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Abstract

We consider a solution u(·, t) to an initial boundary value problem for
time-fractional diffusion-wave equation with the order α ∈ (0,2)\{1} where
t is a time variable. We first prove that a suitable norm of u(·, t) is bounded by
the rate t−α for 0 < α < 1 and t1−α for 1 < α < 2 for all large t > 0. Second,
we characterize initial values in the cases where the decay rates are faster
than the above critical exponents. Differently from the classical diffusion
equation α = 1, the decay rate can keep some local characterization of initial
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1 Introduction

Let Ω ⊂ Rd be a bounded domain with smooth boundary ∂Ω and let ν(x) :=
(ν1(x), ....,νd(x)) be the unit outward normal vector to ∂Ω at x. We assume that

0 < α < 2, α ̸= 1.

By ∂α
t we denote the Caputo derivative:

∂
α
t g(t) =

1
Γ(n−α)

∫ t

0
(t − s)n−α−1 dn

dsn g(s)ds

for α ̸∈ N satisfying n−1 < α < n with n ∈ N (e.g., Podlubny [13]). For α = 1, we
write ∂tg(t) =

dg
dt and ∂tg(x, t) =

∂g
∂t (x, t).

We consider an initial boundary value problem for a time-fractional diffusion-
wave equation:

∂α
t u(x, t) =−Au(x, t), x ∈ Ω, 0 < t < T,

u|∂Ω×(0,T ) = 0,
u(x,0) = a(x), x ∈ Ω if 0 < α ≤ 1,
u(x,0) = a(x), ∂tu(x,0) = b(x), x ∈ Ω if 1 < α < 2.

(1.1)

Throughout this article, we set

(−Av)(x) =
d

∑
i, j=1

∂i(ai j(x)∂ jv(x))+ c(x)v(x), x ∈ Ω,

where ai j = a ji, 1 ≤ i, j ≤ n and c are sufficiently smooth on Ω, and c(x) ≤ 0 for
x ∈ Ω, and we assume that there exists a constant σ > 0 such that

d

∑
i, j=1

ai j(x)ζiζ j ≥ σ

d

∑
i=1

ζ
2
i for all x ∈ Ω and ζ1, ...,ζd ∈ R.

For α ∈ (0,2) \ {1}, the first equation in (1.1) is called a fractional diffusion-
wave equation, which models anomalous diffusion in heterogeneous media. As for
physical backgrounds, we are restricted to a few references: Metzler and Klafter
[11], Roman and Alemany [14], and one can consult Chapter 10 in [13].

The properties such as asymptotic behavior as t → ∞ of solution u to (1.1) are
proved to depend on the fractional order α of the derivative. Moreover decay rates
can characterize the initial values which is very different from the case α = 1. The
main purpose of this article is to study these topics.

Throughout this article, L2(Ω), Hµ(Ω) denote the usual Lebesgue space and
Sobolev spaces (e.g., Adams [1]), and by ∥ · ∥ and (·, ·) we denote the norm and
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the scalar product in L2(Ω) respectively. When we specify the norm in a Hilbert
space Y , we write ∥ · ∥Y . All the functions under consideration are assumed to be
real-valued.

We define the domain D(A) of A by H2(Ω)∩H1
0 (Ω). Then the operator A in

L2(Ω) has positive eigenvalues with finite multiplicities. We denote the set of all
the eigenvalues by

0 < λ1 < λ2 · · · −→ ∞.

We set Ker(A− λn) := {v ∈ D(A); Av = λnv} and dn := dimKer(A− λn). We
denote an orthonormal basis of Ker (A−λn) by {ϕnk}1≤k≤dn .

Then we define a fractional power Aγ with γ ∈ R (e.g., Pazy [12]), and we see

D(Aγ) =

{
a ∈ L2(Ω);

∞

∑
n=1

dn

∑
k=1

λ
2γ
n (a,ϕnk)

2 < ∞

}
if γ > 0

and D(Aγ)⊃ L2(Ω) if γ ≤ 0, Aγa = ∑
∞
n=1 λ

γ
n ∑

dn
k=1(a,ϕnk)ϕnk,

∥Aγa∥=
(

∑
∞
n=1 ∑

dn
k=1 λ

2γ
n (a,ϕnk)

2
) 1

2
, a ∈ D(Aγ).

(1.2)

In particular,

A−1a =
∞

∑
n=1

dn

∑
k=1

1
λn

(a,ϕnk)ϕnk, ∥A−1a∥=

(
∞

∑
n=1

dn

∑
k=1

1
λ2

n
(a,ϕnk)

2

) 1
2

. (1.3)

Moreover it is known that

D(Aγ)⊂ H2γ(Ω) for γ ≥ 0.

The well-posedness for (1.1) is studied for example in Gorenflo, Luchko and Ya-
mamoto [8], Kubica, Ryszewska and Yamamoto [10], Sakamoto and Yamamoto
[15]. As for the asymptotic behavior, we know

∥u(·, t)∥ ≤ C
tα
∥a∥, t > 0 (1.4)

(e.g., [10], [15], Vergara and Zacher [16]). The article [16] first established (1.4)
for t-dependent symmetric operator A. Moreover by the eigenfunction expansion
of u(x, t) (e.g., [15]), one can prove

∥u(·, t)∥ ≤ C
tα
∥a∥+ C

tα−1 ∥b∥, t > 0 (1.5)

for 1 < α < 2.
First we improve (1.4) and (1.5) with stronger norm of u.
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Theorem 1. Let t0 > 0 be arbitrarily fixed. There exists a constant C > 0 depending
on t0 such that

∥u(·, t)∥H2(Ω) ≤
{ C

tα ∥a∥ if 0 < α < 1,
C
tα ∥a∥+ C

tα−1 ∥b∥ if 1 < α < 2

for t ≥ t0.

