Ann. Acad. Rom. Sci.
Ser. Math. Appl.
ISSN 2066-6594 Vol. 16, No. 2/2024

ADMISSIBLE PERTURBATION
OF SINGLE-VALUED OPERATORS IN
VECTOR-VALUED METRIC SPACES®

Adrian Petrusel Gabriela Petruselt Jen-Chih Yao?

Abstract

In this paper, using the admissible perturbation technique, we will
prove some data dependence and stability results for the fixed point
equation in complete vector-valued metric spaces. Our approach gen-
eralizes some recent results in metric fixed point theory.
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1 Preliminary notions and results

Let (X,d) be a metric space and P(X) be the set of all nonempty subsets
of X. Let us recall now the following notions:
(1) the distance from a point € X to a set Y € P(X):

D(z,Y) :=inf{d(z,y) | y € Y}.
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(2) the excess of Y over Z (where Y, Z € P(X)):
e(Y,Z) :==sup{D(y,2),y € Y}.
(3) the Hausdorff-Pompeiu distance between two sets Y, Z € P(X):
H(Y,Z) =max{e(Y,Z),e(Z,Y)}.

Let (X, d) be a metric space and t : X — X be a single-valued operator.
Then x € X is called a fixed point for ¢ if 2 = ¢(z). The symbol

Fiz(t) ={x e X: z=1t(z)}
denotes the fixed point set of t.
Remark 1 A sequence (xp)nen from X satisfying
x0 € X, Tpi1 = t(xy), for each n € N,

1s called an iterative sequence of Picard type starting from xq for the single-
valued operatort: X — X.

If z,y e R™, & = (x1,..., ) and y = (y1, ..., Ym), then, by definition
x <y if and only if x; <y, for each i € {1,2,--- ;m}.

Through this section, we will make an identification between row and column
vectors in R™.

We can now recall the notion of vector-valued metric space, see e.g., [4].
By definition, (X, d) is a vector-valued metric space if X is a nonempty set
and d : X x X — R’ satisfies all the axioms of the usual metric, where the
inequalities from the axioms of the metric are given with respect to <.

We may suppose that

dl (-’E,y)
d(z,y) := , for z,y € X.

dm, (,Y)

We denote by M, m (Ry) the set of all m x m matrices with positive
elements, by I,,, », the identity m x m matrix and by Oy, ,, the null m x m
matrix. Also, the symbol O,,, denotes the null vector of R™.

By definition, K € My, », (R4 ) is said to be convergent to zero if K" —
Om.m as n — oo. The following result will be important for our next con-
siderations, see e.g. [17].
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Theorem 1 Let K € My, ., (Ry). The following assertions are equivalent:
(1) K" = Opm as n— 00;
(ii) The spectral radius p(K) of K is strictly less than 1, i.e., the eigen-
values of K are in the open unit disc;
(111) The matric (I, m — K) is nonsingular and

(Im,m_K)_l :Im,m+K++Kn+, (1)

(iv) The matriz (I, — K) is nonsingular and (I, — K)™' has non-
negative elements.

Using the above properties, Perov [4] proved the following result.

Theorem 2 (Perov) Let (X,d) be a complete vector-valued metric space
and let t : X — X be an K-contraction, i.e., K € My, , (Ry) converges to
zero and

d(t(z),t(y) X Kd(z,y), foralxz,yeX.

Then:

(1) Fia(t) = {o°};

(2) the sequence (), cy» Tn = t" (x0) of Picard iterates for t starting
from any xo € X is convergent to x*;

(3) the following estimation holds

d(zn,z") 2 K" (Lym — K)f1 d(xg,x1), for everyn € N; (2)

The purpose of this paper is to give some data dependence and stability
results for a fixed point equation in complete vector-valued metric spaces,
using the admissible perturbation technique. Our approach generalizes some
recent results in metric fixed point theory, see [1], [7], [8], [12], [13], [15].

