Ann. Acad. Rom. Sci. Ser. Math. Appl. ISSN 2066-6594 Vol. 16, No. 2/2024

ADMISSIBLE PERTURBATION OF SINGLE-VALUED OPERATORS IN VECTOR-VALUED METRIC SPACES*

Adrian Petrușel[†] Gabriela Petrușel^{\ddagger} Jen-Chih Yao[§]

Abstract

In this paper, using the admissible perturbation technique, we will prove some data dependence and stability results for the fixed point equation in complete vector-valued metric spaces. Our approach generalizes some recent results in metric fixed point theory.

Keywords: single-valued operator, fixed point, vector-valued metric, complete metric space, stability properties.

MSC: 47H10, 54H25.

DOI https://doi.org/10.56082/annalsarscimath.2024.2.150

1 Preliminary notions and results

Let (X, d) be a metric space and $P(X)$ be the set of all nonempty subsets of X . Let us recall now the following notions:

(1) the distance from a point $x \in X$ to a set $Y \in P(X)$:

 $D(x, Y) := \inf\{d(x, y) \mid y \in Y\}.$

^{*}Accepted for publication on May 17, 2024

 † adrian.petrusel@ubbcluj.ro Babeş-Bolyai University Cluj-Napoca, Romania and Academy of Romanian Scientists, Bucharest, Romania

 ‡ gabriela.petrusel@ubbcluj.ro Babeş-Bolyai University Cluj-Napoca, Romania

[§] yaojc@mail.cmu.edu.tw Center for General Education, China Medical University, Taichung, Taiwan and Academy of Romanian Scientists, Bucharest, Romania

A. Petrușel, G. Petrușel, J.-C. Yao 151

(2) the excess of Y over Z (where $Y, Z \in P(X)$):

 $e(Y, Z) := \sup\{D(y, Z), y \in Y\}.$

(3) the Hausdorff-Pompeiu distance between two sets $Y, Z \in P(X)$:

$$
H(Y, Z) = \max\{e(Y, Z), e(Z, Y)\}.
$$

Let (X, d) be a metric space and $t : X \to X$ be a single-valued operator. Then $x \in X$ is called a fixed point for t if $x = t(x)$. The symbol

$$
Fix(t) := \{ x \in X : \ x = t(x) \}
$$

denotes the fixed point set of t.

Remark 1 A sequence $(x_n)_{n\in\mathbb{N}}$ from X satisfying

$$
x_0 \in X, \ x_{n+1} = t(x_n), \text{ for each } n \in \mathbb{N},
$$

is called an iterative sequence of Picard type starting from x_0 for the singlevalued operator $t : X \to X$.

If $x, y \in \mathbb{R}^m$, $x = (x_1, ..., x_m)$ and $y = (y_1, ..., y_m)$, then, by definition

 $x \preceq y$ if and only if $x_i \leq y_i$, for each $i \in \{1, 2, \cdots, m\}.$

Through this section, we will make an identification between row and column vectors in \mathbb{R}^m .

We can now recall the notion of vector-valued metric space, see e.g., [4]. By definition, (X, d) is a vector-valued metric space if X is a nonempty set and $d: X \times X \to \mathbb{R}^m_+$ satisfies all the axioms of the usual metric, where the inequalities from the axioms of the metric are given with respect to \preceq .

We may suppose that

$$
d(x,y) := \left(\begin{array}{c} d_1(x,y) \\ \cdots \\ d_m(x,y) \end{array}\right), \text{ for } x,y \in X.
$$

We denote by $M_{m,m}(\mathbb{R}_+)$ the set of all $m \times m$ matrices with positive elements, by $I_{m,m}$ the identity $m \times m$ matrix and by $O_{m,m}$ the null $m \times m$ matrix. Also, the symbol O_m denotes the null vector of \mathbb{R}^m .

By definition, $K \in M_{m,m}(\mathbb{R}_+)$ is said to be convergent to zero if $K^n \to$ $O_{m,m}$ as $n \to \infty$. The following result will be important for our next considerations, see e.g. [17].