This theorem means that the Sobolev regularity of initial values is improved by
2 after any time t > 0 passes.

The fractional diffusion-wave equation (1.1) models slow diffusion, which the
decay estimates (1.4) and (1.5) describe. For α= 1, by the eigenfunction expansion
of u, we can readily prove that ∥u(·, t)∥ ≤ e−λ1t∥a∥. Needless to say, Theorem 1
does not reject the exponential decay e−λ1t , but as this article shows, the decay
rates in the theorem are the best possible in a sense.

For further statements, we introduce a bounded linear operator F : D(Aγ) −→
Y , where γ > 0 and Y is a Hilbert space with the norm ∥ ·∥Y . We interpret that F is
an observation mapping, and we consider the following four kinds of F .

Case 1. Let ω ⊂ Ω be a subdomain. Let

F1(v) = v|ω, D(F1) = L2(Ω), Y = L2(ω). (1.6)

Then F1 : L2(Ω)−→ L2(ω) is bounded.

Case 2. Let Γ ⊂ ∂Ω be a subboundary. Let

F2(v) = ∂νAv|Γ, D(F2) = H2(Ω), Y = L2(Γ). (1.7)

Here we set

∂νAv :=
d

∑
i, j=1

ai j(x)(∂iv)(x)ν j(x).

The trace theorem (e.g., Adams [1]) implies that F2 : H2(Ω)−→ L2(Γ) is bounded.

Case 3. Let x1, ...,xM ∈ Ω be fixed and let γ > d
4 , where d is the spatial dimen-

sions. We consider

F3(v) = (v(x1), ...,v(xM)), D(F3) = D(Aγ), Y = RM. (1.8)

Then the Sobolev embedding implies that D(F3) ⊂C(Ω), and so F3 : D(Aγ) −→
RM is bounded. We interpret that F3 are pointwise data.
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Case 4. Let ρ1, ...,ρM ∈ L2(Ω) be given and let Y = RM. Let

F4(v) =
(∫

Ω

ρk(x)v(x)dx
)

1≤k≤M
, D(F4) = L2(Ω), Y = RM. (1.9)

Then F4 : L2(Ω) −→ RM is bounded and corresponds to distributed data with
weight functions ρk whose supports concentrate around some points in Ω.

Now we state

Theorem 2. In (1.1) we assume that a,b ∈ L2(Ω) for F1,F2,F4 and a,b ∈ D(Aγ0)
with γ0 = 0 if d

4 < 1 and γ0 >
d
4 −1 if d

4 ≥ 1 for F3. Let u = u(x, t) satisfy (1.1). For
j = 3,4, let Fj satisfy Fj|Ker(λn−A) is injective for all n ∈ N.

Furthermore we assume that for j = 1,2,3,4, there exist sequences τn, n ∈ N
and Cn > 0, n ∈ N which may depend on u, such that

τn > 0, lim
n→∞

τn = ∞ (1.10)

and
∥Fj(u(·, t))∥Y ≤ Cn

tτn
as t → ∞ for all n ∈ N. (1.11)

Then u = 0 in Ω× (0,∞).

For 0 < α < 1, a similar result is proved as Theorem 4.3 in [15], and Theorem
2 is an improvement.

Example 1 (Example of F3 such that F3|Ker(λn−A) is injective). Let

A =−∆, d = 2, Ω = {(x1,x2); 0 < x1 < L1, 0 < x2 < L2}.

Then dim Ker (A−λn) = 1 for each n ∈ N if L1
L2

̸∈ Q. Indeed, the eigenvalues are
given by

λmn :=
(

m2

L2
1
+

n2

L2
2

)
π

2, m,n ∈ N

and the corresponding eigenfunction ϕmn(x) is given by sin mπ

L1
x1 sin nπ

L2
x2. There-

fore, by L1
L2

̸∈ Q we see that if λmn = λm′n′ with m,n,m′,n′ ∈ N, then m = m′ and
n = n′.

Let x1 = (x1
1,x

1
2)∈ Ω satisfy x1

1
L1
,

x1
2

L2
̸∈ Q. We set F3(v) := v(x1) and M = 1. Then

we can readily verify that F3|Ker(λn−A) is injective for all n ∈ N.

The corresponding result to Theorem 2 can be proved for the classical diffusion
equation α = 1: if there exist sequences τn, n ∈ N and Cn > 0, n ∈ N which can
depend on u such that τn > 0, limn→∞ τn = ∞ and

∥u(·, t)∥L2(ω) ≤Cne−τnt as t → ∞,
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then u = 0 in Ω× (0,∞).
Next we consider characterizations of initial values yielding local faster decay

than 1
tα and/or 1

tα−1 .

