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Abstract

Let D = {z ∈ C : |z| < 1} and L(L2
a(D)) be the space of all

bounded linear operators from the Bergman space L2
a(D) into itself.

In this paper we shall associate symbols to bounded linear operators
in L(L2

a(D)) and analyse if a symbol calculus can be obtained.
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1 Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C. Let
dA(z) be the area measure on D normalized so that the area of the disk is
1. Let L2(D, dA) be the Hilbert space of Lebesgue measurable functions on
D with the inner product

⟨f, g⟩ =
∫
D
f(z)g(z)dA(z), f, g ∈ L2(D).

The Bergman space L2
a(D) is the set of those functions in L2(D, dA) that are

analytic on D. The norm on L2
a(D) is also described by ∥f∥2 =

∑∞
n=0

|an|2
n+1 ,
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using the power series expansion f(z) =
∞∑
n=0

anz
n ∈ L2

a(D), z ∈ D. The

Bergman space L2
a(D) is a closed subspace[25] of L2(D, dA), and so there is

an orthogonal projection P from L2(D, dA) onto L2
a(D). The map P is called

the Bergman projection. Let K(z, w̄) be the function on D × D defined by
K(z, w̄) = Kz(w) = 1

(1−zw̄)2 . The function K(z, w̄) is called the Bergman

kernel of D or the reproducing kernel of L2
a(D) because the formula

f(z) =

∫
D
f(w)K(z, w̄)dA(w)

reproduces each f in L2
a(D). For any n ≥ 0, n ∈ Z, let en(z) =

√
n+ 1zn,

then {en} forms an orthonormal basis for L2
a(D) and

K(z, w̄) =

∞∑
n=0

en(z)en(w) =
1

(1− zw̄)2
.

Let ka(z) = K(z,ā)√
K(a,ā)

= 1−|a|2
(1−āz)2 , a, z ∈ D. These functions ka are called the

normalized reproducing kernels of L2
a(D); it is clear that they are unit vectors

in L2
a(D). For any a ∈ D, let ϕa be the analytic mapping on D defined by

ϕa(z) =
a−z
1−āz , z ∈ D. An easy calculation shows that the derivative of ϕa at

z is equal to −ka(z). It follows that the real Jacobian determinant of ϕa at
z is

Jϕa(z) = |ka(z)|2 =
(1− |a|2)2

|1− āz|4
.

Let L∞(D, dA) be the Banach space of all essentially bounded measurable
functions f on D with

∥f∥∞ = ess sup {|f(z)| : z ∈ D} <∞

and H∞(D) be the space of bounded analytic functions on D.
For ϕ ∈ L∞(D), the Toeplitz operator with symbol ϕ, denoted Tϕ, is the
operator from L2

a(D) into itself defined by Tϕf = P (ϕf). We can write Tϕ
as an integral operator as follows :

Tϕf(z) =

∫
D
ϕ(w)K(z, w̄)f(w)dA(w) =

∫
D

ϕ(w)f(w)

(1− zw)2
dA(w).

Toeplitz operators can also be defined for unbounded symbols ϕ on the open
unit disk D. The operator is densely defined, in this case. It is easy to see that
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H∞(D), which is dense in L2
a(D), is contained in the domain of the operator

Tϕ. By a harmonic function we mean a complex valued function on D whose
Laplacian is identically 0. Let h∞(D) be the space of all bounded harmonic
functions on D. Let L(L2

a(D)) be the of all bounded linear operators from
L2
a(D) into itself and LC(L2

a(D)) be the subspace of L(L2
a(D)) consisting of all

compact operators from L2
a(D) into itself. Define the Berezin transform for

linear operators T ∈ L(L2
a(D)) by the formula ρ(T )(z) = ⟨Tkz, kz⟩, z ∈ D.

Notice that the operator T need not be bounded, and it suffices if its domain
contains all kz, z ∈ D. Let V (D) = {ϕ ∈ L∞(D) : ess lim |z|→1ϕ(z) = 0}.