2 Main results

Let us recall first the notion of admissible perturbation and its relation with
fixed point theory. For related notions and results see [11], [13], [16].

Let X be a nonempty set and A : X x X — X be a mapping satisfying
the following two conditions:

(AP1) A(z,z) = z, for each z € X;

(AP2) if z,y € X satisfy A(z,y) = x, then y = z.

The concept of admissible perturbation for the single-valued case was

proposed by I.A. Rus in [11]. For the multi-valued case see [6].
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Definition 1 Let X be a nonempty set and A: X x X — X be a mapping
having the properties (AP1) and (AP2). Lett: X — X be a single-valued
operator. Then, the single-valued operator t4 : X — X given by ta(x) :=
A(z,t(x)) is called the admissible perturbation of t corresponding to A.

The following important properties hold.

Lemma 1 (see [11]) If X is a nonempty set and t : X — X is a single-
valued operator which admits an admissible perturbation ty, then Fix(t) =
Fiz(ta).

Some examples of mappings A which generate admissible perturbations
are given now.

Example 1 (see [11]) Let € be a linear space, A € R\{0} and A : ExE — &€
be given by
Az, y) ==X+ (1 — N)y.

Ift: X — X is a single-valued operator, then ta : X — X given by
ta(z) = Az + (1 — Nt(z)
is the admissible perturbation of t corresponding to A.

Example 2 (/2], [3]) A pair (X, F) is called a convex prestructure in the
sense of Gudder if X is a nonempty set and F : [0,1] x X x X — X s
a given mapping. Suppose that the convex prestructure (X, F') satisfies the
following axioms:
(AX1) F(\,z,y) = F(1 = A\ y,z), for every A € [0,1] and each x,y €
X}.
(AX2) F(\,z,F(p,y,2)) = F(A+ (1 — )\)M,F(W’\_/\)Mw,y),z), for
every A, i € [0, 1] with A+ (1 — A\)p # 0 and for each z,y,z € X;
(AX3) F(\,x,x) =z, for every A € [0,1] and each x € X;
(AX}) If for some XA € [0,1) and z € X we have that F(\,z,y) =
F(\x,z), theny = z;
(AX5) F(0,z,y) =y, for every z,y € X.
Then the pair (X, F') is called a convex structure in the sense of Gudder.
If (X, F) is a convex structure, then a setY € P(X) is called convex if
for every X € [0,1] and every xz,y € X we have that F(\,z,y) € Y.
Let (X, F) be a convex structure and A € (0,1). We define now the
operator A: X x X — X by

A(z,y) := F(\, z,y).
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Ift: X — X is a single-valued operator, then t4 : X — X given by
ta(x) == F(A z,t(x))
is the admissible perturbation of t corresponding to A.

Example 3 ( [18], [19]) Let (X,d) be a vector-valued metric space and
W:X x X x[0,1] = X be an operator satisfying the following relation:

d(u, W(x,y,\)) = Ad(u, x)+(1=N)d(u,y), for every u,z,y € X and X € (0,1).

The pair (X, W) is called a convex vector-valued metric space in the sense of
Takahashi if (X,d) is a vector-valued metric space and W : X x X x[0,1] —
X is an operator with the above property. A setY € P(X) is called convex
in the sense of Takahashi if W(x,y,\) € Y, for every A € [0,1] and every
z,y € X.

Let (X, W) be a convex vector-valued metric space in the sense of Taka-
hashi, such that the following implication holds

A€ (0,1),z,y € X with W(z,y,\) = x imply that y = x. (3)
Then, for A € (0,1) let us define the operator A: X x X — X by
Ax,y) == W(z,y, \).
Ift: X — X is a single-valued operator, then ta : X — X given by
ta(x) == W(x,t(x),\)
s the admissible perturbation of t corresponding to A.

Let us consider now some concepts related to some stability theorems for
the fixed points of single-valued operators in vector-valued metric spaces.