Theorem 3. (i) Let F1 be defined by (1.6).
Case I: 0 < α < 1.
If

∥u(·, t)∥L2(ω) = o
(

1
tα

)
as t → ∞, (1.12)

then
A−1a = a = 0 in ω. (1.13)

Moreover, assuming further that either a ≥ 0 in Ω or a ≤ 0 in Ω, then (1.12) yields
a = 0 in Ω.
Case II: 1 < α < 2.
If

∥u(·, t)∥L2(ω) = o
(

1
tα−1

)
as t → ∞, (1.14)

then
A−1b = b = 0 in ω. (1.15)

If (1.12) holds, then we have u(x0,0) = ∂tu(x0,0) = 0. Moreover, assuming further
that either b ≥ 0 in Ω or b ≤ 0 in Ω, then (1.14) yields b = 0 in Ω, and the same
conclusion holds for a.
(ii) Let F3 be defined by (1.8) with M = 1 and a,b ∈ D(Aγ) with γ > d

4 .
Case I: 0 < α < 1.

|Au(x0, t)|= |∂α
t u(x0, t)|= o

(
1
tα

)
as t → ∞ (1.16)

if and only if u(x0,0) = 0.
Case II: 1 < α < 2.

|Au(x0, t)|= |∂α
t u(x0, t)|= o

(
1

tα−1

)
as t → ∞ (1.17)

if and only if ∂tu(x0,0) = 0.
Moreover (1.16) holds if and only if u(x0,0) = ∂tu(x0,0) = 0.

Theorem 3 asserts that the faster decay than 1
tα or 1

tα−1 provides information
that initial values vanishes at some point or in a subdomain.

In a special case, we prove



M. Yamamoto 83

Proposition 1. Let x0 ∈ Ω be arbitrarily given. Let a,b ∈ D(Aγ) with γ > d
4 , and{

a ≥ 0 in Ω or a ≤ 0 in Ω,
b ≥ 0 in Ω or b ≤ 0 in Ω.

(1.18)

Case I: 0 < α < 1.
|u(x0, t)|= o

(
1
tα

)
as t → ∞, (1.19)

if and only if u(x,0) = 0 for x ∈ Ω.
Case II: 1 < α < 2.

|u(x0, t)|= o
(

1
tα−1

)
as t → ∞ (1.20)

if and only if ∂tu(x,0) = 0 for x ∈ Ω.

We cannot expect similar results to Theorem 2 for the classical diffusion equa-
tion, i.e., α = 1.

Example 2 (Example of the classical diffusion equation).
∂tu(x, t) = ∂2

xu(x, t), 0 < x < 1, t > 0,
u(0, t) = u(1, t) = 0, t > 0,
u(x,0) = a(x), 0 < x < 1.

Then it is well-known that for arbitrary x0 ∈ Ω and a ∈ L2(0,1),

|u(x0, t)|= o(e−π2t) as t → ∞

if and only if

sinπx0

∫ 1

0
a(x)sinπxdx = 0. (1.21)

In other words, Theorem 2 means that for α ∈ (0,2) \ {1}, the faster decay at
a point x0 or in a subdomain ω still keeps some information of the initial value
a(x) at x0 or in ω. On the other hand, in the case of α = 1, the decay rate is
influenced only by averaged information (1.21) of the initial value. However under
extra assumption that the initial value a does not change the signs, by (1.21) we
can conclude that a = 0 in Ω by sinπx ≥ 0 for 0 < x < 1 if sinπx0 ̸= 0. This is true
for general dimensions, because one can prove that the eigenfunction for λ1 does
not change the signs.

This article is composed of five sections. In Section 2, we show lemmata which
we use for the proofs of Theorems 1 - 3 and Proposition 1. Sections 3 and 4 are de-
voted to the proofs of Theorems 1-2 and Theorem 3 and Proposition 1, respectively.
In Section 5, we give concluding remarks.
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2 Preliminaries

For α > 0, we define the Mittag-Leffler functions by

Eα,1(z) =
∞

∑
k=0

zk

Γ(αk+1)
, Eα,2(z) =

∞

∑
k=0

zk

Γ(αk+2)
, z ∈ C

and it is know that Eα,1(z) and Eα,2(z) are entire functions in z ∈ C (e.g. Gorenflo,
Kilbas, Mainardi and Rogosin [7], Podlubny [13]).

First we show

Lemma 1. Let β = 1,2 and α ∈ (0,2)\{1}.
(i) For p ∈ N we have

Eα,β(−η) =
p

∑
ℓ=1

(−1)ℓ+1

Γ(β−αℓ)

1
ηℓ

+O
(

1
ηp+1

)
as η > 0,→ ∞. (2.1)

(ii)

|Eα,β(η)| ≤
C

1+η
for all η > 0. (2.2)

Proof. As for (2.1), see Proposition 3.6 (pp.25-26) in [7] or Theorem 1.4 (pp.33-
34) in [13]. The estimate (2.2) is seen by Theorem 1.6 (p.35) in [13] for example.
Thus the proof of Lemma 1 is complete.