Let Tϕ be a Toeplitz operator on the Hardy space H2(T). It is easily seen
that T ∗

z TϕTz = Tϕ for all ϕ ∈ L∞(T). Brown and Halmos[9] showed that the
converse also holds: if a bounded linear operator T : H2(T) → H2(T)
satisfies T ∗

z TTz = T , then T = Tϕ for some ϕ ∈ L∞(T). This result serves as
a starting point for the theory of symbols of operators [23]. Notice that the
mapping ϕ → Tϕ is linear. Englis [10] have shown that Toeplitz operators
on L2

a(D) do not admit the characterization as above. More precisely, if
ATϕB = Tϕ for all ϕ ∈ L∞(D), then A = cI,B = c−1I for some nonzero
complex number c. Englis [11] also showed that the set {Tϕ : ϕ ∈ L∞(D)} is
dense in L(L2

a(D)) in strong operator topology and the C∗-algebra generated
by {Tϕ : ϕ ∈ L∞(D)} is strictly smaller than L(L2

a(D)).
A scalar or matrix-valued function associated with the bounded linear

operator and having properties that somehow reflect the properties of the
operator is called the symbol of the operator. One assumes that the opera-
tors to which a symbol is assigned belong to an algebra and the symbol of
an operator also takes values in an algebra. Usually symbols are associated
with operators acting on function spaces . For example, Toeplitz, Hankel
and composition operators on Hardy and Bergman spaes. The correspon-
dence between symbols and operators is called [7],[8] symbol calculus.

Barria and Halmos [3] and Feintuch [13], [12] introduced the concept
of asymptotic Toeplitz operators and asymptotic Hankel operators on the
Hardy space. The importance of this notion is that it associates with a
class of operators a Toeplitz operator and with a class of operators a Hankel
operator where the original operators are not even Toeplitz or Hankel. Thus
it is possible to assign a symbol to an operator that is not Toeplitz or Hankel
and hence a symbol calculus is obtained. The significance of these results
is that it gives distance formulae which can be viewed as operator theoretic
analogues of results [13] of Nehari, Hartman and Adamjan, Arov and Krein
[15].

In section 2, we investigate if every bounded linear operator in a Hilbert
space has a symbol associated with it and whether the norm of the operator
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is equal to the essential supremum norm of its symbol. We shall use the
Cesaro summability method to show that L(L2

a(D)) has a certain similarity
to L∞(T) but there is no natural way to obtain a symbol calculus from
it. In section 3, we focus on the characterization of Louhichi and Oloffson
[20] and showed that a symbol calculus [7],[8] can be obtained for Toeplitz
operators with bounded hamonic symbols. Functions in L∞(T) correspond,
via the Poisson integral, to bounded harmonic functions on D, so perhaps
the restriction to consideration only of Toeplitz and Hankel operators with
bounded harmonic symbols is natural. In this section, we also establish that
there exists a bounded projection from L(L2

a(D)) onto {Tϕ : ϕ ∈ h∞(D)}.
In section 4, we focus our attention on Berezin symbols of an operator.
We ask the general question of how much information about the bounded
linear operators in L(L2

a(D)), its Berezin symbol carry and whether a symbol
calculus can be obtained. In fact we introduce a class A ⊂ L∞(D) such that
if Υ ∈ A and Υ ≥ 0 then there exist a positive operator T ∈ L(L2

a(D)) such
that Υ(z) = ⟨Tkz, kz⟩ for all z ∈ D. We also examine what is the Range of
the Berezin transform.

2 Symbols of operators in L(L2
a(D))

On the Hardy space of the unit circle, the Toeplitz operators and multiplica-
tion operators are bounded if their corresponding symbols are [9] essentially
bounded. Now we ask the question if every bounded linear operator in a
Hilbert space has a symbol associated with it and whether the norm of the
operator is equal to the essential supremum norm of its symbol.

In this section we shall use the Cesaro summability method. Let f ∈
L1(T) be an integrable function on T. The Nth Cesaro mean σNf of f is
defined by the formula

(σNf)(e
iθ) =

(
KN ⋆ f)(eiθ

)
=

N∑
k=−N

(
1− |k|

N + 1

)
f̂(k)eikθ

where f̂(k) = 1
2π

∫
T
f(eiθ)e−ikθdθ is the kth Fourier coefficient of f and

KN (e
iθ) =

N∑
k=−N

(
1− |k|

N + 1

)
eikθ is the Nth Fejer kernel [17].

Let Pn denote the orthogonal projection of L2
a(D) onto span {e0, e1, · · · en}.

Then the operator norms of {PnTPn} are uniformly bounded and ∥PnTPn∥ ≤
∥T∥ for all n and PnTPn converges weakly to T . For k ∈ Z , define
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Θk(T ) ∈ L(L2
a(D)), by ⟨Θk(T )en, em⟩ = ⟨Ten, em⟩.δn−m,k where δn−m,k is

the Kronecker delta. Define the kth Cesaro mean of {Θk(T )} as

σk(T ) =

k∑
j=−k

k − |j|
k

Θj(T ).

In Theorem 1, we shall show that if T ∈ L(L2
a(D)), then ∥T∥ = supk ∥σk(T )∥

where σk(T ) is the kth Cesaro mean of Θk(T ) ∈ L(L2
a(D).

