DECAY RATES AND INITIAL VALUES FOR TIME-FRACTIONAL DIFFUSION-WAVE EQUATIONS*

Masahiro Yamamoto ${ }^{1,2,3 \dagger}$
Dedicated to Dr. Dan Tiba on the occasion of his 70th anniversary

Abstract

We consider a solution $u(\cdot, t)$ to an initial boundary value problem for time-fractional diffusion-wave equation with the order $\alpha \in(0,2) \backslash\{1\}$ where t is a time variable. We first prove that a suitable norm of $u(\cdot, t)$ is bounded by the rate $t^{-\alpha}$ for $0<\alpha<1$ and $t^{1-\alpha}$ for $1<\alpha<2$ for all large $t>0$. Second, we characterize initial values in the cases where the decay rates are faster than the above critical exponents. Differently from the classical diffusion equation $\alpha=1$, the decay rate can keep some local characterization of initial values. The proof is based on the eigenfunction expansions of solutions and the asymptotic expansions of the Mittag-Leffler functions for large time.

MSC: 35R11, 35B40, 35C20
DOI https://doi.org/10.56082/annalsarscimath.2024.1.77
keywords: fractional diffusion-wave equation, decay rate, initial value

[^0]
1 Introduction

Let $\Omega \subset R^{d}$ be a bounded domain with smooth boundary $\partial \Omega$ and let $v(x):=$ $\left(v_{1}(x), \ldots, v_{d}(x)\right)$ be the unit outward normal vector to $\partial \Omega$ at x. We assume that

$$
0<\alpha<2, \quad \alpha \neq 1
$$

By ∂_{t}^{α} we denote the Caputo derivative:

$$
\partial_{t}^{\alpha} g(t)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t}(t-s)^{n-\alpha-1} \frac{d^{n}}{d s^{n}} g(s) d s
$$

for $\alpha \notin \mathbf{N}$ satisfying $n-1<\alpha<n$ with $n \in \mathbf{N}$ (e.g., Podlubny [13]). For $\alpha=1$, we write $\partial_{t} g(t)=\frac{d g}{d t}$ and $\partial_{t} g(x, t)=\frac{\partial g}{\partial t}(x, t)$.

We consider an initial boundary value problem for a time-fractional diffusionwave equation:

$$
\left\{\begin{array}{l}
\partial_{t}^{\alpha} u(x, t)=-A u(x, t), \quad x \in \Omega, 0<t<T \tag{1.1}\\
\left.u\right|_{\partial \Omega \times(0, T)}=0, \\
u(x, 0)=a(x), \quad x \in \Omega \quad \text { if } 0<\alpha \leq 1, \\
u(x, 0)=a(x), \quad \partial_{t} u(x, 0)=b(x), \quad x \in \Omega \quad \text { if } 1<\alpha<2
\end{array}\right.
$$

Throughout this article, we set

$$
(-A v)(x)=\sum_{i, j=1}^{d} \partial_{i}\left(a_{i j}(x) \partial_{j} v(x)\right)+c(x) v(x), \quad x \in \Omega
$$

where $a_{i j}=a_{j i}, 1 \leq i, j \leq n$ and c are sufficiently smooth on $\bar{\Omega}$, and $c(x) \leq 0$ for $x \in \bar{\Omega}$, and we assume that there exists a constant $\sigma>0$ such that

$$
\sum_{i, j=1}^{d} a_{i j}(x) \zeta_{i} \zeta_{j} \geq \sigma \sum_{i=1}^{d} \zeta_{i}^{2} \quad \text { for all } x \in \bar{\Omega} \text { and } \zeta_{1}, \ldots, \zeta_{d} \in R
$$

For $\alpha \in(0,2) \backslash\{1\}$, the first equation in (1.1) is called a fractional diffusionwave equation, which models anomalous diffusion in heterogeneous media. As for physical backgrounds, we are restricted to a few references: Metzler and Klafter [11], Roman and Alemany [14], and one can consult Chapter 10 in [13].

The properties such as asymptotic behavior as $t \rightarrow \infty$ of solution u to (1.1) are proved to depend on the fractional order α of the derivative. Moreover decay rates can characterize the initial values which is very different from the case $\alpha=1$. The main purpose of this article is to study these topics.

Throughout this article, $L^{2}(\Omega), H^{\mu}(\Omega)$ denote the usual Lebesgue space and Sobolev spaces (e.g., Adams [1]), and by $\|\cdot\|$ and (\cdot, \cdot) we denote the norm and
the scalar product in $L^{2}(\Omega)$ respectively. When we specify the norm in a Hilbert space Y, we write $\|\cdot\|_{Y}$. All the functions under consideration are assumed to be real-valued.

We define the domain $\mathcal{D}(A)$ of A by $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Then the operator A in $L^{2}(\Omega)$ has positive eigenvalues with finite multiplicities. We denote the set of all the eigenvalues by

$$
0<\lambda_{1}<\lambda_{2} \cdots \longrightarrow \infty
$$

We set $\operatorname{Ker}\left(A-\lambda_{n}\right):=\left\{v \in \mathcal{D}(A) ; A v=\lambda_{n} v\right\}$ and $d_{n}:=\operatorname{dim} \operatorname{Ker}\left(A-\lambda_{n}\right)$. We denote an orthonormal basis of $\operatorname{Ker}\left(A-\lambda_{n}\right)$ by $\left\{\varphi_{n k}\right\}_{1 \leq k \leq d_{n}}$.

Then we define a fractional power A^{γ} with $\gamma \in R$ (e.g., Pazy [12]), and we see

$$
\mathcal{D}\left(A^{\gamma}\right)=\left\{a \in L^{2}(\Omega) ; \sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}} \lambda_{n}^{2 \gamma}\left(a, \varphi_{n k}\right)^{2}<\infty\right\} \quad \text { if } \gamma>0
$$

and $\mathcal{D}\left(A^{\gamma}\right) \supset L^{2}(\Omega)$ if $\gamma \leq 0$,

$$
\left\{\begin{array}{l}
A^{\gamma} a=\sum_{n=1}^{\infty} \lambda_{n}^{\gamma} \sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}, \tag{1.2}\\
\left\|A^{\gamma} a\right\|=\left(\sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}} \lambda_{n}^{2 \gamma}\left(a, \varphi_{n k}\right)^{2}\right)^{\frac{1}{2}}, \quad a \in \mathcal{D}\left(A^{\gamma}\right)
\end{array}\right.
$$

In particular,

$$
\begin{equation*}
A^{-1} a=\sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}} \frac{1}{\lambda_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}, \quad\left\|A^{-1} a\right\|=\left(\sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}} \frac{1}{\lambda_{n}^{2}}\left(a, \varphi_{n k}\right)^{2}\right)^{\frac{1}{2}} \tag{1.3}
\end{equation*}
$$

Moreover it is known that

$$
\mathcal{D}\left(A^{\gamma}\right) \subset H^{2 \gamma}(\Omega) \quad \text { for } \gamma \geq 0
$$

The well-posedness for (1.1) is studied for example in Gorenflo, Luchko and Yamamoto [8], Kubica, Ryszewska and Yamamoto [10], Sakamoto and Yamamoto [15]. As for the asymptotic behavior, we know

$$
\begin{equation*}
\|u(\cdot, t)\| \leq \frac{C}{t^{\alpha}}\|a\|, \quad t>0 \tag{1.4}
\end{equation*}
$$

(e.g., [10], [15], Vergara and Zacher [16]). The article [16] first established (1.4) for t-dependent symmetric operator A. Moreover by the eigenfunction expansion of $u(x, t)$ (e.g., [15]), one can prove

$$
\begin{equation*}
\|u(\cdot, t)\| \leq \frac{C}{t^{\alpha}}\|a\|+\frac{C}{t^{\alpha-1}}\|b\|, \quad t>0 \tag{1.5}
\end{equation*}
$$

for $1<\alpha<2$.
First we improve (1.4) and (1.5) with stronger norm of u.