Theorem 1 Let $K \in M_{m,m}(\mathbb{R}_+)$. The following assertions are equivalent: (i) $K^n \to O_{m,m}$ as $n \to \infty$;

(ii) The spectral radius $\rho(K)$ of K is strictly less than 1, i.e., the eigenvalues of K are in the open unit disc;

(iii) The matrix $(I_{m,m} - K)$ is nonsingular and

$$
(I_{m,m} - K)^{-1} = I_{m,m} + K + \dots + K^n + \dots;
$$
 (1)

(iv) The matrix $(I_{m,m} - K)$ is nonsingular and $(I_{m,m} - K)^{-1}$ has nonnegative elements.

Using the above properties, Perov [4] proved the following result.

Theorem 2 (Perov) Let (X, d) be a complete vector-valued metric space and let $t: X \to X$ be an K-contraction, i.e., $K \in M_{m,m}(\mathbb{R}_+)$ converges to zero and

$$
d(t(x), t(y)) \preceq Kd(x, y)
$$
, for all $x, y \in X$.

Then:

(1) $Fix(t) = \{x^*\};$

(2) the sequence $(x_n)_{n\in\mathbb{N}}$, $x_n := t^n(x_0)$ of Picard iterates for t starting from any $x_0 \in X$ is convergent to x^* ;

(3) the following estimation holds

$$
d(x_n, x^*) \le K^n (I_{m,m} - K)^{-1} d(x_0, x_1), \text{ for every } n \in \mathbb{N};
$$
 (2)

The purpose of this paper is to give some data dependence and stability results for a fixed point equation in complete vector-valued metric spaces, using the admissible perturbation technique. Our approach generalizes some recent results in metric fixed point theory, see [1], [7], [8], [12], [13], [15].

2 Main results

Let us recall first the notion of admissible perturbation and its relation with fixed point theory. For related notions and results see [11], [13], [16].

Let X be a nonempty set and $A: X \times X \rightarrow X$ be a mapping satisfying the following two conditions:

(AP1) $A(x, x) = x$, for each $x \in X$;

(AP2) if $x, y \in X$ satisfy $A(x, y) = x$, then $y = x$.

The concept of admissible perturbation for the single-valued case was proposed by I.A. Rus in [11]. For the multi-valued case see [6].

Definition 1 Let X be a nonempty set and $A: X \times X \rightarrow X$ be a mapping having the properties (AP1) and (AP2). Let $t : X \rightarrow X$ be a single-valued operator. Then, the single-valued operator $t_A: X \to X$ given by $t_A(x) :=$ $A(x, t(x))$ is called the admissible perturbation of t corresponding to A.

The following important properties hold.

Lemma 1 (see [11]) If X is a nonempty set and $t : X \rightarrow X$ is a singlevalued operator which admits an admissible perturbation t_A , then $Fix(t) =$ $Fix(t_A)$.

Some examples of mappings A which generate admissible perturbations are given now.

Example 1 (see [11]) Let \mathcal{E} be a linear space, $\lambda \in \mathbb{R} \setminus \{0\}$ and $A : \mathcal{E} \times \mathcal{E} \to \mathcal{E}$ be given by

$$
A(x, y) := \lambda x + (1 - \lambda)y.
$$

If $t : X \to X$ is a single-valued operator, then $t_A : X \to X$ given by

$$
t_A(x) := \lambda x + (1 - \lambda)t(x)
$$

is the admissible perturbation of t corresponding to A.

Example 2 ([2], [3]) A pair (X, F) is called a convex prestructure in the sense of Gudder if X is a nonempty set and $F : [0,1] \times X \times X \rightarrow X$ is a given mapping. Suppose that the convex prestructure (X, F) satisfies the following axioms:

 $(AX1) F(\lambda, x, y) = F(1 - \lambda, y, x)$, for every $\lambda \in [0, 1]$ and each $x, y \in$ $X;$

(AX2) $F(\lambda, x, F(\mu, y, z)) = F(\lambda + (1 - \lambda)\mu, F(\frac{\lambda}{\lambda + (1 - \lambda)})$ $\frac{\lambda}{\lambda+(1-\lambda)\mu},x,y),z), for$ every $\lambda, \mu \in [0,1]$ with $\lambda + (1 - \lambda)\mu \neq 0$ and for each $x, y, z \in X$;

(AX3) $F(\lambda, x, x) = x$, for every $\lambda \in [0, 1]$ and each $x \in X$;

(AX4) If for some $\lambda \in [0,1)$ and $x \in X$ we have that $F(\lambda, x, y) =$ $F(\lambda, x, z)$, then $y = z$;

 $(AX5) F(0, x, y) = y$, for every $x, y \in X$.