Theorem 1. If {σk(T )} is uniformly bounded then ∥T∥ = sup
k

∥σk(T )∥.

Proof. : If {σk(T )} is uniformly bounded then σk(T ) converges weakly to T.
It follows therefore that ∥T∥ ≤ sup

k
∥σk(T )∥. Conversely, for λ ∈ T = {ω ∈

C : |ω| = 1}, define the unitary operator Wλ on L2
a(D) by Wλek = λkek.

For f, g ∈ L2
a(D), ∥f∥ = ∥g∥ = 1, define Φf,g(λ) = ⟨TWλf,Wλg⟩. Since T ∈

L(L2
a(D)), hence Φf,g ∈ L∞(T). Let f =

∞∑
n=0

anen, g =
∞∑
m=0

bmem, an, bm ∈ C

for all n,m ∈ N ∪ {0}. Then Φf,g(λ) =
∞∑

k=−∞

( ∑
n−m=k

anbm⟨Ten, em⟩

)
. λk

which is the Fourier series expansion of Φf,g(λ) as an element of L2(T). This
can be seen as follows : The sequence PnTPn −→ T weakly and therefore

Φnf,g(λ) = ⟨PnTPnWλf,Wλg⟩ → Φf,g(λ),

for each λ ∈ T and ∥Φnf,g∥∞ ≤ ∥T∥ for all n. It follows therefore that the

sequence {Φnf,g} converges to Φf,g in L2 -norm and then that the individual
Fourier coefficients converge. An examination of the expansion of Φnf,g,
which is finite, proves our claim.

Now since Φf,g ∈ L∞(T), the Cesaro means of its Fourier expansion are
uniformly bounded by ∥Φf,g∥∞. Thus

sup
|λ|=1

∥σk(Φf,g(λ))∥ ≤ ∥Φf,g∥∞ ≤ ∥T∥

for all k. But

|⟨σk (T )Wλf,Wλg⟩| =
∣∣∣∑k

j=−k
k−|j|
k

∑
n−m=j⟨Ten, em⟩anbmλj

∣∣∣
= |σk(Φf,g(λ))| .

Hence for ∥f∥ = ∥g∥ = 1, ∥σk(T )∥ = sup
f,g∈L2

a

|⟨σk(T )f, g⟩| = sup
f,g

|(σk(Φf,g(λ)))| ≤

∥T∥. The theorem follows.
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Thus we have seen that L(L2
a(D)) has a certain similarity to L∞(T).

In Theorem 1, for f, g ∈ L2
a(D), ∥f∥ = ∥g∥ = 1, we defined a function

Φf,g ∈ L∞(T) such that ∥T∥ = sup
∥f∥=∥g∥=1

∥Φf,g∥∞ = sup
k

∥σk(T )∥. But there

is no natural way to obtain a symbol correspondence between the operators
and the symbols.

3 Toeplitz operators with bounded harmonic sym-
bols

In this section, we focus on the characterization of Louhichi and Oloffson [20]
and showed that a symbol calculus can be obtained for Toeplitz operators
with bounded hamonic symbols. In [20], the authors have shown that if
T ∈ L(L2

a(D)) then T satisfies the operator identity (1) if and only if T =
Tϕ is a Toeplitz operator on L2

a(D) with bounded harmonic symbol ϕ. In
this section, we also establish that there exists a bounded projection from
L(L2

a(D)) onto {Tϕ : ϕ ∈ h∞(D)}.
Consider the following operators on the Bergman space L2

a(D):

(Sf)(z) = zf(z) =
∞∑
n=1

an−1z
n,

(Rf)(z) =
f(z)− f(0)

z
=

∞∑
n=0

an+1z
n,

(Df)(z) = f ′(z).

It is not difficult to verify that

RS = I and DSR = D

where I is the identity operator and f =

∞∑
n=0

anz
n ∈ L2

a(D). The operator S

is called the Bergman shift operator and R is the backward shift operator on
L2
a(D). Notice [2] that RTϕS = Tϕ for all ϕ ∈ H∞(D). Hence S∗Tϕ̄R