Theorem 1. Let $t_{0}>0$ be arbitrarily fixed. There exists a constant $C>0$ depending on t_{0} such that

$$
\|u(\cdot, t)\|_{H^{2}(\Omega)} \leq\left\{\begin{array}{l}
\frac{C}{t^{\alpha}}\|a\| \quad \text { if } 0<\alpha<1, \\
\frac{C}{t^{\alpha}}\|a\|+\frac{C}{t^{\alpha-1}}\|b\| \quad \text { if } 1<\alpha<2
\end{array}\right.
$$

for $t \geq t_{0}$.
This theorem means that the Sobolev regularity of initial values is improved by 2 after any time $t>0$ passes.

The fractional diffusion-wave equation (1.1) models slow diffusion, which the decay estimates (1.4) and (1.5) describe. For $\alpha=1$, by the eigenfunction expansion of u, we can readily prove that $\|u(\cdot, t)\| \leq e^{-\lambda_{1} t}\|a\|$. Needless to say, Theorem 1 does not reject the exponential decay $e^{-\lambda_{1} t}$, but as this article shows, the decay rates in the theorem are the best possible in a sense.

For further statements, we introduce a bounded linear operator $F: \mathcal{D}\left(A^{\gamma}\right) \longrightarrow$ Y, where $\gamma>0$ and Y is a Hilbert space with the norm $\|\cdot\|_{Y}$. We interpret that F is an observation mapping, and we consider the following four kinds of F.

Case 1. Let $\omega \subset \Omega$ be a subdomain. Let

$$
\begin{equation*}
F_{1}(v)=\left.v\right|_{\omega}, \quad \mathcal{D}\left(F_{1}\right)=L^{2}(\Omega), \quad Y=L^{2}(\omega) . \tag{1.6}
\end{equation*}
$$

Then $F_{1}: L^{2}(\Omega) \longrightarrow L^{2}(\omega)$ is bounded.
Case 2. Let $\Gamma \subset \partial \Omega$ be a subboundary. Let

$$
\begin{equation*}
F_{2}(v)=\left.\partial_{v_{A}} v\right|_{\Gamma}, \quad \mathcal{D}\left(F_{2}\right)=H^{2}(\Omega), \quad Y=L^{2}(\Gamma) \tag{1.7}
\end{equation*}
$$

Here we set

$$
\partial_{\nu_{A}} v:=\sum_{i, j=1}^{d} a_{i j}(x)\left(\partial_{i} v\right)(x) v_{j}(x) .
$$

The trace theorem (e.g., Adams [1]) implies that $F_{2}: H^{2}(\Omega) \longrightarrow L^{2}(\Gamma)$ is bounded.
Case 3. Let $x^{1}, \ldots, x^{M} \in \Omega$ be fixed and let $\gamma>\frac{d}{4}$, where d is the spatial dimensions. We consider

$$
\begin{equation*}
F_{3}(v)=\left(v\left(x^{1}\right), \ldots, v\left(x^{M}\right)\right), \quad \mathcal{D}\left(F_{3}\right)=\mathcal{D}\left(A^{\gamma}\right), \quad Y=R^{M} . \tag{1.8}
\end{equation*}
$$

Then the Sobolev embedding implies that $\mathcal{D}\left(F_{3}\right) \subset C(\bar{\Omega})$, and so $F_{3}: \mathcal{D}\left(A^{\gamma}\right) \longrightarrow$ R^{M} is bounded. We interpret that F_{3} are pointwise data.

Case 4. Let $\rho_{1}, \ldots, \rho_{M} \in L^{2}(\Omega)$ be given and let $Y=R^{M}$. Let

$$
\begin{equation*}
F_{4}(v)=\left(\int_{\Omega} \rho_{k}(x) v(x) d x\right)_{1 \leq k \leq M}, \quad \mathcal{D}\left(F_{4}\right)=L^{2}(\Omega), \quad Y=R^{M} . \tag{1.9}
\end{equation*}
$$

Then $F_{4}: L^{2}(\Omega) \longrightarrow R^{M}$ is bounded and corresponds to distributed data with weight functions ρ_{k} whose supports concentrate around some points in Ω.

Now we state
Theorem 2. In (1.1) we assume that $a, b \in L^{2}(\Omega)$ for F_{1}, F_{2}, F_{4} and $a, b \in \mathcal{D}\left(A^{\gamma_{0}}\right)$ with $\gamma_{0}=0$ if $\frac{d}{4}<1$ and $\gamma_{0}>\frac{d}{4}-1$ if $\frac{d}{4} \geq 1$ for F_{3}. Let $u=u(x, t)$ satisfy (1.1). For $j=3,4$, let F_{j} satisfy $\left.F_{j}\right|_{\operatorname{Ker}\left(\lambda_{n}-A\right)}$ is injective for all $n \in \mathbf{N}$.

Furthermore we assume that for $j=1,2,3,4$, there exist sequences $\tau_{n}, n \in \mathbf{N}$ and $C_{n}>0, n \in \mathbf{N}$ which may depend on u, such that

$$
\begin{equation*}
\tau_{n}>0, \quad \lim _{n \rightarrow \infty} \tau_{n}=\infty \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|F_{j}(u(\cdot, t))\right\|_{Y} \leq \frac{C_{n}}{\tau^{\tau_{n}}} \quad \text { as } t \rightarrow \infty \text { for all } n \in \mathbf{N} \tag{1.11}
\end{equation*}
$$

Then $u=0$ in $\Omega \times(0, \infty)$.
For $0<\alpha<1$, a similar result is proved as Theorem 4.3 in [15], and Theorem 2 is an improvement.

Example 1 (Example of F_{3} such that $\left.F_{3}\right|_{\operatorname{Ker}\left(\lambda_{n}-A\right)}$ is injective). Let

$$
A=-\Delta, \quad d=2, \quad \Omega=\left\{\left(x_{1}, x_{2}\right) ; 0<x_{1}<L_{1}, 0<x_{2}<L_{2}\right\} .
$$

Then $\operatorname{dim} \operatorname{Ker}\left(A-\lambda_{n}\right)=1$ for each $n \in \mathbf{N}$ if $\frac{L_{1}}{L_{2}} \notin \mathbf{Q}$. Indeed, the eigenvalues are given by

$$
\lambda_{m n}:=\left(\frac{m^{2}}{L_{1}^{2}}+\frac{n^{2}}{L_{2}^{2}}\right) \pi^{2}, \quad m, n \in \mathbf{N}
$$

and the corresponding eigenfunction $\varphi_{m n}(x)$ is given by $\sin \frac{m \pi}{L_{1}} x_{1} \sin \frac{n \pi}{L_{2}} x_{2}$. Therefore, by $\frac{L_{1}}{L_{2}} \notin \mathbf{Q}$ we see that if $\lambda_{m n}=\lambda_{m^{\prime} n^{\prime}}$ with $m, n, m^{\prime}, n^{\prime} \in \mathbf{N}$, then $m=m^{\prime}$ and $n=n^{\prime}$.

Let $x^{1}=\left(x_{1}^{1}, x_{2}^{1}\right) \in \Omega$ satisfy $\frac{x_{1}^{1}}{L_{1}}, \frac{x_{2}^{1}}{L_{2}} \notin \mathbf{Q}$. We set $F_{3}(v):=v\left(x^{1}\right)$ and $M=1$. Then we can readily verify that $\left.F_{3}\right|_{\operatorname{Ker}\left(\lambda_{n}-A\right)}$ is injective for all $n \in \mathbf{N}$.

The corresponding result to Theorem 2 can be proved for the classical diffusion equation $\alpha=1$: if there exist sequences $\tau_{n}, n \in \mathbf{N}$ and $C_{n}>0, n \in \mathbf{N}$ which can depend on u such that $\tau_{n}>0, \lim _{n \rightarrow \infty} \tau_{n}=\infty$ and

$$
\|u(\cdot, t)\|_{L^{2}(\omega)} \leq C_{n} e^{-\tau_{n} t} \quad \text { as } t \rightarrow \infty,
$$

then $u=0$ in $\Omega \times(0, \infty)$.
Next we consider characterizations of initial values yielding local faster decay than $\frac{1}{t^{\alpha}}$ and/or $\frac{1}{t^{\alpha-1}}$.