Moreover, by the eigenfunction expansion of the solution u to (1.1) (e.g., The-
orems 2.1 and 2.3 in [15]), we have

Lemma 2.
u(x, t) = ∑

∞
n=1 Eα,1(−λntα)∑

dn
k=1(a,ϕnk)ϕnk(x) if 0 < α < 1,

u(x, t) = ∑
∞
n=1

[
Eα,1(−λntα)∑

dn
k=1(a,ϕnk)ϕnk(x)

+ tEα,2(−λntα)∑
dn
k=1(b,ϕnk)ϕnk(x)

]
if 1 < α < 2

(2.4)

in C([0,T ];L2(Ω))∩C((0,T ];H2(Ω)∩H1
0 (Ω)).

By Lemma 1, we can prove

Lemma 3. (i) Let a,b ∈ D(Aγ0) where γ0 = 0 if d
4 < 1 and γ0 >

d
4 −1 if d

4 ≥ 1. We
fix t0 ∈ (0,T ) arbitrarily. Then the series in (2.4) are convergents in C(Ω× [t0,T ]).
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(ii) Let a,b ∈ L2(Ω). Then

∂νAu(x, t) =
∞

∑
n=1

Eα,1(−λntα)
dn

∑
k=1

(a,ϕnk)∂νAϕnk(x) if 0 < α < 1,

∂νAu(x, t) =
∞

∑
n=1

[
Eα,1(−λntα)

dn

∑
k=1

(a,ϕnk)∂νAϕnk(x)

+ tEα,2(−λntα)
dn

∑
k=1

(b,ϕnk)∂νAϕnk(x)
]

if 1 < α < 2

in C([t0,T ];L2(∂Ω)).

For the proof of Lemma 3, we show

Lemma 4. Let γ ∈ R, and let t0 ∈ (0,T ) be given arbitrarily. We assume that
a,b ∈ D(Aγ). Then there exists a constant C =C(t0,γ)> 0 such that

∥Aγ+1u(·, t)∥ ≤
{

Ct−α∥Aγa∥ if 0 < α < 1,
C(t−α∥Aγa∥+ t−α+1∥Aγb∥) if 1 < α < 2

for all t ≥ t0.

Proof of Lemma 4. For γ ∈ R, by each u0 ∈ D(Aγ), applying (1.2), we see

Aγ+1(u0,ϕnk)ϕnk = (u0,ϕnk)λ
γ+1
n ϕnk = λn(u0,λ

γ
nϕnk)ϕnk

= λn(u0,Aγ
ϕnk)ϕnk = λn(Aγu0,ϕnk)ϕnk.

Here we used (u0,Aγϕnk) = (Aγu0,ϕnk) by (1.2). Therefore, in view of (2.4), we
have

Aγ+1u(x, t) =
∞

∑
n=1

λnEα,1(−λntα)
dn

∑
k=1

(Aγa,ϕnk)ϕnk(x)

+ t
∞

∑
n=1

λnEα,2(−λntα)
dn

∑
k=1

(Aγb,ϕnk)ϕnk(x)

in C([0,T ];L2(Ω)). We fix t0 > 0 arbitrarily. Let 1 < α < 2. By (2.2) we see

∥Aγ+1u(·, t)∥2 ≤
∞

∑
n=1

λ
2
n|Eα,1(−λntα)|2

dn

∑
k=1

|(Aγa,ϕnk)|2

+ t2
∞

∑
n=1

λ
2
n|Eα,2(−λntα)|2

dn

∑
k=1

|(Aγb,ϕnk)|2

≤ C(t0)

(
1

t2α

∞

∑
n=1

λ
2
n

dn

∑
k=1

|(Aγa,ϕnk)|2
1
λ2

n
+

1
t2α−2

∞

∑
n=1

λ
2
n

dn

∑
k=1

|(Aγb,ϕnk)|2
1
λ2

n

)
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for t ≥ t0. The proof for 0 < α < 1 is similar. Thus we complete the proof of
Lemma 4.

Now we proceed to

Proof of Lemma 3. By the condition on γ, we apply the Sobolev embedding to
have

∥u(·, t)∥C(Ω) ≤C∥Aγ+1u(·, t)∥L2(Ω).

Therefore, Lemma 4 yields that the series in (2.4) converge in C(Ω× [t0,T ]). Part
(ii) is seen by the trace theorem:

∥∂νAu(·, t)∥L2(∂Ω) ≤C∥Au(·, t)∥L2(Ω).

Thus the proof of Lemma 3 is complete.

We conclude this section with

Lemma 5. We assume that pn ∈ R, {ℓm}m∈N ⊂ N satisfying limm→∞ ℓm = ∞, and
there exist constants C > 0 and θ0 ≥ 0 such that

sup
n∈N

|pn| ≤Cλ
θ0
n . (2.5)

If
∞

∑
n=1

pn

λ
ℓm
n

= 0 for all m ∈ N,

then pn = 0 for all n ∈ N.

Proof. By µn, n ∈ N, we renumber the eigenvalues λn of A according to the multi-
plicities:

µk = λ1 for 1 ≤ k ≤ d1, µk = λ2 for d1 +1 ≤ k ≤ d1 +d2, · · · .

Then µn ≤ λn for n ∈ N.
On the other hand, there exists a constant c1 > 0 such that

µn = c1n
2
d +o(1) as n → ∞

(e.g., Agmon [2], Theorem 15.1). Here we recall that d is the spatial dimensions.
Therefore, we can find a constant c2 > 0 such that λn ≥ c2n

2
d as n → ∞. Hence, we

can choose a large constant θ1 > 0, for example θ1 >
d
2 , such that

∞

∑
n=1

1

λ
θ1
n

< ∞.
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We set
rn :=

pn

λ
θ0+θ1
n

, n ∈ N.