∗ = Tϕ̄
for all ϕ ∈ H∞(D). Let S′ = S(S∗S−1). The operator S′ is a weighted

shift operator on L2
a(D) which act as (S′f)(z) =

∞∑
n=1

n+ 1

n
an−1z

n, z ∈

D, f ∈ L2
a(D). The Bergman shift operator S satisfies the operator identity
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(S′)∗S′ = (S∗S)−1 = 2I −SS∗. Thus (S′)∗S′ +SS∗ = (S∗S)−1 +SS∗ = 2I.
The adjoint of Bergman shift operator S∗ in L(L2

a(D)) is given by

(S∗f)(z) =
∞∑
n=0

n+ 1

n+ 2
an+1z

n

for f(z) =
∞∑
n=0

anz
n ∈ L2

a(D), z ∈ D. The space kerS∗ = L2
a(D) ⊖ S(L2

a(D))

consists of the constant functions in D. The operator R = (S∗S)−1S∗ = (S′)∗

in L(L2
a(D)) is the left inverse of S. Further kerR = kerS∗ and R′ =

((S′)∗S′)−1(S′)∗ = S∗ is the left inverse of S′ with kernel kerR′ = kerS∗

consisting of the constant functions. Let T ∈ L(L2
a(D)) satisfying the oper-

ator identity

(S′)∗TS′ = 2T − STS∗ (1)

in L(L2
a(D)). Louhichi and Olofsson [20]showed that operators in L(L2

a(D))
that satisfies the operator identity (1) is a Toeplitz operators on L2

a(D)
with bounded harmonic symbol. Thus we can obtain a symbol calculus for
operators satisfying (1).

The work of Louhichi and Olofsson [20] involves the theory of functional
calculus and Cesaro summability. Let T ∈ L(L2

a(D)) be a contraction (of
norm less than or equal to 1). Let

T (k) =

{
T k, for k ≥ 0,

T ∗|k|, for k < 0.

From the existence of a unitary dilation of T, it follows the existence of a
positive L(L2

a(D))-valued operator measure dwT on the unit circle T such
that ∫

T
eikθdwT (e

iθ) = T (k), k ∈ Z.

By an approximate argument the operator measure dwT is uniquely deter-
mined by this action (see [21] and [20]). The following result is established
by Louhichi and Olofsson [20].

Theorem 2. Let H be a Hilbert space and T ∈ L(H) be a contraction
such that the operator measure dwT is absolutely continuous with respect to
Lebesgue measure on T, and let f ∈ L∞(T). Then∫

T
f(eiθ)dwT (e

iθ) = lim
N→∞

N∑
k=−N

(
1− |k|

N + 1

)
f̂(k)T (k)
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with convergence in the strong operator topology in L(H). Further if T ∈
L(L2

a(D)) then the operator T satisfies the identity (1) if and only if it has
the form of an operator integral

T =

∫
T
f(eiθ)dwS(e

iθ)

in L(L2
a(D)) of a function f ∈ L∞(T). In this case ∥T∥ = ∥f∥∞.

Using Theorem 2 , Louhichi and Olofsson [20] then characterized Toeplitz
operators Tϕ with harmonic symbol ϕ using the operator identity (1).

Theorem 3. Let T ∈ L(L2
a(D)). Then T satisfies the operator identity (1)

if and only if T = Tϕ is a Toeplitz operator on L2
a(D) with bounded harmonic

symbol ϕ.

For ψ ∈ L∞(T), one can define the Toeplitz operator Tψ from H2(T)
into itself as Tψf = P̃ (ψf) where P̃ is the Szegō projection from L2(T) onto
H2(T). It is known [25] that functions in L∞(T) correspond via Poisson in-
tegral to bounded harmonic functions on D and the radial limits of functions
in h∞(D) belong [25] to L∞(T).
Hence there is a one-to-one correspondence between h∞(D) and L∞(T). Let
L(H2(T)) be the set of all bounded linear operators from H2(T) into itself.
The functions en(z) =

√
n+ 1zn, n = 0, 1, 2, · · · form an orthonormal basis

for L2
a(D) and {un(t)}∞n=0 = {eint}∞n=0 form an orthonormal basis for H2(T).

In the following theorem we shall prove the existence of a bounded projection
from L(L2

a(D)) onto {Tϕ : ϕ ∈ h∞(D)}.

Theorem 4. There exists a bounded projection from L(L2
a(D)) onto {Tϕ :

ϕ ∈ h∞(D)}.

Proof. : The set of functions en(z) =
√
n+ 1zn, n ∈ Z+(the set of non-

negative integers), z ∈ D form an orthonormal basis for L2
a(D). Also ev-

ery bounded harmonic function f on D can be written [25] in the form
f = f1 + f̄2 =

∑∞
n=0 anz

n +
∑∞

n=1 a−nz̄
n, f1, f2 ∈ H2(D).

This implies

f(z) =

∞∑
n=0

an√
n+ 1

en +

∞∑
n=1

a−n√
n+ 1

ēn.