Theorem 3. (i) Let F_{1} be defined by (1.6).
Case I: $0<\alpha<1$.
If

$$
\begin{equation*}
\|u(\cdot, t)\|_{L^{2}(\omega)}=o\left(\frac{1}{t^{\alpha}}\right) \quad \text { as } t \rightarrow \infty \tag{1.12}
\end{equation*}
$$

then

$$
\begin{equation*}
A^{-1} a=a=0 \quad \text { in } \omega . \tag{1.13}
\end{equation*}
$$

Moreover, assuming further that either $a \geq 0$ in Ω or $a \leq 0$ in Ω, then (1.12) yields $a=0$ in Ω.
Case II: $1<\alpha<2$.
If

$$
\begin{equation*}
\|u(\cdot, t)\|_{L^{2}(\omega)}=o\left(\frac{1}{t^{\alpha-1}}\right) \quad \text { as } t \rightarrow \infty \tag{1.14}
\end{equation*}
$$

then

$$
\begin{equation*}
A^{-1} b=b=0 \quad \text { in } \omega . \tag{1.15}
\end{equation*}
$$

If (1.12) holds, then we have $u\left(x_{0}, 0\right)=\partial_{t} u\left(x_{0}, 0\right)=0$. Moreover, assuming further that either $b \geq 0$ in Ω or $b \leq 0$ in Ω, then (1.14) yields $b=0$ in Ω, and the same conclusion holds for a.
(ii) Let F_{3} be defined by (1.8) with $M=1$ and $a, b \in \mathcal{D}\left(A^{\gamma}\right)$ with $\gamma>\frac{d}{4}$.

Case I: $0<\alpha<1$.

$$
\begin{equation*}
\left|A u\left(x_{0}, t\right)\right|=\left|\partial_{t}^{\alpha} u\left(x_{0}, t\right)\right|=o\left(\frac{1}{t^{\alpha}}\right) \quad \text { as } t \rightarrow \infty \tag{1.16}
\end{equation*}
$$

if and only if $u\left(x_{0}, 0\right)=0$.
Case II: $1<\alpha<2$.

$$
\begin{equation*}
\left|A u\left(x_{0}, t\right)\right|=\left|\partial_{t}^{\alpha} u\left(x_{0}, t\right)\right|=o\left(\frac{1}{t^{\alpha-1}}\right) \quad \text { as } t \rightarrow \infty \tag{1.17}
\end{equation*}
$$

if and only if $\partial_{t} u\left(x_{0}, 0\right)=0$.
Moreover (1.16) holds if and only if $u\left(x_{0}, 0\right)=\partial_{t} u\left(x_{0}, 0\right)=0$.
Theorem 3 asserts that the faster decay than $\frac{1}{t^{\alpha}}$ or $\frac{1}{t^{\alpha-1}}$ provides information that initial values vanishes at some point or in a subdomain.

In a special case, we prove

Proposition 1. Let $x_{0} \in \Omega$ be arbitrarily given. Let $a, b \in \mathcal{D}\left(A^{\gamma}\right)$ with $\gamma>\frac{d}{4}$, and

$$
\left\{\begin{array}{llll}
a \geq 0 & \text { in } \Omega & \text { or } & a \leq 0 \tag{1.18}
\end{array} \text { in } \Omega,\right.
$$

Case I: $0<\alpha<1$.

$$
\begin{equation*}
\left|u\left(x_{0}, t\right)\right|=o\left(\frac{1}{t^{\alpha}}\right) \quad \text { as } t \rightarrow \infty, \tag{1.19}
\end{equation*}
$$

if and only if $u(x, 0)=0$ for $x \in \Omega$.
Case II: $1<\alpha<2$.

$$
\begin{equation*}
\left|u\left(x_{0}, t\right)\right|=o\left(\frac{1}{t^{\alpha-1}}\right) \quad \text { as } t \rightarrow \infty \tag{1.20}
\end{equation*}
$$

if and only if $\partial_{t} u(x, 0)=0$ for $x \in \Omega$.
We cannot expect similar results to Theorem 2 for the classical diffusion equation, i.e., $\alpha=1$.

Example 2 (Example of the classical diffusion equation).

$$
\left\{\begin{array}{l}
\partial_{t} u(x, t)=\partial_{x}^{2} u(x, t), \quad 0<x<1, t>0, \\
u(0, t)=u(1, t)=0, \quad t>0, \\
u(x, 0)=a(x), \quad 0<x<1
\end{array}\right.
$$

Then it is well-known that for arbitrary $x_{0} \in \Omega$ and $a \in L^{2}(0,1)$,

$$
\left|u\left(x_{0}, t\right)\right|=o\left(e^{-\pi^{2} t}\right) \quad \text { as } t \rightarrow \infty
$$

if and only if

$$
\begin{equation*}
\sin \pi x_{0} \int_{0}^{1} a(x) \sin \pi x d x=0 \tag{1.21}
\end{equation*}
$$

In other words, Theorem 2 means that for $\alpha \in(0,2) \backslash\{1\}$, the faster decay at a point x_{0} or in a subdomain ω still keeps some information of the initial value $a(x)$ at x_{0} or in ω. On the other hand, in the case of $\alpha=1$, the decay rate is influenced only by averaged information (1.21) of the initial value. However under extra assumption that the initial value a does not change the signs, by (1.21) we can conclude that $a=0$ in Ω by $\sin \pi x \geq 0$ for $0<x<1$ if $\sin \pi x_{0} \neq 0$. This is true for general dimensions, because one can prove that the eigenfunction for λ_{1} does not change the signs.

This article is composed of five sections. In Section 2, we show lemmata which we use for the proofs of Theorems 1-3 and Proposition 1. Sections 3 and 4 are devoted to the proofs of Theorems 1-2 and Theorem 3 and Proposition 1, respectively. In Section 5, we give concluding remarks.

2 Preliminaries

For $\alpha>0$, we define the Mittag-Leffler functions by

$$
E_{\alpha, 1}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+1)}, \quad E_{\alpha, 2}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+2)}, \quad z \in \mathbf{C}
$$

and it is know that $E_{\alpha, 1}(z)$ and $E_{\alpha, 2}(z)$ are entire functions in $z \in \mathbf{C}$ (e.g. Gorenflo, Kilbas, Mainardi and Rogosin [7], Podlubny [13]).

First we show
Lemma 1. Let $\beta=1,2$ and $\alpha \in(0,2) \backslash\{1\}$.
(i) For $p \in \mathbf{N}$ we have

$$
\begin{equation*}
E_{\alpha, \beta}(-\eta)=\sum_{\ell=1}^{p} \frac{(-1)^{\ell+1}}{\Gamma(\beta-\alpha \ell)} \frac{1}{\eta^{\ell}}+O\left(\frac{1}{\eta^{p+1}}\right) \quad \text { as } \eta>0, \rightarrow \infty . \tag{2.1}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\left|E_{\alpha, \beta}(\eta)\right| \leq \frac{C}{1+\eta} \quad \text { for all } \eta>0 \tag{2.2}
\end{equation*}
$$

Proof. As for (2.1), see Proposition 3.6 (pp.25-26) in [7] or Theorem 1.4 (pp.3334) in [13]. The estimate (2.2) is seen by Theorem 1.6 (p.35) in [13] for example. Thus the proof of Lemma 1 is complete.