Then (2.5) implies
∞

∑
n=1

|rn| ≤
∞

∑
n=1

∣∣∣∣ pn

λ
θ0
n

∣∣∣∣ 1

λ
θ1
n

≤C
∞

∑
n=1

1

λ
θ1
n

< ∞.

Since ∑
∞
n=1

pn

λ
ℓm
n
= 0, we obtain ∑

∞
n=1

rn
λ

κm
n

= 0 for all m∈N, where κm = ℓm−θ0−θ1,
so that

r1

λ
κm
1

+
∞

∑
n=2

rn

λ
κm
n

= 0, that is, r1 +
∞

∑
n=2

rn

(
λ1

λn

)κm

= 0.

Hence

|r1|=

∣∣∣∣∣− ∞

∑
n=2

rn

(
λ1

λn

)κm
∣∣∣∣∣≤
(

∞

∑
n=2

|rn|

)(
λ1

λ2

)κm

.

By 0 < λ1 < λ2 < ...., we see that
∣∣∣λ1

λ2

∣∣∣ < 1. Letting m → ∞, we see that κm → ∞,
and so r1 = 0, that is, p1 = 0. Therefore,

∞

∑
n=2

rn

λ
κm
n

= 0.

Repeating the above argument, we have p2 = p3 = · · · = 0. Thus the proof of
Lemma 5 is complete.

3 Proofs of Theorems 1 and 2

3.1 Proof of Theorem 1.

Now, by noting that ∥u(·, t)∥H2(Ω) ≤C∥Au(·, t)∥ by u(·, t) ∈ D(A), Theorem 1 fol-
lows directly from Lemma 4 with γ = 0 in Section 2.

3.2 Proof of Theorem 2.

First Step. It suffices to prove in the case 1<α< 2, because the case 0<α< 1 is
similar and even simpler. In view of Lemma 3, for a and b satisfying the conditions
in the theorem, we have

Fj(u(·, t)) =
∞

∑
n=1

Eα,1(−λntα)Fj

(
dn

∑
k=1

(a,ϕnk)ϕnk

)

+ t
∞

∑
n=1

λnEα,2(−λntα)Fj

(
dn

∑
k=1

(b,ϕnk)ϕnk

)
, j = 1,2,3,4
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in C([t0,T ];Y ), where

Y =


L2(ω) for F1,
L2(∂Ω) for F2,
RM for F3 and F4.

Applying (2.1) in Lemma 1, we obtain

Fj(u(·, t)) =
p

∑
ℓ=1

(−1)ℓ+1

Γ(1−αℓ)tαℓ

∞

∑
n=1

1
λℓ

n
Fj

(
dn

∑
k=1

(a, ϕnk)ϕnk

)

+O
(

1
tαp+α

)
∞

∑
n=1

Fj

(
dn

∑
k=1

(a, ϕnk)ϕnk

)

+
p

∑
ℓ=1

(−1)ℓ+1

Γ(2−αℓ)tαℓ−1

∞

∑
n=1

1
λℓ

n
Fj

(
dn

∑
k=1

(b, ϕnk)ϕnk

)

+O
(

1
tαp+α−1

)
∞

∑
n=1

Fj

(
dn

∑
k=1

(b, ϕnk)ϕnk

)
. (3.1)

Therefore, (3.1) yields

Fj(u(·, t)) =
p

∑
ℓ=1

(−1)ℓ+1

Γ(1−αℓ)tαℓ

∞

∑
n=1

pn

λℓ
n

+
p

∑
ℓ=1

(−1)ℓ+1

Γ(2−αℓ)tαℓ−1

∞

∑
n=1

qn

λℓ
n
+O

(
1

tαp+α−1

)
as t → ∞. (3.2)

Here we set

pn = Fj

(
dn

∑
k=1

(a, ϕnk)ϕnk

)
, qn = Fj

(
dn

∑
k=1

(b, ϕnk)ϕnk

)
for j = 1,2,3,4.

In the above series, we exclude ℓ∈N such that 1−αℓ,2−αℓ∈ {0,−1,−2, ...},
that is, these terms do not appear if αℓ ∈ N.

Second Step. We see that

{ℓ ∈ N; αℓ ̸∈ N} is an infinite set if α ̸∈ N. (3.3)

Indeed, if not, then N= {ℓ∈N; αℓ ̸∈N}∪{ℓ∈N; αℓ∈N} implies that there exists
N0 ∈ N such that {ℓ ∈ N; αℓ ∈ N} ⊃ {N0,N0 +1, ...}. Therefore αN0, α(N0 +1) ∈
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N, which yields α = α(N0+1)−αN0 ∈ N. By α ̸∈ N, this is impossible. Therefore
(3.3) holds.