Then the pair (X, F) is called a convex structure in the sense of Gudder.

If (X, F) is a convex structure, then a set $Y \in P(X)$ is called convex if for every $\lambda \in [0,1]$ and every $x, y \in X$ we have that $F(\lambda, x, y) \in Y$.

Let (X, F) be a convex structure and $\lambda \in (0, 1)$. We define now the operator $A: X \times X \rightarrow X$ by

$$
A(x, y) := F(\lambda, x, y).
$$

If $t : X \to X$ is a single-valued operator, then $t_A : X \to X$ given by

$$
t_A(x) := F(\lambda, x, t(x))
$$

is the admissible perturbation of t corresponding to A.

Example 3 ([18], [19]) Let (X, d) be a vector-valued metric space and $W: X \times X \times [0,1] \rightarrow X$ be an operator satisfying the following relation:

$$
d(u, W(x, y, \lambda)) \preceq \lambda d(u, x) + (1 - \lambda) d(u, y), \text{ for every } u, x, y \in X \text{ and } \lambda \in (0, 1).
$$

The pair (X, W) is called a convex vector-valued metric space in the sense of Takahashi if (X, d) is a vector-valued metric space and $W: X \times X \times [0, 1] \rightarrow$ X is an operator with the above property. A set $Y \in P(X)$ is called convex in the sense of Takahashi if $W(x, y, \lambda) \in Y$, for every $\lambda \in [0, 1]$ and every $x, y \in X$.

Let (X, W) be a convex vector-valued metric space in the sense of Takahashi, such that the following implication holds

$$
\lambda \in (0,1), x, y \in X \text{ with } W(x, y, \lambda) = x \text{ imply that } y = x. \tag{3}
$$

Then, for $\lambda \in (0,1)$ let us define the operator $A: X \times X \rightarrow X$ by

$$
A(x, y) := W(x, y, \lambda).
$$

If $t : X \to X$ is a single-valued operator, then $t_A : X \to X$ given by

$$
t_A(x) := W(x, t(x), \lambda)
$$

is the admissible perturbation of t corresponding to A.

Let us consider now some concepts related to some stability theorems for the fixed points of single-valued operators in vector-valued metric spaces.

Definition 2 Let (X, d) be a vector-valued metric space, $t : X \rightarrow X$ be a single-valued operator such that $Fix(t) \neq \emptyset$ and there exists $r : X \to Fix(t)$ a set retraction. Then

$$
X = \bigcup_{x^* \in Fix(t)} r^{-1}(x^*)
$$

is the fixed point partition of X corresponding to r .

Definition 3 Let (X,d) be a vector-valued metric space and $t : X \rightarrow X$ be a single-valued operator with $Fix(t) \neq \emptyset$. Let $\Psi : \mathbb{R}^m_+ \to \mathbb{R}^m_+$ be an increasing (with respect to the componentwise partial order) function such that $\Psi(O_m) = O_m$ and ψ is continuous at O_m . If there exists a set retraction $r: X \to Fix(t)$ such that

$$
d(x,r(x)) \preceq \Psi(d(x,t(x))), \text{ for each } x \in X,
$$

then we say that the retraction-displacement condition on t corresponding to r holds.

We will introduce now some data dependence and stability property for the fixed points of single-valued operators in vector-valued metric spaces. For related notions and results see [5], [9], [10].

Definition 4 Let (X, d) be a vector-valued metric space. If $t : X \to X$ is a single-valued operator with at least one fixed point, then we say that the data dependence phenomenom for the fixed point set of t holds if for an operator $s: X \to X$ with $Fix(s) \neq \emptyset$ and for which there exists $\eta := (\eta_1, \dots, \eta_m)$ (with $\eta_i > 0$ for each $i \in \{1, 2, \dots, m\}$), such that

$$
d(t(x), s(x)) \preceq \eta, \text{ for each } x \in X,
$$

there exists an increasing (with respect to the componentwise partial order) function $\chi : \mathbb{R}^m_+ \to \mathbb{R}^m_+$ which is continuous in O_m and satisfies the relation $\chi(O_m) = O_m$, such that