Then we have

⟨Tfen, em⟩ =

〈
en

∞∑
k=0

ak√
k + 1

ek, em

〉
+

〈
en

∞∑
k=1

a−k√
k + 1

ēk, em

〉
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=

〈 ∞∑
k=0

aken+k

√
n+ 1

n+ k + 1
, em

〉
+

〈 ∞∑
k=1

a−kēk+m

√
m+ 1

m+ k + 1
, ēn

〉

=


a0 if m = n;

am−n

√
n+1
m+1 if m > n;

a−(n−m)

√
m+1
n+1 if m < n.

Thus the matrix of a Toeplitz operator with bounded harmonic symbol
f is of the above form where ak, k ∈ Z is the kth Fourier coefficient of
f̃(eiθ) = limr→1− f(re

iθ).
Define W from H2(T) onto L2

a(D) as Wun = en, n = 0, 1, 2, · · · where
{un}∞n=0 is the standard orthonormal basis for H2(T) and {en}∞n=0 is the
standard orthonormal basis for L2

a(D). It is not difficult to show that W is
a unitary operator from H2(T) onto L2

a(D) and it induces a map σ from
L(L2

a(D)) into L(H2(T)) given by σ(T ) =W ∗TW.
In [1], it is shown that there is a positive linear projection Ω from

L(H2(T)) onto {Tψ : ψ ∈ L∞(T)} such that Ω(Tψ) = Tψ for all ψ ∈ L∞(T).
Let N be the additive semigroup of all positive integers and let Λ be a
Banach limit on N. Thus Λ is a state on the commutative C∗−algebra
l∞(N) (whose value at a bounded sequence (an)n≥1 is denoted by Λnan)
and which has the additional property that Λnan+1 = Λnan, (an) ∈ l∞(N).
Let U denote the bilateral shift defined on the basis {un}n∈Z of L2(T) by
Uun = un+1, n ∈ Z. It is well known [22] that U is a unitary operator and
for x, y ∈ H2(T), A ∈ L(H2(T)), we may define the form

[x, y] = Λn⟨U∗nAUnx, y⟩.

A straight forward application of the Schwarz lemma yields a unique oper-
ator Π(A) ∈ L(H2(T)) such that

⟨Π(A)x, y⟩ = Λn⟨U∗nAUnx, y⟩,

U∗Π(A)U = Π(A) and define Ω(A) = Π(A) which is a Toeplitz operator Tψ
on the Hardy space for some ψ ∈ L∞(T). As we have seen if ϕ ∈ h∞(D), the
matrix of the Toeplitz operator on the Bergman space has a special form
and it follows easily that if A = W ∗TϕW,ϕ ∈ h∞(D) then Ω(W ∗TϕW ) =

Ω(A) = Π(A) = T
ϕ̃
where ϕ̃(eiθ) = limr→1− ϕ(re

iθ) belonging to L∞(T). For
more details see [1].

It is not difficult to see that there is a one-one map ζ from {Tψ : ψ ∈
L∞(T)} onto {Tϕ : ϕ ∈ h∞(D)} such that ζ(Tψ) = T

ψ̂
where ψ̂ ∈ h∞(D) is
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the harmonic extension of ψ. Hence ζ ◦ Ω ◦ σ is a map from L(L2
a(D)) onto

{Tϕ : ϕ ∈ h∞(D)} and (ζ ◦Ω◦σ)2 = ζ ◦Ω◦σ. Hence {Tϕ : ϕ ∈ h∞(D)} can be
complemented in L(L2

a(D)). It is not difficult to verify that {Tϕ : ϕ ∈ h∞(D)}
is closed in L(L2

a(D)).

Thus the matrix entries of Tϕ, ϕ ∈ h∞(D) can be expressed by the Fourier
coefficients of ϕ. For any f ∈ L2(D), we define a function Bf on D by

Bf(z) =

∫
D
f(ϕz(w))dA(w) =

∫
D
f(w)|kz(w)|2dA(w).

The operator B is called the Berezin transform on D.
We shall now prove that if ϕ is a bounded harmonic function on the disk D
then Bϕ = ϕ and ∥Tϕ∥ = ∥ϕ∥∞.

Theorem 5. If ϕ is a bounded harmonic function on D, then Bϕ = ϕ and
∥Tϕ∥ = ∥ϕ∥∞.

Proof. : Let ϕ̃(z) = ⟨Tϕkz, kz⟩ where kz is the normalised reproducing kernel

for the Hilbert space L2
a(D). Hence ϕ̃(z) =

∫
D ϕ(w)|kz(w)|

2dA(w), z ∈ D.
For z ∈ D, let ϕz(w) = z−w

1−zw , w ∈ D. Since ϕ′z(w) = −kz(w) and the real

Jacobian determinant of ϕz at w is Jϕz(w) = |kz(w)|2 = (1−|z|2)2
|1−zw|4 , by making

a change of variable we have ϕ̃(z) =
∫
D ϕ(ϕz(w))dA(w) = ϕ(ϕz(0)) = ϕ(z).