Moreover, by the eigenfunction expansion of the solution u to (1.1) (e.g., Theorems 2.1 and 2.3 in [15]), we have

Lemma 2.

$$
\begin{aligned}
& \quad\left\{\begin{aligned}
& u(x, t)=\sum_{n=1}^{\infty} E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}(x) \quad \text { if } 0<\alpha<1, \\
& u(x, t)=\sum_{n=1}^{\infty}\left[E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}(x)\right. \\
&+\left.t E_{\alpha, 2}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \varphi_{n k}(x)\right] \quad \text { if } 1<\alpha<2
\end{aligned}\right. \\
& \text { in } C\left([0, T] ; L^{2}(\Omega)\right) \cap C\left((0, T] ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \text {. }
\end{aligned}
$$

By Lemma 1, we can prove
Lemma 3. (i) Let $a, b \in \mathcal{D}\left(A^{\gamma_{0}}\right)$ where $\gamma_{0}=0$ if $\frac{d}{4}<1$ and $\gamma_{0}>\frac{d}{4}-1$ if $\frac{d}{4} \geq 1$. We fix $t_{0} \in(0, T)$ arbitrarily. Then the series in (2.4) are convergents in $C\left(\bar{\Omega} \times\left[t_{0}, T\right]\right)$.
(ii) Let $a, b \in L^{2}(\Omega)$. Then

$$
\begin{gathered}
\partial_{v_{A}} u(x, t)=\sum_{n=1}^{\infty} E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \partial_{v_{A}} \varphi_{n k}(x) \quad \text { if } 0<\alpha<1 \\
\partial_{v_{A}} u(x, t)=\sum_{n=1}^{\infty}\left[E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \partial_{v_{A}} \varphi_{n k}(x)\right. \\
\left.+\quad t E_{\alpha, 2}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \partial_{v_{A}} \varphi_{n k}(x)\right] \quad \text { if } 1<\alpha<2
\end{gathered}
$$

in $C\left(\left[t_{0}, T\right] ; L^{2}(\partial \Omega)\right)$.
For the proof of Lemma 3, we show
Lemma 4. Let $\gamma \in R$, and let $t_{0} \in(0, T)$ be given arbitrarily. We assume that $a, b \in \mathcal{D}\left(A^{\gamma}\right)$. Then there exists a constant $C=C\left(t_{0}, \gamma\right)>0$ such that

$$
\left\|A^{\gamma+1} u(\cdot, t)\right\| \leq\left\{\begin{array}{l}
C t^{-\alpha}\left\|A^{\gamma} a\right\| \quad \text { if } 0<\alpha<1, \\
C\left(t^{-\alpha}\left\|A^{\gamma} a\right\|+t^{-\alpha+1}\left\|A^{\gamma} b\right\|\right) \quad \text { if } 1<\alpha<2
\end{array}\right.
$$

for all $t \geq t_{0}$.
Proof of Lemma 4. For $\gamma \in R$, by each $u_{0} \in \mathcal{D}\left(A^{\gamma}\right)$, applying (1.2), we see

$$
\begin{aligned}
& A^{\gamma+1}\left(u_{0}, \varphi_{n k}\right) \varphi_{n k}=\left(u_{0}, \varphi_{n k}\right) \lambda_{n}^{\gamma+1} \varphi_{n k}=\lambda_{n}\left(u_{0}, \lambda_{n}^{\gamma} \varphi_{n k}\right) \varphi_{n k} \\
= & \lambda_{n}\left(u_{0}, A^{\gamma} \varphi_{n k}\right) \varphi_{n k}=\lambda_{n}\left(A^{\gamma} u_{0}, \varphi_{n k}\right) \varphi_{n k}
\end{aligned}
$$

Here we used $\left(u_{0}, A^{\gamma} \varphi_{n k}\right)=\left(A^{\gamma} u_{0}, \varphi_{n k}\right)$ by (1.2). Therefore, in view of (2.4), we have

$$
\begin{aligned}
& A^{\gamma+1} u(x, t)=\sum_{n=1}^{\infty} \lambda_{n} E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(A^{\gamma} a, \varphi_{n k}\right) \varphi_{n k}(x) \\
+ & t \sum_{n=1}^{\infty} \lambda_{n} E_{\alpha, 2}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(A^{\gamma} b, \varphi_{n k}\right) \varphi_{n k}(x)
\end{aligned}
$$

in $C\left([0, T] ; L^{2}(\Omega)\right)$. We fix $t_{0}>0$ arbitrarily. Let $1<\alpha<2$. By (2.2) we see

$$
\begin{aligned}
& \left\|A^{\gamma+1} u(\cdot, t)\right\|^{2} \leq \sum_{n=1}^{\infty} \lambda_{n}^{2}\left|E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right)\right|^{2} \sum_{k=1}^{d_{n}}\left|\left(A^{\gamma} a, \varphi_{n k}\right)\right|^{2} \\
+ & t^{2} \sum_{n=1}^{\infty} \lambda_{n}^{2}\left|E_{\alpha, 2}\left(-\lambda_{n} t^{\alpha}\right)\right|^{2} \sum_{k=1}^{d_{n}}\left|\left(A^{\gamma} b, \varphi_{n k}\right)\right|^{2} \\
\leq & C\left(t_{0}\right)\left(\frac{1}{t^{2 \alpha}} \sum_{n=1}^{\infty} \lambda_{n}^{2} \sum_{k=1}^{d_{n}}\left|\left(A^{\gamma} a, \varphi_{n k}\right)\right|^{2} \frac{1}{\lambda_{n}^{2}}+\frac{1}{t^{2 \alpha-2}} \sum_{n=1}^{\infty} \lambda_{n}^{2} \sum_{k=1}^{d_{n}}\left|\left(A^{\gamma} b, \varphi_{n k}\right)\right|^{2} \frac{1}{\lambda_{n}^{2}}\right)
\end{aligned}
$$

for $t \geq t_{0}$. The proof for $0<\alpha<1$ is similar. Thus we complete the proof of Lemma 4.

Now we proceed to
Proof of Lemma 3. By the condition on γ, we apply the Sobolev embedding to have

$$
\|u(\cdot, t)\|_{C(\bar{\Omega})} \leq C\left\|A^{\gamma+1} u(\cdot, t)\right\|_{L^{2}(\Omega)} .
$$

Therefore, Lemma 4 yields that the series in (2.4) converge in $C\left(\bar{\Omega} \times\left[t_{0}, T\right]\right)$. Part (ii) is seen by the trace theorem:

$$
\left\|\partial_{\nu_{A}} u(\cdot, t)\right\|_{L^{2}(\partial \Omega)} \leq C\|A u(\cdot, t)\|_{L^{2}(\Omega)} .
$$

Thus the proof of Lemma 3 is complete.
We conclude this section with
Lemma 5. We assume that $p_{n} \in R,\left\{\ell_{m}\right\}_{m \in \mathbf{N}} \subset \mathbf{N}$ satisfying $\lim _{m \rightarrow \infty} \ell_{m}=\infty$, and there exist constants $C>0$ and $\theta_{0} \geq 0$ such that

$$
\begin{equation*}
\sup _{n \in \mathbf{N}}\left|p_{n}\right| \leq C \lambda_{n}^{\theta_{0}} \tag{2.5}
\end{equation*}
$$

If

$$
\sum_{n=1}^{\infty} \frac{p_{n}}{\lambda_{n}^{\ell_{m}}}=0 \quad \text { for all } m \in \mathbf{N}
$$

then $p_{n}=0$ for all $n \in \mathbf{N}$.
Proof. By $\mu_{n}, n \in \mathbf{N}$, we renumber the eigenvalues λ_{n} of A according to the multiplicities:

$$
\mu_{k}=\lambda_{1} \text { for } 1 \leq k \leq d_{1}, \quad \mu_{k}=\lambda_{2} \text { for } d_{1}+1 \leq k \leq d_{1}+d_{2}, \cdots .
$$

Then $\mu_{n} \leq \lambda_{n}$ for $n \in \mathbf{N}$.
On the other hand, there exists a constant $c_{1}>0$ such that

$$
\mu_{n}=c_{1} n^{\frac{2}{d}}+o(1) \quad \text { as } n \rightarrow \infty
$$

(e.g., Agmon [2], Theorem 15.1). Here we recall that d is the spatial dimensions. Therefore, we can find a constant $c_{2}>0$ such that $\lambda_{n} \geq c_{2} n^{\frac{2}{d}}$ as $n \rightarrow \infty$. Hence, we can choose a large constant $\theta_{1}>0$, for example $\theta_{1}>\frac{d}{2}$, such that

$$
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{\theta_{1}}}<\infty
$$

We set

$$
r_{n}:=\frac{p_{n}}{\lambda_{n}^{\theta_{0}+\theta_{1}}}, \quad n \in \mathbf{N}
$$