Definition 2 Let (X,d) be a vector-valued metric space, t : X — X be a
single-valued operator such that Fix(t) # 0 and there exists r : X — Fixz(t)
a set retraction. Then

X = U (")

x*eFix(t)

18 the fized point partition of X corresponding to r.
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Definition 3 Let (X,d) be a vector-valued metric space and t : X — X
be a single-valued operator with Fixz(t) # 0. Let ¥ : R — R be an
increasing (with respect to the componentwise partial order) function such
that W(O,,) = O, and 1) is continuous at O,,. If there exists a set retraction
r: X — Fix(t) such that

d(z,r(z)) 2 U (d(z,t(x))), for each z € X,

then we say that the retraction-displacement condition on t corresponding to
r holds.

We will introduce now some data dependence and stability property for
the fixed points of single-valued operators in vector-valued metric spaces.
For related notions and results see [5], [9], [10].

Definition 4 Let (X,d) be a vector-valued metric space. Ift : X — X is a
single-valued operator with at least one fized point, then we say that the data
dependence phenomenom for the fized point set of t holds if for an operator
s: X — X with Fixz(s) # 0 and for which there exists n := (N1, ,Nm)
(with n; > 0 for each i € {1,2,--- ,m}), such that

d(t(x),s(x)) < n, for each x € X,

there exists an increasing (with respect to the componentwise partial order)
function x : R — R which is continuous in O,, and satisfies the relation
X(Om) = Oy, such that

H(Fiz(t), Fiz(s)) = x(n)-

Definition 5 Let (X,d) be a vector-valued metric space and t : X — X
be a single-valued operator. Then, we say that the generalized Ulam-Hyers
stability property for the fized point equation x = t(x),z € X holds if there
exists a function p @ R — R which is increasing (with respect to the
componentwise partial order), continuous in Oy, with u(Op,) = O, such
that for every € := (€1, ,€n) (with ¢ >0 for each i € {1,2,--- ,m}) and
any z € X with d(z,t(z)) < €, there exists x* € Fix(t) satisfying the relation

d(z,x*) < u(e).

Definition 6 Let (X,d) be a vector-valued metric space andt: X — X be a
single-valued operator, such that Fix(t) # 0 and there exists r : X — Fixz(t)
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a set retraction. Then, we say that the well-posedness property (in the sense
of Reich and Zaslavski) of the fixzed point equation x = t(x) with respect to
the fized point partition X corresponding to r holds if for each x* € Fix(t)
and for each sequence {up}nen C 7~ H(z*) with d(un,t(u,)) — 0, we have
that u, — x* as n — 00.

Definition 7 Let (X,d) be a vector-valued metric space and t : X — X
be a single-valued operator such that Fix(t) # 0. Let r : X — Fixz(t) be a
set retraction. The fized point equation x = t(x) has the Ostrowski stability
property with respect to the fized point partition of X corresponding to r
if for each x* € Fixz(t) and for each sequence {wp}neny C 7 (z*) with
d(wp41,t(wy)) — 0 as n — oo, we have that w, — =* as n — co.

The following general class of mappings will be considered for our next
main results.

Definition 8 Let (X,d) be a vector-valued metric space and t : X — X be
a single-valued operator. Then, t is called a weakly Picard operator if for
each ug € X the sequence (up)nen of Picard iterates for t starting from ug
(i.e., up := t"(up) or equivalently un+1 = t(uyn),n € N) converges to a fized
point of t.

Definition 9 Let (X, d) be a vector-valued metric space and t : X — X be
a weakly Picard operator. We define the operator t° : X — Fiz(t), given
by t°(u) := lim ¢"(u).

n—oo

Definition 10 Let (X,d) be a vector-valued metric space and t : X — X
be a weakly Picard operator. Then, t is called a I'-weakly Picard operator
if T2 R — R is increasing (with respect to the componentwise partial
order), continuous in O, with I'(Oy,) = Oy, and

d(z,t>*(x)) < T'(d(z,t(z))), for alx e X. (4)

In particular, if t : X — X is a weakly Picard operator for which there
exists K € My, m (Ry) \ {Omm} such that

d(z,t>(z)) < Kd(x,t(z)), for all x € X, (5)

then t is called a K-weakly Picard operator.
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Example 4 Let (X,d) be a complete vector-valued metric space and t :
X — X be a single-valued operator with closed graph. If there exists a
matriz K € My, m (Ry) such that

d(t(z),t*(x)) < wd(z,t(x)), for everyz € X, (6)

then t is a (Lym — k)~ L-weakly Picard operator. Notice that an operator
satisfying the condition (6) is called a graph k-contraction.