Thus |ϕ(z)| = |ϕ̃(z)| = |⟨Tϕkz, kz⟩| ≤ ∥Tϕ∥ for all z ∈ D. Hence ∥ϕ∥∞ ≤
∥Tϕ∥. Since the Bergman projection has norm 1, we have ∥Tϕ∥ = ∥ϕ∥∞.

It is to be noted that only for bounded harmonic functions ϕ in L∞(D),
the area-version of the mean-value property hold and hence ϕ̃(z) = ϕ(z)
and therefore ∥Tϕ∥ = ∥ϕ∥∞. But there exist functions ϕ in L∞(D) that are
not harmonic on the disc D but yet ∥Tϕ∥ = ∥ϕ∥∞ as the following example
shows. Again the set of ϕ in L∞(D) such that ∥Tϕ∥ = ∥ϕ∥∞ is not linear.

Example 1. Let ϕ be the characteristic function of the annulus R ≤ |z|2 <
1. For i, j ≥ 0, ⟨Tϕej , ei⟩ = ⟨ϕej , ei⟩ = 0 if i ̸= j and {en}n≥0 is the standard

orthonormal basis for L2
a(D). Moreover ⟨Tϕej , ej⟩ = (j + 1)

∫ 1
R r

jdr = 1 −
Rj+1. Hence the matrix of Tϕ with respect to the standard orthonormal basis
{en}n≥0 is diagonal, ∥Tϕ∥ = 1 and ∥ϕ∥∞ = 1, but ϕ is not harmonic. It will
be difficult to describe those ϕ for which ∥Tϕ∥ = ∥ϕ∥∞, because the above
example shows that this set is not even linear (i.e., it is not a subspace):
the function 1 (constant 1) and the above ϕ both belong to this set, but their
difference does not because T1−ϕ is a diagonal operator with weights Rj+1,
so ∥1− ϕ∥∞ = 1 > R = ∥T1−ϕ∥.
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4 The Berezin transform of operators in L(L2
a(D))

Berezin[4] introduced the notion of covariant and contravariant symbols of
an operator. Berger and Coburn [5] [6] are the first to actually use the
Berezin symbol (contravariant symbol) of a Toeplitz operator. Further ap-
plications of the Berezin symbol can be found in Berger, Coburn and Zhu
[8], Stroethoff [24] and Zhu [26]. The Berezin symbol is very effective in
many cases in the sense that it contains a lot of information about the op-
erator that induces it. Successful applications of the Berezin transform are
so far mainly in the study of Hankel, Toeplitz and composition operators.
It is natural to ask the general question of how much information about the
operator its Berezin symbol carry and whether a symbol calculus can be
obtained.

If T ∈ L(L2
a(D)) then ρ(T ) ∈ L∞(D) and ∥ρ(T )∥∞ ≤ ∥T∥ as |ρ(T )(z)| =

|⟨Tkz, kz⟩| ≤ ∥T∥ for all z ∈ D. Further, if T ∈ LC(L2
a(D)), then as kz → 0

weakly, hence ρ(T ) ∈ V (D).
One may also notice that if T ∈ L(L2

a(D)) is diagonal with respect to
the basis {en}∞n=0, then ρ(T ) is radial. The reason is as follows: Suppose T
is diagonal with weights λn. Then

TKz(w) =

∞∑
n=0

(n+ 1)z̄nλnw
n.

Hence

ρ(T )(z) = (1− |z|2)2
∞∑
n=0

(n+ 1)λn|z|2n,

which is a radial function.
Suppose ϕ ∈ L∞(D) is a radial function. Then it can be verified that

Tϕ is a diagonal operator with respect to the basis {en}∞n=0. Passing to the
polar coordinates, we have

⟨Tϕzn, zm⟩ =
∫
D
ϕ(z)znz̄mdA(z) =

1

2π

∫ 1

0

∫ 2π

0
ϕ(r)rn+mei(n−m)t2rdtdr.

If n ̸= m, this is zero; if n = m, it equals
∫ 1
0 ψ(r

2)r2n2rdr =
∫ 1
0 ψ(t)t

ndt.
Thus ρ(Tϕ) is a radial function.

Example 2. Let Tf(z) = f(−z). Then T is a diagonal operator with respect
to the basis {zk} with eigenvalues (−1)k. After a short computation one sees

that ρ(T )(z) = ⟨Tkz, kz⟩ =
(
1−|z|2
1+|z|2

)2
which is in V (D), yet T is not compact.
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Example 3. Define Tf(z) = f(−2z). The operator T is a diagonal operator
sending zk to (−2)kzk and

ρ(T )(z) = ⟨Tkz, kz⟩ =
(

1− |z|2

1 + 2|z|2

)2

which again belongs to V (D) ⊂ L∞(D) but now T is even unbounded.