$$
H(Fix(t), Fix(s)) \preceq \chi(\eta).
$$

Definition 5 Let (X,d) be a vector-valued metric space and $t : X \rightarrow X$ be a single-valued operator. Then, we say that the generalized Ulam-Hyers stability property for the fixed point equation $x = t(x), x \in X$ holds if there exists a function $\mu : \mathbb{R}^m_+ \to \mathbb{R}^m_+$ which is increasing (with respect to the componentwise partial order), continuous in O_m , with $\mu(O_m) = O_m$, such that for every $\epsilon := (\epsilon_1, \dots, \epsilon_m)$ (with $\epsilon_i > 0$ for each $i \in \{1, 2, \dots, m\}$) and any $z \in X$ with $d(z, t(z)) \preceq \epsilon$, there exists $x^* \in Fix(t)$ satisfying the relation

$$
d(z, x^*) \preceq \mu(\epsilon).
$$

Definition 6 Let (X, d) be a vector-valued metric space and $t : X \to X$ be a single-valued operator, such that $Fix(t) \neq \emptyset$ and there exists $r : X \to Fix(t)$

a set retraction. Then, we say that the well-posedness property (in the sense of Reich and Zaslavski) of the fixed point equation $x = t(x)$ with respect to the fixed point partition X corresponding to r holds if for each $x^* \in Fix(t)$ and for each sequence ${u_n}_{n \in \mathbb{N}} \subset r^{-1}(x^*)$ with $d(u_n, t(u_n)) \to 0$, we have that $u_n \to x^*$ as $n \to \infty$.

Definition 7 Let (X,d) be a vector-valued metric space and $t : X \to X$ be a single-valued operator such that $Fix(t) \neq \emptyset$. Let $r : X \to Fix(t)$ be a set retraction. The fixed point equation $x = t(x)$ has the Ostrowski stability property with respect to the fixed point partition of X corresponding to r if for each $x^* \in Fix(t)$ and for each sequence $\{w_n\}_{n\in\mathbb{N}} \subset r^{-1}(x^*)$ with $d(w_{n+1}, t(w_n)) \to 0$ as $n \to \infty$, we have that $w_n \to x^*$ as $n \to \infty$.

The following general class of mappings will be considered for our next main results.

Definition 8 Let (X, d) be a vector-valued metric space and $t : X \to X$ be a single-valued operator. Then, t is called a weakly Picard operator if for each $u_0 \in X$ the sequence $(u_n)_{n \in \mathbb{N}}$ of Picard iterates for t starting from u_0 (*i.e.*, $u_n := t^n(u_0)$ or equivalently $u_{n+1} = t(u_n), n \in \mathbb{N}$) converges to a fixed point of t.

Definition 9 Let (X, d) be a vector-valued metric space and $t : X \to X$ be a weakly Picard operator. We define the operator $t^{\infty}: X \to Fix(t)$, given by $t^{\infty}(u) := \lim_{n \to \infty} t^n(u)$.

Definition 10 Let (X, d) be a vector-valued metric space and $t : X \to X$ be a weakly Picard operator. Then, t is called a Γ-weakly Picard operator if $\Gamma : \mathbb{R}^m_+ \to \mathbb{R}^m_+$ is increasing (with respect to the componentwise partial order), continuous in O_m with $\Gamma(O_m) = O_m$ and

$$
d(x, t^{\infty}(x)) \le \Gamma(d(x, t(x))), \text{ for all } x \in X. \tag{4}
$$

In particular, if $t : X \to X$ is a weakly Picard operator for which there exists $K \in M_{m,m}(\mathbb{R}_+) \setminus \{O_{m,m}\}\$ such that

$$
d(x, t^{\infty}(x)) \le Kd(x, t(x)), \text{ for all } x \in X,
$$
 (5)

then t is called a K-weakly Picard operator.

Example 4 Let (X, d) be a complete vector-valued metric space and t: $X \rightarrow X$ be a single-valued operator with closed graph. If there exists a matrix $\kappa \in M_{m,m}(\mathbb{R}_+)$ such that

$$
d(t(x), t2(x)) \le \kappa d(x, t(x)), \text{ for every } x \in X,
$$
 (6)

then t is a $(I_{m,m} - \kappa)^{-1}$ -weakly Picard operator. Notice that an operator satisfying the condition (6) is called a graph κ -contraction.

The following are the main results of the paper.