The following are the main results of the paper.

Theorem 3 Let (X,d) be a vector-valued metric space and let t,s: X — X
be two single-valued operators. Let A : X x X — X be an operator satisfying
the conditions (AP1) and (AP2). Suppose:
(a) the admissible perturbation ty : X — X,ta(x) = A(z,t(x)) is a I'-
weakly Picard operator;
(b) the admissible perturbation s4 : X — X,sa(x) := A(z,s(x)) is a Y-
weakly Picard operator;
(¢) there exists L € Mp, 1 (Ry)\{Om,m} such that d(z,ta(x)) < Ld(z,t(z)),
for each x € X;
(d) there exists Q € My m (Ry)\{Om,m} such that d(z,sa(x)) < Qd(x, s(x)),
for each x € X;
(e) there exists R € R (with R; > 0 for each i € {1,2,---,m}) such that
d(t(z),s(x)) < R, for each x € X.

Then

max{Fl (QR), Tl (LR)}
H(Fixz(t), Fiz(s)) < O(R) :=
max{l',(QR), T ,,(LR)}

Proof. We will show that for every = € Fix(t) there exists y € Fix(s)
such that d(z,y) < ©(R) and the analogue relation that for every y € Fiz(s)
there exists z € Fliz(t) such that d(z,y) < O(R).

Let « € Fiz(t). Since s4 is a T-weakly Picard operator, we have

d(xo, s¥ (z0)) = Y(d(xo,s4(x0))), for all zp € X.
Taking xo := x we get that s (z) € Fiz(s) and
d(z, 57 (x)) = T(d(z, sa(x))) =2 T(Qd(z,s(x))) = T(Qd(t(x), s(x))) 2 T(QR).

Similarly, for y € Fiz(s) we have that t°°(y) € Fiz(t) and the following
relations hold

d(y, t3°(y)) 2 T(d(y,ta(y))) 2 T(Ld(y,t(y))) = T(Ld(s(y), t(y))) < T(LR).
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By the above relations we get H(Fix(t), Fiz(s)) < ©(R), which completes
the proof. O

Our next result proves two important properties of the fixed point equa-
tion.

Theorem 4 Let (X,d) be a vector-valued metric space and let t : X —
P(X) be a multi-valued operator. Let A : X x X — X be an operator
satisfying the conditions (AP1) and (AP2). Suppose:
(a) the admissible perturbation ta : X — X,ta(x) = A(z,t(z)) is a I'-
weakly Picard operator;
(b) there exists L € My, y (RL)N\{Omm} such that d(z,ta(z)) < Ld(z,t(z)),
for each x € X.

Then, the fized point equation x = t(x),x € X is well-posed and satisfies
the Ulam-Hyers stability property.

Proof. Since ty4 is a I-weakly Picard operator, we have that Fiz(t) # ()
and for the operator t§° we have

d(zo,t% (z0)) X T'(d(xo,ta(x0))), for all zy € X.

A. (Well-posedness) Consider the fixed point partition of X corresponding
to t, i.e.,

x= U D).

x*eFix(t)

Let u* € Fiz(t). Then, for any sequence {un}lneny C (t¥)71(z*) with
d(un, t(u,)) — 0 we have

A(up, ) = d(un, t3 (up)) 2 T(d(up, ta(uy))) 2 T(Ld(tn, t(uy))) — 0

as n — 00.