Then (2.5) implies

$$
\sum_{n=1}^{\infty}\left|r_{n}\right| \leq \sum_{n=1}^{\infty}\left|\frac{p_{n}}{\lambda_{n}^{\theta_{0}}}\right| \frac{1}{\lambda_{n}^{\theta_{1}}} \leq C \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{\theta_{1}}}<\infty .
$$

Since $\sum_{n=1}^{\infty} \frac{p_{n}}{\lambda_{n}^{\ell^{m}}}=0$, we obtain $\sum_{n=1}^{\infty} \frac{r_{n}}{\lambda_{n}^{k^{m}}}=0$ for all $m \in \mathbf{N}$, where $\kappa_{m}=\ell_{m}-\theta_{0}-\theta_{1}$, so that

$$
\frac{r_{1}}{\lambda_{1}^{k_{m}}}+\sum_{n=2}^{\infty} \frac{r_{n}}{\lambda_{n}^{\kappa_{m}}}=0, \quad \text { that is, } \quad r_{1}+\sum_{n=2}^{\infty} r_{n}\left(\frac{\lambda_{1}}{\lambda_{n}}\right)^{\kappa_{m}}=0
$$

Hence

$$
\left|r_{1}\right|=\left|-\sum_{n=2}^{\infty} r_{n}\left(\frac{\lambda_{1}}{\lambda_{n}}\right)^{\kappa_{m}}\right| \leq\left(\sum_{n=2}^{\infty}\left|r_{n}\right|\right)\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{\kappa_{m}} .
$$

By $0<\lambda_{1}<\lambda_{2}<\ldots$, we see that $\left|\frac{\lambda_{1}}{\lambda_{2}}\right|<1$. Letting $m \rightarrow \infty$, we see that $\kappa_{m} \rightarrow \infty$, and so $r_{1}=0$, that is, $p_{1}=0$. Therefore,

$$
\sum_{n=2}^{\infty} \frac{r_{n}}{\lambda_{n}^{k_{m}}}=0
$$

Repeating the above argument, we have $p_{2}=p_{3}=\cdots=0$. Thus the proof of Lemma 5 is complete.

3 Proofs of Theorems 1 and 2

3.1 Proof of Theorem 1.

Now, by noting that $\|u(\cdot, t)\|_{H^{2}(\Omega)} \leq C\|A u(\cdot, t)\|$ by $u(\cdot, t) \in \mathcal{D}(A)$, Theorem 1 follows directly from Lemma 4 with $\gamma=0$ in Section 2.

3.2 Proof of Theorem 2.

First Step. It suffices to prove in the case $1<\alpha<2$, because the case $0<\alpha<1$ is similar and even simpler. In view of Lemma 3, for a and b satisfying the conditions in the theorem, we have

$$
\begin{aligned}
& F_{j}(u(\cdot, t))=\sum_{n=1}^{\infty} E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right) F_{j}\left(\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right) \\
+ & t \sum_{n=1}^{\infty} \lambda_{n} E_{\alpha, 2}\left(-\lambda_{n} t^{\alpha}\right) F_{j}\left(\sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \varphi_{n k}\right), \quad j=1,2,3,4
\end{aligned}
$$

in $C\left(\left[t_{0}, T\right] ; Y\right)$, where

$$
Y=\left\{\begin{array}{l}
L^{2}(\omega) \quad \text { for } F_{1}, \\
L^{2}(\partial \Omega) \quad \text { for } F_{2}, \\
R^{M} \quad \text { for } F_{3} \text { and } F_{4} .
\end{array}\right.
$$

Applying (2.1) in Lemma 1, we obtain

$$
\begin{align*}
& F_{j}(u(\cdot, t))=\sum_{\ell=1}^{p} \frac{(-1)^{\ell+1}}{\Gamma(1-\alpha \ell) t^{\alpha \ell}} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{\ell}} F_{j}\left(\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right) \\
& +O\left(\frac{1}{t^{\alpha p+\alpha}}\right) \sum_{n=1}^{\infty} F_{j}\left(\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right) \\
& +\sum_{\ell=1}^{p} \frac{(-1)^{\ell+1}}{\Gamma(2-\alpha \ell) t^{\alpha \ell-1}} \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{\ell}} F_{j}\left(\sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \varphi_{n k}\right) \\
& +O\left(\frac{1}{t^{\alpha p+\alpha-1}}\right) \sum_{n=1}^{\infty} F_{j}\left(\sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \varphi_{n k}\right) . \tag{3.1}
\end{align*}
$$

Therefore, (3.1) yields

$$
\begin{gather*}
F_{j}(u(\cdot, t))=\sum_{\ell=1}^{p} \frac{(-1)^{\ell+1}}{\Gamma(1-\alpha \ell) t^{\alpha \ell}} \sum_{n=1}^{\infty} \frac{p_{n}}{\lambda_{n}^{\ell}} \\
+\sum_{\ell=1}^{p} \frac{(-1)^{\ell+1}}{\Gamma(2-\alpha \ell) t^{\alpha \ell-1}} \sum_{n=1}^{\infty} \frac{q_{n}}{\lambda_{n}^{\ell}}+O\left(\frac{1}{t^{\alpha p+\alpha-1}}\right) \quad \text { as } t \rightarrow \infty . \tag{3.2}
\end{gather*}
$$

Here we set

$$
p_{n}=F_{j}\left(\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right), \quad q_{n}=F_{j}\left(\sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \varphi_{n k}\right)
$$

for $j=1,2,3,4$.
In the above series, we exclude $\ell \in \mathbf{N}$ such that $1-\alpha \ell, 2-\alpha \ell \in\{0,-1,-2, \ldots\}$, that is, these terms do not appear if $\alpha \ell \in \mathbf{N}$.

Second Step. We see that

$$
\begin{equation*}
\{\ell \in \mathbf{N} ; \alpha \ell \notin \mathbf{N}\} \text { is an infinite set if } \alpha \notin \mathbf{N} . \tag{3.3}
\end{equation*}
$$

Indeed, if not, then $\mathbf{N}=\{\ell \in \mathbf{N} ; \alpha \ell \not \mathbf{N}\} \cup\{\ell \in \mathbf{N} ; \alpha \ell \in \mathbf{N}\}$ implies that there exists $N_{0} \in \mathbf{N}$ such that $\{\ell \in \mathbf{N} ; \alpha \ell \in \mathbf{N}\} \supset\left\{N_{0}, N_{0}+1, \ldots\right\}$. Therefore $\alpha N_{0}, \alpha\left(N_{0}+1\right) \in$
\mathbf{N}, which yields $\alpha=\alpha\left(N_{0}+1\right)-\alpha N_{0} \in \mathbf{N}$. By $\alpha \notin \mathbf{N}$, this is impossible. Therefore (3.3) holds.

We number the infinite set $\{\ell \in \mathbf{N} ; \alpha \ell \notin \mathbf{N}\}$ by $\ell_{1}, \ell_{2}, \ell_{3}, \ldots$ and for each $N \in \mathbf{N}$, we can rewrite (3.2) as

$$
\begin{gather*}
F_{j}(u(\cdot, t))=\sum_{m=1}^{N} \frac{(-1)^{\ell_{m}+1}}{\Gamma\left(1-\alpha \ell_{m}\right) t^{\alpha \ell_{m}}} \sum_{n=1}^{\infty} \frac{p_{n}}{\lambda_{n}^{\ell_{m}}} \\
+\sum_{m=1}^{N} \frac{(-1)^{\ell_{m}+1}}{\Gamma\left(2-\alpha \ell_{m}\right) t^{\alpha \ell_{m}-1}} \sum_{n=1}^{\infty} \frac{q_{n}}{\lambda_{n}^{\ell_{m}}}+O\left(\frac{1}{t^{\alpha \ell_{N+1}-1}}\right) \quad \text { as } t \rightarrow \infty \tag{3.4}
\end{gather*}
$$

Moreover

$$
\begin{equation*}
\{\alpha n\}_{n \in \mathbf{N}} \cap\{\alpha n-1\}_{n \in \mathbf{N}}=\emptyset \quad \text { for } 1<\alpha<2 \tag{3.5}
\end{equation*}
$$

Indeed let $\alpha n^{\prime}=\alpha n^{\prime \prime}-1$ with some $n^{\prime}, n^{\prime \prime} \in \mathbf{N}$. Then $\alpha \ell_{0}=1$ with $\ell_{0}:=n^{\prime \prime}-n^{\prime}$, which means $\alpha \leq 1$ and this is a contradiction by $1<\alpha<2$.