Theorem 3 Let (X, d) be a vector-valued metric space and let $t, s: X \to X$ be two single-valued operators. Let $A: X \times X \rightarrow X$ be an operator satisfying the conditions (AP1) and (AP2). Suppose:

(a) the admissible perturbation $t_A: X \to X, t_A(x) := A(x, t(x))$ is a Γ weakly Picard operator;

(b) the admissible perturbation $s_A: X \to X$, $s_A(x) := A(x, s(x))$ is a Υ weakly Picard operator;

(c) there exists $L \in M_{m,m}(\mathbb{R}_+) \setminus \{O_{m,m}\}\$ such that $d(x, t_A(x)) \preceq Ld(x, t(x)),$ for each $x \in X$;

(d) there exists $Q \in M_{m,m}(\mathbb{R}_+) \setminus \{O_{m,m}\}\$ such that $d(x, s_A(x)) \preceq Qd(x, s(x)),$ for each $x \in X$;

(e) there exists $R \in \mathbb{R}^m_+$ (with $R_i > 0$ for each $i \in \{1, 2, \dots, m\}$) such that $d(t(x), s(x)) \leq R$, for each $x \in X$.

Then

$$
H(Fix(t), Fix(s)) \leq \Theta(R) := \left(\begin{array}{c} \max\{\Gamma_1(QR), \Upsilon_1(LR)\} \\ \dots \\ \max\{\Gamma_m(QR), \Upsilon_m(LR)\}\end{array}\right).
$$

Proof. We will show that for every $x \in Fix(t)$ there exists $y \in Fix(s)$ such that $d(x, y) \leq \Theta(R)$ and the analogue relation that for every $y \in Fix(s)$ there exists $x \in Fix(t)$ such that $d(x, y) \leq \Theta(R)$.

Let $x \in Fix(t)$. Since s_A is a Υ -weakly Picard operator, we have

$$
d(x_0, s_A^{\infty}(x_0)) \preceq \Upsilon(d(x_0, s_A(x_0))), \text{ for all } x_0 \in X.
$$

Taking $x_0 := x$ we get that $s_A^{\infty}(x) \in Fix(s)$ and

$$
d(x, s_A^{\infty}(x)) \preceq \Upsilon(d(x, s_A(x))) \preceq \Upsilon(Qd(x, s(x))) = \Upsilon(Qd(t(x), s(x))) \preceq \Upsilon(QR).
$$

Similarly, for $y \in Fix(s)$ we have that $t_A^{\infty}(y) \in Fix(t)$ and the following relations hold

$$
d(y, t_A^{\infty}(y)) \preceq \Gamma(d(y, t_A(y))) \preceq \Gamma(Ld(y, t(y))) = \Gamma(Ld(s(y), t(y))) \leq \Gamma(LR).
$$

By the above relations we get $H(Fix(t), Fix(s)) \preceq \Theta(R)$, which completes the proof. \Box

Our next result proves two important properties of the fixed point equation.

Theorem 4 Let (X,d) be a vector-valued metric space and let $t : X \rightarrow$ $P(X)$ be a multi-valued operator. Let $A: X \times X \rightarrow X$ be an operator satisfying the conditions (AP1) and (AP2). Suppose:

(a) the admissible perturbation $t_A: X \to X, t_A(x) := A(x, t(x))$ is a Γ weakly Picard operator;

(b) there exists $L \in M_{m,m}(\mathbb{R}_+) \setminus \{O_{m,m}\}\$ such that $d(x, t_A(x)) \preceq Ld(x, t(x)),$ for each $x \in X$.

Then, the fixed point equation $x = t(x)$, $x \in X$ is well-posed and satisfies the Ulam-Hyers stability property.

Proof. Since t_A is a Γ-weakly Picard operator, we have that $Fix(t) \neq \emptyset$ and for the operator t_A^{∞} we have

$$
d(x_0, t_A^{\infty}(x_0)) \preceq \Gamma(d(x_0, t_A(x_0))),
$$
 for all $x_0 \in X$.