The map ρ is is injective[16]. Below we shall give an example of an operator
T ∈ L(L2

a(D)) such that ∥ρ(T )∥∞ ̸= ∥T∥ and which also demonstrates that
ρ is not bounded below.

Example 4. Let T be the projection onto the subspace spanned by zk, i.e.,
Tf = (k+1)⟨f, zk⟩zk. Then ∥T∥ = 1, while a short computation shows that

ρ(T )(z) = (k + 1)(1− |z|2)2|z|2k.

The function ρ(T )(z) attains its maximum for |z|2 = k
k+2 , the maximum

value being

(k + 1)

(
k

k + 2

)k ( 2

k + 2

)2

≤ 4

k + 2
.

Thus ∥T∥ = 1 while ∥ρ(T )∥∞ ≤ 4
k+2 .

Thus Rangeρ is not closed [19] in L∞(D) as the map ρ is injective and
the above example shows that ρ is not bounded below.
Now we shall ask the question what is the range of ρ. That is, we ask given
Υ ∈ L∞(D), does there exist T ∈ L(L2

a(D)) such that Υ(z) = ⟨Tkz, kz⟩ for
all z ∈ D.

Definition 1. A function g(x, ȳ) on D × D is called of positive type (or
positive definite), written g ≫ 0, if

n∑
j,k=1

cjc̄kg(xj, x̄k) ≥ 0 (2)

for any n− tuple of complex numbers c1, · · · , cn and points x1, · · · , xn ∈ D.
We write g ≫ h if g − h≫ 0.

We shall say Υ ∈ A if Υ ∈ L∞(D) and is such that

Υ(z) = Θ(z, z̄) (3)

where Θ(x, ȳ) is a function on D×D meromorphic in x and conjugate mero-
morphic in y.

It is a fact that (see [14], [18]) Θ as in (3), if it exists, is uniquely
determined by Υ.
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Theorem 6. Let Υ ∈ L∞(D) and Υ ≥ 0. A necessary and sufficient con-
dition that there exist a positive operator T ∈ L(L2

a(D)) such that Υ(z) =
⟨Tkz, kz⟩ for all z ∈ D is that Υ ∈ A and if Υ(z) = Θ(z, z̄) as in (3), then
there exists a constant c > 0 such that

cK(x, ȳ) ≫ Θ(x, ȳ)K(x, ȳ) ≫ 0.

Further h∞(D) ⊂ Rangeρ.

Proof. : Let T ∈ L(L2
a(D)). Let

Θ(x, ȳ) =
⟨TKy,Kx⟩
⟨Ky,Kx⟩

(4)

where Kx = K(., x̄) is the unnormalized reproducing kernel at x. Then
Θ(x, ȳ) is a function on D×D meromorphic in x and conjugate meromorphic
in y. Let Υ(z) = Θ(z, z̄). Then Υ(z) = ⟨Tkz, kz⟩ for all z ∈ D and Υ ∈ L∞(D)
as T is bounded. Thus Υ ∈ A.

Now let Υ ∈ A and Υ(z) = Θ(z, z̄) where Θ(x, ȳ) is a function on
D × D meromorphic in x and conjugate meromorphic in y. We shall prove
the existence of some T (possibly unbounded) such that ⟨Tkz, kz⟩ = Υ(z).
Let

Tf(x) =

∫
D
f(z)Θ(x, z̄)K(x, z̄)dA(z). (5)

Indeed,
Tf(x) = ⟨Tf,Kx⟩

= ⟨f, T ∗Kx⟩
=

∫
D f(z)⟨T ∗Kx,Kz⟩dA(z)

=
∫
D f(z)⟨TKz,Kx⟩dA(z)

=
∫
D f(z)Θ(x, z̄)K(x, z̄)dA(z).

Then
⟨TKy,Kx⟩ =

∫
DKy(z)Θ(x, z̄)K(x, z̄)dA(z)

=
∫
DKy(z)Θ(x, z̄)Kx(z)dA(z)

= ⟨Θ(x, z̄)Kx,Ky⟩
= Θ(x, ȳ)⟨Kx,Ky⟩
= Θ(x, ȳ)⟨Ky,Kx⟩.