We number the infinite set {ℓ ∈ N; αℓ ̸∈ N} by ℓ1, ℓ2, ℓ3, ... and for each N ∈ N,
we can rewrite (3.2) as

Fj(u(·, t)) =
N

∑
m=1

(−1)ℓm+1

Γ(1−αℓm)tαℓm

∞

∑
n=1

pn

λ
ℓm
n

+
N

∑
m=1

(−1)ℓm+1

Γ(2−αℓm)tαℓm−1

∞

∑
n=1

qn

λ
ℓm
n

+O
(

1
tαℓN+1−1

)
as t → ∞. (3.4)

Moreover
{αn}n∈N ∩{αn−1}n∈N = /0 for 1 < α < 2. (3.5)

Indeed let αn′ = αn′′−1 with some n′,n′′ ∈ N. Then αℓ0 = 1 with ℓ0 := n′′−n′,
which means α ≤ 1 and this is a contradiction by 1 < α < 2.

By (3.5), we number {αℓm}m∈N ∪{αℓm −1}m∈N by αℓ1 −1 =: s1 < s2 < · · ·<
s2N := αℓN and then

Fj(u(·, t)) =
2N

∑
m=1

Qm

tsm
+O

(
1

tαℓN+1−1

)
in C([t0,T ];Y ) as t → ∞, (3.6)

where

Qm =
(−1)ℓm+1

Γ(1−αℓm)

∞

∑
n=1

pn

λ
ℓm
n

or Qm =
(−1)ℓm+1

Γ(2−αℓm)

∞

∑
n=1

qn

λ
ℓm
n
.

Third Step. We fix N ∈ N arbitrarily. In terms of (1.11), by (3.6) we see that for
each n ∈ N there exists a constant Cn > 0 such that

∥Q1∥Y

ts1
−

2N

∑
m=2

∥Qm∥Y

tsm
− C

tαℓN+1−1 ≤ Cn

tτn
.

Then

∥Q1∥Y ≤
2N

∑
m=2

∥Qm∥Y

tsm−s1
+

C
tαℓN+1−1−s1

+
Cn

tτn−s1
.

We note that αℓN < αℓN+1−1 by α > 1 and ℓn, ℓN+1 ∈ N, so that s2N < αℓN+1−1.
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Since limn→∞ τn = ∞, we can choose n ∈ N such that τn > s1. Hence, letting
t → ∞, we have Q1 = 0 in Y . Continuing this argument, we reach Qm = 0 for
1 ≤ m ≤ 2N. Since N ∈ N is arbitrary, we obtain Qm = 0 for all m ∈ N, that is,

∞

∑
n=1

pn

λ
ℓm
n

=
∞

∑
n=1

qn

λ
ℓm
n

= 0 for all m ∈ N.

In order to apply Lemma 5, we have to verify (2.5). It suffices to consider for pn,
because the verification for qn is the same.

Case: F1(u(·, t)). By the Sobolev embedding (e.g., [1]), fixing µ0 > 0 with 2µ0 >
d, we have

∥pn∥C(Ω) ≤C∥pn∥Hµ0 (Ω) ≤C

∥∥∥∥∥A
µ0
2

(
dn

∑
k=1

(a,ϕnk)ϕnk

)∥∥∥∥∥
L2(Ω)

= Cλ

µ0
2

n

∥∥∥∥∥ dn

∑
k=1

(a,ϕnk)ϕnk

∥∥∥∥∥
L2(Ω)

≤Cλ

µ0
2

n ∥a∥L2(Ω).

For the second inequality, we need sufficient smoothness of the coefficients ai j and
c of the elliptic operator A (e.g., Gilbarg and Trudinger [6]). Therefore

∥pn∥C(Ω) ≤Cλ

µ0
2

n , n ∈ N.

Therefore, we see (2.5) for F1,F3 and F4 with θ0 =
µ0
2 .

Case: F2(u(·, t)). We fix µ0 > 0 such that 2µ0 > d. Then by the Sobolev embed-
ding, we obtain∥∥∥∥∥∂νA

(
dn

∑
k=1

(a,ϕnk)ϕnk

)∥∥∥∥∥
C(∂Ω)

≤C

∥∥∥∥∥
(

dn

∑
k=1

(a,ϕnk)ϕnk

)∥∥∥∥∥
C1(Ω)

≤ C

∥∥∥∥∥ dn

∑
k=1

(a,ϕnk)ϕnk

∥∥∥∥∥
Hµ0+1(Ω)

≤C

∥∥∥∥∥A
µ0
2 + 1

2

dn

∑
k=1

(a,ϕnk)ϕnk

∥∥∥∥∥
L2(Ω)

= Cλ

µ0
2 + 1

2
n

∥∥∥∥∥ dn

∑
k=1

(a,ϕnk)ϕnk

∥∥∥∥∥
L2(Ω)

≤Cλ

µ0
2 + 1

2
n ∥a∥L2(Ω).

Hence (2.5) is satisfied with θ0 =
µ0
2 + 1

2 .
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Therefore, Lemma 5 yields pn = qn = 0 for all n ∈ N, that is,

Fj

(
dn

∑
k=1

(a, ϕnk)ϕnk

)

= Fj

(
dn

∑
k=1

(b, ϕnk)ϕnk

)
= 0, j = 1,2,3,4, n ∈ N. (3.7)

Fourth Step. It suffices to verify that pn = 0 for all n ∈ N imply a = 0 in Ω. For
F3 and F4, the assumption in Theorem 2 yields

dn

∑
k=1

(a, ϕnk)ϕnk =
dn

∑
k=1

(b, ϕnk)ϕnk = 0 in Ω

for all n ∈ N. Therefore, a = b = 0 in Ω, that is, u = 0 in Ω× (0,∞). Thus the
proof of Theorem 2 is complete for F3 and F4.