A. (Well-posedness) Consider the fixed point partition of X corresponding to t_A^{∞} , i.e.,

$$
X = \bigcup_{x^* \in Fix(t)} (t_A^{\infty})^{-1}(x^*).
$$

Let $u^* \in Fix(t)$. Then, for any sequence $\{u_n\}_{n\in\mathbb{N}} \subset (t_A^{\infty})^{-1}(x^*)$ with $d(u_n, t(u_n)) \to 0$ we have

$$
d(u_n, x^*) = d(u_n, t_A^{\infty}(u_n)) \preceq \Gamma(d(u_n, t_A(u_n))) \preceq \Gamma(Ld(u_n, t(u_n))) \to 0
$$

as $n \to \infty$.

B. (Ulam-Hyers stability) Take any $\epsilon := (\epsilon_1, \dots, \epsilon_m)$ (with $\epsilon_i > 0$ for each $i \in \{1, 2, \dots, m\}$ and any $z \in X$ with the property $d(z, t(z)) \preceq \epsilon$. Denote $x^* := t_A^{\infty}(z) \in Fix(t)$. Then, we have

$$
d(z,x^*) \preceq d(z,t_A^\infty(z)) \preceq \Gamma(d(z,t_A(z))) \preceq \Gamma(Ld(z,t(z))) \leq \Gamma(L\epsilon).
$$

The proof is now complete. \Box

We discuss now the Ostrowski stability property for the fixed point equation $x = t(x)$, $x \in X$ with a weakly Picard operator in a vector-valued metric space.

Theorem 5 Let (X, d) be a vector-valued metric space and let $t : X \rightarrow X$ be a multi-valued operator. Let $A: X \times X \rightarrow X$ be an operator satisfying the conditions (AP1) and (AP2). Suppose:

(a) the admissible perturbation $t_A: X \to X, t_A(x) := A(x, t(x))$ is a weakly Picard operator;

 (b) t is a K-quasi contraction with respect to the fixed point partition corresponding to t_A^{∞} , i.e., there exists a matrix $K \in M_{m,m}(\mathbb{R}_+)$ which converges to zero such that

$$
d(t(x), t_A^{\infty}(x)) \preceq Kd(x, t_A^{\infty}(x)), \text{ for every } x \in X.
$$

(b) there exists $L \in M_{m,m}(\mathbb{R}_+) \setminus \{O_{m,m}\}\$ such that $d(x, t_A(x)) \preceq Ld(x, t(x)),$ for each $x \in X$.

Then, the fixed point equation $x = t(x)$, $x \in X$ has the Ostrowski stability property.

Proof. Since t_A is a weakly Picard operator, the fixed point set $Fix(t)$ is nonempty. Let $x^* \in Fix(t)$ and let $\{w_n\}_{n\in\mathbb{N}} \subset (t_A^{\infty})^{-1}(x^*)$ such that $d(w_{n+1}, t(w_n)) \to 0$ as $n \to \infty$. Then, we have

$$
d(w_{n+1},x^*) = d(w_{n+1},t_A^{\infty}(w_n)) \leq d(w_{n+1},t_A(w_n)) + d(t_A(w_n),t_A^{\infty}(w_n)) \leq
$$

$$
Ld(w_{n+1}, t(w_n)) + Kd(w_n, t_A^{\infty}(w_n)) = Ld(w_{n+1}, t(w_n)) + Kd(w_n, x^*) \preceq
$$

 $Ld(w_{n+1}, t(w_n)) + K[Ld(w_n, t(w_{n-1})) + Kd(w_{n-1}, x^*)] \preceq \cdots \preceq$

 $Ld(w_{n+1}, t(w_n)) + KLd(w_n, t(y_{w-1})) + \cdots + K^n Ld(w_1, t(w_0)) + K^{n+1}d(w_0, x^*).$

By the vectorial version of the Cauchy-Toeplitz Lemma (see e.g. [7], [14]) we get the conclusion. \Box

As consequences, for each example of operator A we can get corresponding results concerning the stability properties of the fixed point equation.

For example, in the case of the convex structure of Gudder we obtain the following result for a single-valued graph contraction in a complete vectorvalued metric space.

Theorem 6 Let (X, d) be a complete metric space endowed with a convex structure in the sense of Gudder $F : [0,1] \times X \times X \to X$. Let $t : X \to X$ be a single-valued operator with closed graph. Suppose that:

(a) there exists a matrix $\kappa \in M_{m,m}(\mathbb{R}_+)$ which converges to zero such that

$$
d(F(\lambda,x,t(x)),F(\lambda,F(\lambda,x,t(x)),t(F(\lambda,x,t(x)))) \preceq
$$

 $\kappa d(x, F(\lambda, x, t(x))),$ for every $x \in X$ and $\lambda \in (0, 1)$.