By (3.5), we number $\left\{\alpha \ell_{m}\right\}_{m \in \mathbf{N}} \cup\left\{\alpha \ell_{m}-1\right\}_{m \in \mathbf{N}}$ by $\alpha \ell_{1}-1=: s_{1}<s_{2}<\cdots<$ $s_{2 N}:=\alpha \ell_{N}$ and then

$$
\begin{equation*}
F_{j}(u(\cdot, t))=\sum_{m=1}^{2 N} \frac{Q_{m}}{t^{s_{m}}}+O\left(\frac{1}{t^{\alpha \ell_{N+1}-1}}\right) \quad \text { in } C\left(\left[t_{0}, T\right] ; Y\right) \text { as } t \rightarrow \infty \tag{3.6}
\end{equation*}
$$

where

$$
Q_{m}=\frac{(-1)^{\ell_{m}+1}}{\Gamma\left(1-\alpha \ell_{m}\right)} \sum_{n=1}^{\infty} \frac{p_{n}}{\lambda_{n}^{\ell_{m}}} \quad \text { or } \quad Q_{m}=\frac{(-1)^{\ell_{m}+1}}{\Gamma\left(2-\alpha \ell_{m}\right)} \sum_{n=1}^{\infty} \frac{q_{n}}{\lambda_{n}^{\ell_{m}}}
$$

Third Step. We fix $N \in \mathbf{N}$ arbitrarily. In terms of (1.11), by (3.6) we see that for each $n \in \mathbf{N}$ there exists a constant $C_{n}>0$ such that

$$
\frac{\left\|Q_{1}\right\|_{Y}}{t^{s_{1}}}-\sum_{m=2}^{2 N} \frac{\left\|Q_{m}\right\|_{Y}}{t^{s_{m}}}-\frac{C}{t^{\alpha \ell_{N+1}-1}} \leq \frac{C_{n}}{t^{\tau_{n}}}
$$

Then

$$
\left\|Q_{1}\right\|_{Y} \leq \sum_{m=2}^{2 N} \frac{\left\|Q_{m}\right\|_{Y}}{t^{s_{m}-s_{1}}}+\frac{C}{t^{\alpha \alpha_{N+1}-1-s_{1}}}+\frac{C_{n}}{t^{\tau_{n}-s_{1}}} .
$$

We note that $\alpha \ell_{N}<\alpha \ell_{N+1}-1$ by $\alpha>1$ and $\ell_{n}, \ell_{N+1} \in \mathbf{N}$, so that $s_{2 N}<\alpha \ell_{N+1}-1$.

Since $\lim _{n \rightarrow \infty} \tau_{n}=\infty$, we can choose $n \in \mathbf{N}$ such that $\tau_{n}>s_{1}$. Hence, letting $t \rightarrow \infty$, we have $Q_{1}=0$ in Y. Continuing this argument, we reach $Q_{m}=0$ for $1 \leq m \leq 2 N$. Since $N \in \mathbf{N}$ is arbitrary, we obtain $Q_{m}=0$ for all $m \in \mathbf{N}$, that is,

$$
\sum_{n=1}^{\infty} \frac{p_{n}}{\lambda_{n}^{\ell_{m}}}=\sum_{n=1}^{\infty} \frac{q_{n}}{\lambda_{n}^{\ell_{m}}}=0 \quad \text { for all } m \in \mathbf{N} .
$$

In order to apply Lemma 5, we have to verify (2.5). It suffices to consider for p_{n}, because the verification for q_{n} is the same.

Case: $F_{1}(u(\cdot, t))$. By the Sobolev embedding (e.g., [1]), fixing $\mu_{0}>0$ with $2 \mu_{0}>$ d, we have

$$
\begin{aligned}
& \left\|p_{n}\right\|_{C(\bar{\Omega})} \leq C\left\|p_{n}\right\|_{H^{\mu_{0}(\Omega)}} \leq C\left\|A^{\frac{\mu_{0}}{2}}\left(\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right)\right\|_{L^{2}(\Omega)} \\
= & C \lambda_{n}^{\frac{\mu_{0}}{2}}\left\|\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right\|_{L^{2}(\Omega)} \leq C \lambda_{n}^{\frac{\mu_{0}}{2}}\|a\|_{L^{2}(\Omega)} .
\end{aligned}
$$

For the second inequality, we need sufficient smoothness of the coefficients $a_{i j}$ and c of the elliptic operator A (e.g., Gilbarg and Trudinger [6]). Therefore

$$
\left\|p_{n}\right\|_{C(\bar{\Omega})} \leq C \lambda_{n}^{\frac{\mu_{0}}{2}}, \quad n \in \mathbf{N} .
$$

Therefore, we see (2.5) for F_{1}, F_{3} and F_{4} with $\theta_{0}=\frac{\mu_{0}}{2}$.
Case: $F_{2}(u(\cdot, t))$. We fix $\mu_{0}>0$ such that $2 \mu_{0}>d$. Then by the Sobolev embedding, we obtain

$$
\begin{aligned}
& \left\|\partial_{v_{A}}\left(\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right)\right\|_{C(\partial \Omega)} \leq C\left\|\left(\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right)\right\|_{C^{1}(\bar{\Omega})} \\
\leq & C\left\|\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right\|_{H^{\mu_{0}+1}(\Omega)} \leq C\left\|A^{\frac{\mu_{0}}{2}+\frac{1}{2}} \sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right\|_{L^{2}(\Omega)} \\
= & C \lambda_{n}^{\frac{\mu_{0}}{2}+\frac{1}{2}}\left\|\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right\|_{L^{2}(\Omega)} \leq C \lambda_{n}^{\frac{\mu_{0}}{2}+\frac{1}{2}}\|a\|_{L^{2}(\Omega)} .
\end{aligned}
$$

Hence (2.5) is satisfied with $\theta_{0}=\frac{\mu_{0}}{2}+\frac{1}{2}$.

Therefore, Lemma 5 yields $p_{n}=q_{n}=0$ for all $n \in \mathbf{N}$, that is,

$$
\begin{gather*}
F_{j}\left(\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\right) \\
=F_{j}\left(\sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \varphi_{n k}\right)=0, \quad j=1,2,3,4, \quad n \in \mathbf{N} \tag{3.7}
\end{gather*}
$$

Fourth Step. It suffices to verify that $p_{n}=0$ for all $n \in \mathbf{N}$ imply $a=0$ in Ω. For F_{3} and F_{4}, the assumption in Theorem 2 yields

$$
\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}=\sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \varphi_{n k}=0 \quad \text { in } \Omega
$$

for all $n \in \mathbf{N}$. Therefore, $a=b=0$ in Ω, that is, $u=0$ in $\Omega \times(0, \infty)$. Thus the proof of Theorem 2 is complete for F_{3} and F_{4}.

Case: F_{1}. By (3.7), we have

$$
p_{n}(x)=\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}(x)=0, \quad n \in \mathbf{N}, x \in \omega
$$

Since $\left(A-\lambda_{n}\right) p_{n}=0$ in Ω, we apply the unique continuation for the elliptic operator $A-\lambda_{n}$ (e.g., Choulli [3], Hörmander [9]) to see that $p_{n}=0$ in Ω for $n \in \mathbf{N}$. Since $a=\sum_{n=1}^{\infty} p_{n}$ in $L^{2}(\Omega)$, we reach $a=0$ in Ω.

Case: F_{2}. We set $u_{n}(x)=\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}(x)$ for $x \in \Omega$. By $u_{n} \in \mathcal{D}(A)$, we have $u_{n}=0$ on Γ and so

$$
\partial_{\nu_{A}} u_{n}(x)=u_{n}(x)=0, \quad n \in \mathbf{N}, x \in \Gamma
$$

Therefore, since $\left(A-\lambda_{n}\right) u_{n}=0$ in Ω, the unique continuation (e.g., [3], [9]) yields $\sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}(x)=0$ for all $n \in \mathbf{N}$ and $x \in \Omega$. Hence, we can see $a=0$ in Ω. Thus the proof of Theorem 2 is complete.