B. (Ulam-Hyers stability) Take any € := (€1, ,€y) (with ¢ > 0 for
each i € {1,2,---,m}) and any z € X with the property d(z,t(z)) < e.
Denote z* := t%°(z) € Fiz(t). Then, we have

d(z,2%) < d(2,15 () 2 T(d(2, £a(2)) = T(Ld(2,1(2))) < T(Le).

The proof is now complete. O

We discuss now the Ostrowski stability property for the fixed point equa-
tion x = t(z), x € X with a weakly Picard operator in a vector-valued metric
space.
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Theorem 5 Let (X, d) be a vector-valued metric space and let t : X — X
be a multi-valued operator. Let A : X x X — X be an operator satisfying
the conditions (AP1) and (AP2). Suppose:

(a) the admissible perturbation tg : X — X, ta(x) := A(z,t(x)) is a weakly
Picard operator;

(b) t is a K-quasi contraction with respect to the fized point partition corre-
sponding to t°, i.e., there exists a matrix K € My, ,m, (R4) which converges
to zero such that

d(t(x),t¥(z)) = Kd(x,t¥ (z)), for every x € X.

(b) there exists L € My, y (RL)\{Opmm} such that d(z,ta(z)) < Ld(z,t(z)),
for each x € X.
Then, the fixed point equation x = t(x),z € X has the Ostrowski stability

property.

Proof. Since t4 is a weakly Picard operator, the fixed point set Fix(t)
is nonempty. Let z* € Fiz(t) and let {wp}neny C ()7 1(z*) such that
d(wpy1,t(wy)) = 0 as n — oo.

Then, we have

d<wn+17 x*) = d(wn-i-htilo(wn)) = d(wn-i-l,tA(wn)) + d(tA(wn),t%o(wn)) =
Ld(wn—l-h t(wn)) + Kd(wna t?(wn)) = Ld(wn—H; t(wn)) + Kd(wn, x*) =<
Ld(wn1, t(wy)) + K[Ld(wn, t(wp—1)) + Kd(wp—1,2%)] 2 --- =2
Ld(wy 11, t(wy))+K Ld(wn, t(yw—1))+- - -+ K" Ld (w1, t(wo) )+ K" d(wo, 2*).

By the vectorial version of the Cauchy-Toeplitz Lemma (see e.g. [7], [14])
we get the conclusion. O

As consequences, for each example of operator A we can get correspond-
ing results concerning the stability properties of the fixed point equation.

For example, in the case of the convex structure of Gudder we obtain the
following result for a single-valued graph contraction in a complete vector-
valued metric space.

Theorem 6 Let (X,d) be a complete metric space endowed with a convex
structure in the sense of Gudder F : [0,1] x X x X — X. Lett: X — X be
a single-valued operator with closed graph. Suppose that:
(a) there exists a matriz k € My, m (Ry) which converges to zero such
that
d(F(\ z,t(x)), F\, F(\, z,t(x)), t(F(\ z,t(x))))) <
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kd(x, F(\,z,t(x))), for every x € X and X € (0,1).

(b) there exists Q € Mp, m (Rp)\{Omm} such that d(xz, F(\, x,t(z)) <
Qd(z,t(x)), for each x € X and X € (0,1);

(c) if {xn}nen, {Vn}nen are two sequences in X such that x,, — x and
if the sequence uy, := F(\, xn,v,),n € N is convergent in X to u, then there
exists v € X such that v, = v asn — oo and u = F(\, z,v).

Then, the following conclusions hold:

(i) ta is a K-weakly Picard operator, with K := (Iy.m — k)Y

(ii) the fized point equation x = t(x),x € X is well-posed and has the
Ulam-Hyers stability property.

Proof. By (a) we get that the admissible perturbation ¢4 of ¢ is a graph
k-contraction. By (c) we obtain that ¢4 has closed graph. By Exemple 4 we
obtain the conclusion (i). The conclusion (ii) follows by Theorem 4. O
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