Case: F1. By (3.7), we have

pn(x) =
dn

∑
k=1

(a, ϕnk)ϕnk(x) = 0, n ∈ N, x ∈ ω.

Since (A−λn)pn = 0 in Ω, we apply the unique continuation for the elliptic oper-
ator A−λn (e.g., Choulli [3], Hörmander [9]) to see that pn = 0 in Ω for n ∈ N.
Since a = ∑

∞
n=1 pn in L2(Ω), we reach a = 0 in Ω.

Case: F2. We set un(x) = ∑
dn
k=1(a,ϕnk)ϕnk(x) for x ∈ Ω. By un ∈ D(A), we have

un = 0 on Γ and so

∂νAun(x) = un(x) = 0, n ∈ N, x ∈ Γ.

Therefore, since (A−λn)un = 0 in Ω, the unique continuation (e.g., [3], [9]) yields
∑

dn
k=1(a,ϕnk)ϕnk(x) = 0 for all n ∈ N and x ∈ Ω. Hence, we can see a = 0 in Ω.

Thus the proof of Theorem 2 is complete.
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4 Proofs of Theorem 3 and Proposition 1

4.1 Proof of Theorem 3

Case: F1. It is sufficient to prove the case 1 < α < 2. Let (1.14) hold. By (3.2)
with p = 1, noting that Γ(1−α) and Γ(2−α) are finite, we see∥∥∥∥∥ 1

Γ(1−α)

1
tα

∞

∑
n=1

dn

∑
k=1

(a, ϕnk)ϕnk

λn
+

1
Γ(2−α)

1
tα−1

∞

∑
n=1

dn

∑
k=1

(b, ϕnk)ϕnk

λn

∥∥∥∥∥
L2(ω)

= o
(

1
tα−1

)
as t → ∞. (4.1)

Therefore, in terms of (1.3), we obtain

1
Γ(2−α)

1
tα−1 ∥A−1b∥L2(ω)−

1
Γ(1−α)

1
tα
∥A−1a∥L2(ω) = o

(
1

tα−1

)
as t → ∞. Multiplying with tα−1 and letting t → ∞, we obtain A−1b = 0 in ω.

Next let (1.12) hold. Then, by o
( 1

tα

)
≤ o

( 1
tα−1

)
, we have also (1.14), so that

we have already proved A−1b = 0 in ω. Therefore, since

(−1)2

Γ(2−α)

1
tα−1

∞

∑
n=1

dn

∑
k=1

(b, ϕnk)ϕnk

λn
=

1
Γ(2−α)

1
tα−1 A−1b = 0 in ω,

equality (3.2) with p = 1 and (1.12) yield

1
Γ(1−α)

1
tα
∥A−1a∥L2(ω)+o

(
1

t2α

)
+o
(

1
t2α−1

)
= o

(
1
tα

)
.

Multiplying with tα and letting t → ∞, by α−1 > 0, we see that A−1a = 0 in ω.
Moreover A−1a= 0 in ω implies a= 0 in ω. Indeed, setting g :=A−1a in Ω, we

have g = 0 in ω and Ag = a in Ω. Therefore, a = A0 = 0 in ω. Similarly A−1b = 0
in ω yields b = 0 in ω.

Finally we have to prove that the extra condition

a ≥ 0 in Ω or a ≤ 0 in Ω, (4.2)

implies a = 0 in Ω.
Let a ≥ 0 in Ω. Then g := A−1a satisfies

d

∑
i, j=1

∂i(ai j(x)∂ jg(x))+ c(x)g(x)≥ 0 in Ω.
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By c ≤ 0 in Ω and g = 0 on ∂Ω, the weak maximum principle (e.g., Theorem 3.1
(p.32) in Gilbarg and Trudinger [6]) implies that g ≤ 0 on Ω. Since g(x) = 0 for
x ∈ ω, we see that g achieves the maximum 0 at an interior point x0 ∈ Ω. Again by
c ≤ 0 in Ω, the strong maximum principle (e.g., Theorem 3.5 (p.35) in [6]) yields
that g is a constant function, that is, g(x) = 0 for all x ∈ Ω. Hence, a = Ag = 0 in
Ω. Thus the proof in the case F1 is complete.

Case: F3. It suffices to prove only in the case 1 < α < 2. By Lemma 2, for
arbitrarily chosen t0 ∈ (0,T ), we see

Au(x, t) =
∞

∑
n=1

Eα,1(−λntα)
dn

∑
k=1

(a, ϕnk)λnϕnk

+
∞

∑
n=1

tEα,2(−λntα)
dn

∑
k=1

(b, ϕnk)λnϕnk in C([t0,T ];L2(Ω)).

Using a,b ∈ D(Aγ) with γ > d
4 and noting

Aγ(a, ϕnk)λnϕnk = λ
1+γ
n (a, ϕnk)ϕnk = λn(a, Aγ

ϕnk)ϕnk = λn(Aγa, ϕnk)ϕnk,

we obtain

A1+γu(x, t) =
∞

∑
n=1

Eα,1(−λntα)
dn

∑
k=1

(Aγa, ϕnk)λnϕnk

+
∞

∑
n=1

tEα,2(−λntα)
dn

∑
k=1

(Aγb, ϕnk)λnϕnk.