4 Proofs of Theorem 3 and Proposition 1

4.1 Proof of Theorem 3

Case: F_{1}. It is sufficient to prove the case $1<\alpha<2$. Let (1.14) hold. By (3.2) with $p=1$, noting that $\Gamma(1-\alpha)$ and $\Gamma(2-\alpha)$ are finite, we see

$$
\begin{gather*}
\left\|\frac{1}{\Gamma(1-\alpha)} \frac{1}{t^{\alpha}} \sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}} \frac{\left(a, \varphi_{n k}\right) \varphi_{n k}}{\lambda_{n}}+\frac{1}{\Gamma(2-\alpha)} \frac{1}{t^{\alpha-1}} \sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}} \frac{\left(b, \varphi_{n k}\right) \varphi_{n k}}{\lambda_{n}}\right\|_{L^{2}(\omega)} \\
=o\left(\frac{1}{t^{\alpha-1}}\right) \quad \text { as } t \rightarrow \infty . \tag{4.1}
\end{gather*}
$$

Therefore, in terms of (1.3), we obtain

$$
\frac{1}{\Gamma(2-\alpha)} \frac{1}{t^{\alpha-1}}\left\|A^{-1} b\right\|_{L^{2}(\omega)}-\frac{1}{\Gamma(1-\alpha)} \frac{1}{t^{\alpha}}\left\|A^{-1} a\right\|_{L^{2}(\omega)}=o\left(\frac{1}{t^{\alpha-1}}\right)
$$

as $t \rightarrow \infty$. Multiplying with $t^{\alpha-1}$ and letting $t \rightarrow \infty$, we obtain $A^{-1} b=0$ in ω.
Next let (1.12) hold. Then, by $o\left(\frac{1}{t^{\alpha}}\right) \leq o\left(\frac{1}{t^{\alpha-1}}\right)$, we have also (1.14), so that we have already proved $A^{-1} b=0$ in ω. Therefore, since

$$
\frac{(-1)^{2}}{\Gamma(2-\alpha)} \frac{1}{t^{\alpha-1}} \sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}} \frac{\left(b, \varphi_{n k}\right) \varphi_{n k}}{\lambda_{n}}=\frac{1}{\Gamma(2-\alpha)} \frac{1}{t^{\alpha-1}} A^{-1} b=0 \quad \text { in } \omega,
$$

equality (3.2) with $p=1$ and (1.12) yield

$$
\frac{1}{\Gamma(1-\alpha)} \frac{1}{t^{\alpha}}\left\|A^{-1} a\right\|_{L^{2}(\omega)}+o\left(\frac{1}{t^{2 \alpha}}\right)+o\left(\frac{1}{t^{2 \alpha-1}}\right)=o\left(\frac{1}{t^{\alpha}}\right) .
$$

Multiplying with t^{α} and letting $t \rightarrow \infty$, by $\alpha-1>0$, we see that $A^{-1} a=0$ in ω.
Moreover $A^{-1} a=0$ in ω implies $a=0$ in ω. Indeed, setting $g:=A^{-1} a$ in Ω, we have $g=0$ in ω and $A g=a$ in Ω. Therefore, $a=A 0=0$ in ω. Similarly $A^{-1} b=0$ in ω yields $b=0$ in ω.

Finally we have to prove that the extra condition

$$
\begin{equation*}
a \geq 0 \text { in } \Omega \text { or } a \leq 0 \text { in } \Omega, \tag{4.2}
\end{equation*}
$$

implies $a=0$ in Ω.
Let $a \geq 0$ in Ω. Then $g:=A^{-1} a$ satisfies

$$
\sum_{i, j=1}^{d} \partial_{i}\left(a_{i j}(x) \partial_{j} g(x)\right)+c(x) g(x) \geq 0 \quad \text { in } \Omega .
$$

By $c \leq 0$ in Ω and $g=0$ on $\partial \Omega$, the weak maximum principle (e.g., Theorem 3.1 (p.32) in Gilbarg and Trudinger [6]) implies that $g \leq 0$ on $\bar{\Omega}$. Since $g(x)=0$ for $x \in \omega$, we see that g achieves the maximum 0 at an interior point $x_{0} \in \Omega$. Again by $c \leq 0$ in Ω, the strong maximum principle (e.g., Theorem 3.5 (p.35) in [6]) yields that g is a constant function, that is, $g(x)=0$ for all $x \in \Omega$. Hence, $a=A g=0$ in Ω. Thus the proof in the case F_{1} is complete.

Case: F_{3}. It suffices to prove only in the case $1<\alpha<2$. By Lemma 2, for arbitrarily chosen $t_{0} \in(0, T)$, we see

$$
\begin{aligned}
& A u(x, t)=\sum_{n=1}^{\infty} E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \lambda_{n} \varphi_{n k} \\
+ & \sum_{n=1}^{\infty} t E_{\alpha, 2}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \lambda_{n} \varphi_{n k} \quad \text { in } C\left(\left[t_{0}, T\right] ; L^{2}(\Omega)\right) .
\end{aligned}
$$

Using $a, b \in \mathcal{D}\left(A^{\gamma}\right)$ with $\gamma>\frac{d}{4}$ and noting

$$
A^{\gamma}\left(a, \varphi_{n k}\right) \lambda_{n} \varphi_{n k}=\lambda_{n}^{1+\gamma}\left(a, \varphi_{n k}\right) \varphi_{n k}=\lambda_{n}\left(a, A^{\gamma} \varphi_{n k}\right) \varphi_{n k}=\lambda_{n}\left(A^{\gamma} a, \varphi_{n k}\right) \varphi_{n k},
$$

we obtain

$$
\begin{aligned}
& A^{1+\gamma} u(x, t)=\sum_{n=1}^{\infty} E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(A^{\gamma} a, \varphi_{n k}\right) \lambda_{n} \varphi_{n k} \\
+ & \sum_{n=1}^{\infty} t E_{\alpha, 2}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(A^{\gamma} b, \varphi_{n k}\right) \lambda_{n} \varphi_{n k} .
\end{aligned}
$$

Consequently, by Lemma 1, we can prove

$$
\left\|A^{1+\gamma} u\right\|_{L^{\infty}\left(t_{0}, T ; L^{2}(\Omega)\right)}<\infty
$$

and so the above series is convergent in $L^{\infty}\left(t_{0}, T ; L^{2}(\Omega)\right)$. Since the Sobolev embedding implies $\mathcal{D}\left(A^{\gamma}\right) \subset C(\bar{\Omega})$ with $\gamma>\frac{d}{4}$, we obtain

$$
\begin{aligned}
& A u\left(x_{0}, t\right)=\sum_{n=1}^{\infty} E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \lambda_{n} \varphi_{n k}\left(x_{0}\right) \\
+ & \sum_{n=1}^{\infty} t E_{\alpha, 2}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \lambda_{n} \varphi_{n k}\left(x_{0}\right), \quad t_{0}<t<T \quad \text { in } C\left[t_{0}, T\right] .
\end{aligned}
$$

Substituting (2.1) with $p=1$ and $\beta=1,2$, we have

$$
\begin{aligned}
& A u\left(x_{0}, t\right)=\frac{1}{\Gamma(1-\alpha)} \sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}}\left(a, \varphi_{n k}\right) \varphi_{n k}\left(x_{0}\right) \frac{1}{t^{\alpha}} \\
+ & \frac{1}{\Gamma(2-\alpha)} \sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}}\left(b, \varphi_{n k}\right) \varphi_{n k}\left(x_{0}\right) \frac{1}{t^{\alpha-1}}+O\left(\frac{1}{t^{2 \alpha-1}}\right) \quad \text { as } t \rightarrow \infty .
\end{aligned}
$$

By $a, b \in \mathcal{D}\left(A^{\gamma}\right) \subset C(\bar{\Omega})$, we find

$$
\begin{equation*}
A u\left(x_{0}, t\right)=\frac{1}{\Gamma(1-\alpha) t^{\alpha}} a\left(x_{0}\right)+\frac{1}{\Gamma(2-\alpha) t^{\alpha-1}} b\left(x_{0}\right)+O\left(\frac{1}{t^{2 \alpha-1}}\right) \quad \text { as } t \rightarrow \infty . \tag{4.3}
\end{equation*}
$$

By an argument similar to Case F_{1} in Theorem 3, we see that (1.16) and (1.17) imply $a\left(x_{0}\right)=0$ and $b\left(x_{0}\right)=0$ respectively. The converse assertion in the theorem directly follows from (4.3).