(b) there exists $Q \in M_{m,m}(\mathbb{R}_+) \setminus \{O_{m,m}\}\$ such that $d(x, F(\lambda, x, t(x))) \leq$ $Qd(x,t(x))$, for each $x \in X$ and $\lambda \in (0,1)$;

(c) if $\{x_n\}_{n\in\mathbb{N}}, \{v_n\}_{n\in\mathbb{N}}$ are two sequences in X such that $x_n \to x$ and if the sequence $u_n := F(\lambda, x_n, v_n), n \in \mathbb{N}$ is convergent in X to u, then there exists $v \in X$ such that $v_n \to v$ as $n \to \infty$ and $u = F(\lambda, x, v)$.

Then, the following conclusions hold:

(i) t_A is a K-weakly Picard operator, with $K := (I_{m,m} - \kappa)^{-1}$;

(ii) the fixed point equation $x = t(x)$, $x \in X$ is well-posed and has the Ulam-Hyers stability property.

Proof. By (a) we get that the admissible perturbation t_A of t is a graph κ -contraction. By (c) we obtain that t_A has closed graph. By Exemple 4 we obtain the conclusion (i). The conclusion (ii) follows by Theorem 4. \Box

References

- [1] C. Chifu, A. Petrusel, G. Petrusel, Fixed point results for non-self nonlinear graphic contractions in complete metric spaces with applications, J. Fixed Point Theory Appl. 22(4) (2020), 97.
- [2] S. Gudder, A general theory of convexity, Rend. Sem. Mat. Fis. Milano 49 (1979), 89-96.
- [3] S. Gudder, F. Schroeck, Generalized convexity, SIAM J. Math. Anal. 11 (1980), 984-1001.
- [4] A.I. Perov, A.V. Kibenko, On a certain general method for investigation of boundary value problems, Izv. Akad. Nauk SSSR 30 (1966) 249-264 (in Russian).
- [5] T.P. Petru, A. Petrusel, J.-C. Yao, Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math. 15 (2011), 2195-2212.
- [6] A. Petru¸sel, I.A. Rus, An abstract point of view on iterative approximation schemes of fixed points for multivalued operators, J. Nonlinear Sci. Appl. 6 (2013), 97-107.
- [7] A. Petrușel, G. Petrușel, C. Urs, Vector-valued metrics, fixed points and coupled fixed points for nonlinear operators, Fixed Point Theory Appl. 2013 (2013), 218; https://doi.org/10.1186/1687-1812-2013-218.
- [8] A. Petrusel, G. Petrusel, J.-C. Yao, Graph contractions in vector-valued metric spaces and applications, *Optimization* 70(4) (2021), 763-775.
- [9] S. Reich, A.J. Zaslavski, Well-posedness of fixed point problems, Far East J. Math. Sci. Special Volume, Part III (2011), 393-401.
- [10] S. Reich, A.J. Zaslavski, Genericity in Nonlinear Analysis, Springer, New York, 2014.
- [11] I.A. Rus, An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point equations, Fixed Point Theory 13(1) (2012), 179-192.
- [12] I.A. Rus, Some variants of contraction principle, generalizations and applications, *Studia Univ. Babes-Bolyai Math.* 61 (2016), 343-358.
- [13] I.A. Rus, Weakly Picard mappings: retraction-displacement condition, quasicontraction notion and weakly Picard admissible perturbation, Studia Univ. Babeş-Bolyai Math. 69(1) (2024), 211-221.
- [14] I.A. Rus, M.A. Serban, Some generalizations of a Cauchy lemma and applications, in: Topics in Mathematics, Computer Science and Philosophy, Cluj Univ. Press, 2008, 173-181.
- [15] I.A. Rus, M.A. Serban, Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem, *Carpathian J. Math.* 29 (2013), 239-258.
- [16] I.A. Rus, A. Petrușel, G. Petrușel, Fixed Point Theory, Cluj Univ. Press, 2008.
- [17] R.S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics, 27, Springer, Berlin, 2000.
- [18] T. Shimizu, W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topological Meth. Nonlinear Anal. 8 (1996), 197-203.
- [19] W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (1970), 142-149.