1, 2, · · · , n − 1, the function c → Rn,m(c) is bounded on
(0, 12) and hence ||Ξc

m||2 ≤ K where K = sup
c∈(0, 1

2
)

Rn,m(c).

6 Norm of the Berezin transformation

Let H be a Hilbert space. Let L(H) be the set of all bounded linear oper-
ators from the Hilbert space H into itself. In this section we establish that

||H|| =
3π

4
and the map L given by Lf(w) =

1

4

∫
U+

f(s)|dw(s)|2dÃ(s),

w ∈ U+, f ∈ L2(U+) is a strict contraction. Related maps are also consid-
ered in [12] and [7]. Here we consider H ∈ L(L2(U+, dÃ)). Thus it follows

from Theorem 6.1 that ||H|| ≤ 3π

4
if it is considered on the Bergman space

L2
a(U+).

Theorem 6.1. Let Lf(w) =
1

4

∫
U+

f(s)|dw(s)|2dÃ(s), w ∈ U+, f ∈ L2(U+).

Then ||L|| = 3π

16
< 1 and L is a strict contraction. Further ||H|| = 3π

4
.

Proof. Let w ∈ U+. Notice that Lf(w) =
1

4

∫
U+

f(s)|dw(s)|2dÃ(s)

=
4

4

∫
U+

f(s)
1

π

(Im w)2

|s+ w|4
dÃ(s) =

1

π

∫
U+

f(s)
(Im w)2

|s+ w|4
dÃ(s). We shall show

that ||L|| = 3π

16
< 1. We shall establish this using Lemma 2.2, Theorem 5.3
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and Theorem 5.4. Define E on L2(U+) by Eg(z) =
12

π

∫
U+

(Im ξ)2

|ξ − z|4
g(ξ)dÃ(ξ).

We shall show that the operator E is bounded on L2(U+). Notice that

Eθc(w) =
12

π

∫ ∞

0
y2+

c−1
2 dy

∫ ∞

−∞

dρ

|ρ− iy − w|4(ρ+ i+ iy)l
,

where l = 1 + c. The function

x 7→ 1

(x− iy − w)2(x+ iy − w)2(x+ i+ iy)l

is analytic in the upper half plane minus the point x = y+ iw (where it has
a pole of order 2). Hence by Cauchy’s residue theorem [5]∫ ∞

−∞

dρ

|ρ− iy − w|4(ρ+ i+ iy)l
= 2πi(−1)

[
Γ(2)Γ(l + 1)

Γ(2)Γ(l)
(2iy + 2iIm w)−2

(2iy + i+ w)−l−1 +
Γ(3)Γ(l)

Γ(2)Γ(l)
(2iy + 2iIm w)−3(2iy + i+ w)−l

]
.

Hence

Eθc(w) =
3Γ(3)

Γ2(2)
Φc(w) +

24πi

π

Γ(2)Γ(l + 1)

Γ(2)Γ(l)
Ξc
0(w).

Thus

||θc||2||E|| ≥ ||Eθc||2 ≥
3Γ(3)

Γ2(2)
||Φc||2 − 24

Γ(2)Γ(l + 1)

Γ(2)Γ(l)
||Ξc

0||2.

That is,

||E|| ≥ 3Γ(3)

Γ2(2)

||Φc||2
||θc||2

− 24
Γ(2)

Γ(2)

Γ(l + 1)

Γ(l)

||Ξc
0||2

||θc||2
.

Using Theorem 5.3 and Theorem 5.4 when c→ 0, we obtain that

||E|| ≥ 3

Γ2(2)
Γ

(
3− 1

2

)
Γ

(
1

2

)
.

We shall now show that

||E|| ≤ 3

Γ2(2)
Γ

(
3− 1

2

)
Γ

(
1

2

)
.
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Let η(s) = (Im s)−
1
4 . Then∫

U+

(Im s)2

|s+ w|4
(η(s))2dÃ(s) = B

(
1

2
,
3

2

)
B

(
3− 1

2
,
1

2

)
(η(w))2

and

∫
U+

(Im s)2

|s+ w|4
(η(w))2dÃ(w) = B

(
1

2
,
3

2

)
B

(
3− 1

2
,
1

2

)
(η(s))2.

By Schur’s theorem [13], the operator E is bounded on L2(U+) and

||E|| ≤ 12

π
B

(
1

2
,
3

2

)
B

(
3− 1

2
,
1

2

)
.

Notice that L =
1

12
E∗ and we obtain

||L|| =
1

12
||E∗|| = 1

12
||E|| = 1

12
3Γ

(
3− 1

2

)
Γ

(
1

2

)
=

1

12
3Γ

(
2 +

1

2

)
Γ

(
1− 1

2

)
=

1

4
Γ

(
2 +

1

2

)
Γ

(
1− 1

2

)
=

1

4

3

4

π

sin π
2

=
3π

16
=

66

112
< 1

and

||E|| = 12

π
B

(
1

2
,
3

2

)
B

(
3− 1

2
,
1

2

)
=

9π

4
.

Since 4L = H, hence ||H|| = 4||L|| = 3π

4
.
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