4.2 Proof of Proposition 1

It is sufficient to prove in the case $1<\alpha<2$. By $a, b \in \mathcal{D}\left(A^{\gamma}\right) \subset C(\bar{\Omega})$ with $\gamma>\frac{d}{4}$, similarly to (4.1), we obtain

$$
\begin{aligned}
& u\left(x_{0}, t\right) \\
= & \frac{1}{\Gamma(1-\alpha)} \frac{1}{t^{\alpha}} \sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}} \frac{\left(a, \varphi_{n k}\right)}{\lambda_{n}} \varphi_{n k}\left(x_{0}\right) \\
+ & \frac{1}{\Gamma(2-\alpha)} \frac{1}{t^{\alpha-1}} \sum_{n=1}^{\infty} \sum_{k=1}^{d_{n}} \frac{\left(b, \varphi_{n k}\right)}{\lambda_{n}} \varphi_{n k}\left(x_{0}\right)+O\left(\frac{1}{t^{2 \alpha-1}}\right) \\
= & \frac{1}{\Gamma(1-\alpha)} \frac{1}{t^{\alpha}}\left(A^{-1} a\right)\left(x_{0}\right)+\frac{1}{\Gamma(2-\alpha)} \frac{1}{t^{\alpha-1}}\left(A^{-1} b\right)\left(x_{0}\right)+O\left(\frac{1}{t^{2 \alpha-1}}\right)
\end{aligned}
$$

as $t \rightarrow \infty$. Similarly to the case F_{1} in the proof of Theorem 3, we can prove that (1.20) implies $\left(A^{-1} b\right)\left(x_{0}\right)=0$. Under the assumption that b does not change the signs in Ω, in view of the weak and the strong maximum principles, we can argue similarly to the final part of the proof of Theorem 3 in the case of F_{1}, so that we can reach $b=0$ in Ω. Therefore, we prove that (1.20) implies $b(x)=0$ for $x \in \Omega$. The converse statement of the proposition is readily seen. Thus the proof of Proposition 1 is complete.

5 Concluding remarks

5.1. Time-fractional diffusion-wave equations with order $\alpha \in(0,2) \backslash\{1\}$ describe slow diffusion and are known not to have strong smoothing property as the classical diffusion equation. Such a weak smoothing property is characterized by the norm equivalence between $\|u(\cdot, t)\|_{H^{2}(\Omega)}$ and $\|u(\cdot, 0)\|_{L^{2}(\Omega)}$ for any $t>0$ in the case of $0<\alpha<1$. The weak smoothing property allows that the backward problem in time is well-posed for $\alpha \in(0,2) \backslash\{1\}$ (Floridia, Li and Yamamoto [4], Floridia and Yamamoto [5], Sakamoto and Yamamoto [15]), which is a remarkable difference from the case $\alpha=1$.

The present article establishes that local properties of initial values affect the decay rate of solution as $t \rightarrow \infty$, which indicates that a time-fractional equation can keep some profile of the initial value even for very large $t>0$. This property can be understood related to the backward well-posedness in time and is essentially different from the case $\alpha=1$.

The essence of the argument relies on that the behavior of a solution u for large $t>0$ admits an asymptotic expansion with respect to $\left(\frac{1}{t}\right)^{\alpha \ell}$ and $\left(\frac{1}{t}\right)^{\alpha \ell-1}$ with $\ell \in \mathbf{N}$.
5.2. We can generalize Theorem 3 (ii). For simplicity, we consider only the case $0<\alpha<1$.
Proposition 2. Let $a \in \mathcal{D}\left(A^{\gamma}\right)$ with $\gamma>\frac{d}{4}$ and $0<\alpha, \beta<1$. Then

$$
\left|\partial_{t}^{\beta} u\left(x_{0}, t\right)\right| \leq \frac{C}{t^{\beta}}\|a\|
$$

If

$$
\left|\partial_{t}^{\beta} u\left(x_{0}, t\right)\right|=o\left(\frac{1}{t^{\beta}}\right) \quad \text { as } t \rightarrow \infty
$$

then $u\left(x_{0}, 0\right)=0$.
The proof relies on

$$
\begin{gather*}
\partial_{t}^{\beta} u(x, t)=-t^{\alpha-\beta} \sum_{n=1}^{\infty} \lambda_{n} E_{\alpha, \alpha+1-\beta}\left(-\lambda_{n} t^{\alpha}\right) \sum_{k=1}^{d_{n}}\left(a, \varphi_{n k} \varphi_{n k}(x)\right. \\
\text { in } C\left((0, T] ; L^{2}(\Omega)\right) \tag{5.1}
\end{gather*}
$$

and then we can argue similarly to Theorem 3 (ii) by (2.1). The equation (5.1) can be verified as follows:

$$
\partial_{t}^{\beta}\left(t^{\alpha k}\right)=\frac{\Gamma(\alpha k+1)}{\Gamma(\alpha k+1-\beta)} t^{\alpha k-\beta}, \quad k \in \mathbf{N}
$$

and so the termwise differentiation yields

$$
\partial_{t}^{\beta} E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right)=-\lambda_{n} t^{\alpha-\beta} E_{\alpha, \alpha+1-\beta}\left(-\lambda_{n} t^{\alpha}\right), \quad t>0
$$

Then (2.4) yields (5.1).
We omit the details of the proof of Proposition 2.

References

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] S. Agmon, Lectures on Elliptic Boundary Value Problems, D. van Nostrand, Princeton, 1965.
[3] M. Choulli, Applications of Elliptic Carleman Inequalities to Cauchy and Inverse Problems, Springer-Verlag, Berlin, 2016.
[4] G. Floridia, Z. Li, and M. Yamamoto, Well-posedness for the backward problems in time for general time-fractional diffusion equation, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31:593-610, 2020.
[5] G. Floridia and M. Yamamoto, Backward problems in time for fractional diffusion-wave equation, Inverse Problems 36: 125016, 14 pp., 2020
[6] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
[7] R. Gorenflo, A.A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin, 2014.
[8] R. Gorenflo, Y. Luchko and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal. 18:799-820, 2015.
[9] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1976.
[10] A. Kubica, K. Ryszewska, and M. Yamamoto, Theory of Time-fractional Differential Equations An Introduction, Springer Japan, Tokyo, 2020.
[11] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phyics Reports 339: 1-77, 2000.
[12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983
[13] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[14] H.E. Roman and P.A. Alemany, Continuous-time random walks and the fractional diffusion equation, J. Phys. A:Math. Gen. 27: 3407-3410, 1994.
[15] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382: 426-447, 2011.
[16] V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equation via energy methods, SIAM J. Math. Anal. 47: 210-239, 2015.

[^0]: *Accepted for publication on November 24-th, 2023
 ${ }^{\dagger}$ myama@ms.u-tokyo.ac.jp ${ }^{1}$ Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8914, Japan ${ }^{2}$ Zonguldak Bülent Ecevit University, Turkey ${ }^{3}$ Honorary Member of Academy of Romanian Scientists, Ilfov, nr. 3, Bucuresti, Romania ${ }^{4}$ Correspondence Member of Accademia Peloritana dei Pericolanti, Palazzo Università, Piazza S. Pugliatti 198122 Messina, Italy. Paper written with financial supports of Grant-in-Aid for Scientific Research (A) 20H00117 and Grant-in-Aid for Challenging Research (Pioneering) 21K18142 of Japan Society for the Promotion of Science.