Consequently, by Lemma 1, we can prove

∥A1+γu∥L∞(t0,T ;L2(Ω)) < ∞,

and so the above series is convergent in L∞(t0,T ;L2(Ω)). Since the Sobolev em-
bedding implies D(Aγ)⊂C(Ω) with γ > d

4 , we obtain

Au(x0, t) =
∞

∑
n=1

Eα,1(−λntα)
dn

∑
k=1

(a, ϕnk)λnϕnk(x0)

+
∞

∑
n=1

tEα,2(−λntα)
dn

∑
k=1

(b, ϕnk)λnϕnk(x0), t0 < t < T in C[t0,T ].
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Substituting (2.1) with p = 1 and β = 1,2, we have

Au(x0, t) =
1

Γ(1−α)

∞

∑
n=1

dn

∑
k=1

(a, ϕnk)ϕnk(x0)
1
tα

+
1

Γ(2−α)

∞

∑
n=1

dn

∑
k=1

(b, ϕnk)ϕnk(x0)
1

tα−1 +O
(

1
t2α−1

)
as t → ∞.

By a,b ∈ D(Aγ)⊂C(Ω), we find

Au(x0, t) =
1

Γ(1−α)tα
a(x0)+

1
Γ(2−α)tα−1 b(x0)+O

(
1

t2α−1

)
as t → ∞.

(4.3)
By an argument similar to Case F1 in Theorem 3, we see that (1.16) and (1.17)

imply a(x0) = 0 and b(x0) = 0 respectively. The converse assertion in the theorem
directly follows from (4.3).

4.2 Proof of Proposition 1

It is sufficient to prove in the case 1 < α < 2. By a,b ∈ D(Aγ)⊂C(Ω) with γ > d
4 ,

similarly to (4.1), we obtain

u(x0, t)

=
1

Γ(1−α)

1
tα

∞

∑
n=1

dn

∑
k=1

(a, ϕnk)

λn
ϕnk(x0)

+
1

Γ(2−α)

1
tα−1

∞

∑
n=1

dn

∑
k=1

(b, ϕnk)

λn
ϕnk(x0)+O

(
1

t2α−1

)
=

1
Γ(1−α)

1
tα
(A−1a)(x0)+

1
Γ(2−α)

1
tα−1 (A

−1b)(x0)+O
(

1
t2α−1

)
as t → ∞. Similarly to the case F1 in the proof of Theorem 3, we can prove that
(1.20) implies (A−1b)(x0) = 0. Under the assumption that b does not change the
signs in Ω, in view of the weak and the strong maximum principles, we can argue
similarly to the final part of the proof of Theorem 3 in the case of F1, so that we can
reach b = 0 in Ω. Therefore, we prove that (1.20) implies b(x) = 0 for x ∈ Ω. The
converse statement of the proposition is readily seen. Thus the proof of Proposition
1 is complete.
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5 Concluding remarks

5.1. Time-fractional diffusion-wave equations with order α ∈ (0,2) \ {1} de-
scribe slow diffusion and are known not to have strong smoothing property as the
classical diffusion equation. Such a weak smoothing property is characterized by
the norm equivalence between ∥u(·, t)∥H2(Ω) and ∥u(·,0)∥L2(Ω) for any t > 0 in
the case of 0 < α < 1. The weak smoothing property allows that the backward
problem in time is well-posed for α ∈ (0,2)\{1} (Floridia, Li and Yamamoto [4],
Floridia and Yamamoto [5], Sakamoto and Yamamoto [15]), which is a remarkable
difference from the case α = 1.

The present article establishes that local properties of initial values affect the
decay rate of solution as t → ∞, which indicates that a time-fractional equation can
keep some profile of the initial value even for very large t > 0. This property can
be understood related to the backward well-posedness in time and is essentially
different from the case α = 1.

The essence of the argument relies on that the behavior of a solution u for
large t > 0 admits an asymptotic expansion with respect to

(1
t

)αℓ and
(1

t

)αℓ−1 with
ℓ ∈ N.

5.2. We can generalize Theorem 3 (ii). For simplicity, we consider only the case
0 < α < 1.

Proposition 2. Let a ∈ D(Aγ) with γ > d
4 and 0 < α,β < 1. Then

|∂β

t u(x0, t)| ≤
C
tβ
∥a∥.

If

|∂β

t u(x0, t)|= o
(

1
tβ

)
as t → ∞,

then u(x0,0) = 0.

The proof relies on

∂
β

t u(x, t) =−tα−β
∞

∑
n=1

λnEα,α+1−β(−λntα)
dn

∑
k=1

(a, ϕnk)ϕnk(x)

in C((0,T ];L2(Ω)) (5.1)

and then we can argue similarly to Theorem 3 (ii) by (2.1). The equation (5.1) can
be verified as follows:

∂
β

t (t
αk) =

Γ(αk+1)
Γ(αk+1−β)

tαk−β, k ∈ N,
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and so the termwise differentiation yields

∂
β

t Eα,1(−λntα) =−λntα−βEα,α+1−β(−λntα), t > 0.

Then (2.4) yields (5.1).
We omit the details of the proof of Proposition 2.
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