Hence Θ(x, ȳ) =
⟨TKy ,Kx⟩
⟨Ky ,Kx⟩ and Υ(z) = Θ(z, z̄) = ⟨Tkz, kz⟩. Notice how-

ever that the operator T given by (5) may well be unbounded. We shall now
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prove a necessary and sufficient condition for T to be bounded and positive
is that there exists c > 0 such that

cK(x, ȳ) ≫ Θ(x, ȳ)K(x, ȳ) ≫ 0.

Suppose there exist c > 0 such that for all x, y ∈ D,

cK(x, ȳ) ≫ Θ(x, ȳ)K(x, ȳ) ≫ 0.

We shall show that T is bounded and positive. Let f =
∑n

j=1 cjKxj where
cj are constants, xj ∈ D for j = 1, 2 · · · , n. Then

⟨Tf, f⟩ = ⟨T (
∑n

j=1 cjKxj ),
∑n

j=1 cjKxj ⟩
=

∑n
j,k=1 cjck⟨TKxj ,Kxk⟩

=
∑n

j,k=1 cjckΘ(xk, x̄j)K(xk, x̄j) ≥ 0

and
⟨Tf, f⟩ =

∑n
j,k=1 cjck⟨TKxj ,Kxk⟩

=
∑n

j,k=1 cjckΘ(xk, x̄j)K(xk, x̄j)

≤ c
∑n

j,k=1 cjckK(xk, x̄j) = c∥f∥2.

Since the set of vectors {
∑n

j=1 cjKxj , xj ∈ D, j = 1, 2 · · · , n} is dense in

L2
a(D), hence 0 ≤ ⟨Tf, f⟩ ≤ c∥f∥2 for all f ∈ L2

a(D) and T is bounded and
positive.

Conversely, suppose T is bounded and positive. Then there exists a
constant c > 0 such that 0 ≤ ⟨Tf, f⟩ ≤ c∥f∥2 for all f ∈ L2

a(D). That is, if
f =

∑n
j=1 cjKxj , then

0 ≤ ⟨Tf, f⟩
=

∑n
j,k=1 cjck⟨TKxj ,Kxk⟩

=
∑n

j,k=1 cjckΘ(xk, x̄j)K(xk, x̄j)

≤ c∥f∥2
= c

∑n
j,k=1 cjckK(xk, x̄j).

Thus cK(x, ȳ) ≫ Θ(x, ȳ)K(x, ȳ) ≫ 0.
We shall now verify that h∞(D) ⊂ Rangeρ. Let ϕ ∈ h∞(D). Then by the
mean value property we obtain

ρ(Tϕ)(z) = ⟨Tϕkz, kz⟩ =
∫
D
ϕ(w)|kz(w)|2dA(w)

=

∫
D
(ϕ ◦ ϕz)(w)dA(w) = (ϕ ◦ ϕz)(0) = ϕ(z).

Hence ϕ ∈ Rangeρ. But Rangeρ ⊈ h∞(D). Example 2 gives an example of a
bounded linear operator T such that ρ(T ) /∈ h∞(D).
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Let

E = {T ∈ L(L2
a(D)) : ⟨Tkz, kz⟩ =

∫
D
⟨Tkϕz(w), kϕz(w)⟩dA(w) for all z ∈ D}.

Theorem 7. The space E = {TΦ : Φ ∈ h∞(D)} and ρ(E) = h∞(D).

Proof. : Let T ∈ E. Then

⟨Tkz, kz⟩ =
∫
D
⟨Tkϕz(w), kϕz(w)⟩dA(w) for all z ∈ D. (6)

Let Φ(z) = ρ(T )(z) = ⟨Tkz, kz⟩. Then it follows from (6) that Φ(z) =∫
DΦ(ϕz(w))dA(w) for all z ∈ D. Hence Φ ∈ h∞(D) and ⟨Tkz, kz⟩ =
ρ(T )(z) = Φ(z) = ⟨TΦkz, kz⟩. Now since the map ρ is injective, we obtain
T = TΦ.

To prove the converse, let T = TΦ,Φ ∈ h∞(D). Then∫
D⟨Tkϕz(w), kϕz(w)⟩dA(w) =

∫
D⟨TΦkϕz(w), kϕz(w)⟩dA(w)

=
∫
DΦ(ϕz(w))dA(w) = Φ(z)

= ⟨TΦkz, kz⟩
= ⟨Tkz, kz⟩
= ρ(T )(z) for all z ∈ D.

Hence T ∈ E.
Let T = TΦ ∈ E and Φ ∈ h∞(D). Further, ρ(T ) = Φ ∈ h∞(D). Hence

ρ(E) ⊆ h∞(D). Conversely, let Φ ∈ h∞(D). Then TΦ ∈ E and Φ = ρ(TΦ) ∈
ρ(E). Thus h∞(D) ⊆ ρ(E).
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