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COUNTING PATHS OF GRAPHS
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Abstract

Operating only by means of the incidence matrix of a connected
graph G, a new algebraic combinatorial method for determining the
paths of length (q−1) of G together with the generators of the cor-
responding generalized graph ideal Iq(G) is discussed and developed.
The stated formulae are obtained and shown even by changing tech-
niques appropriately when the difficulties of calculation increased.
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Introduction

Algebraically speaking, determining some paths of length (q−1), q positive
integer, of a connected undirected graph G, means to find generators of a
monomial ideal to which G can be associated, the generalized graph ideal
Iq(G) (see [3, 4, 5]).
The problem of computing, using only the incidence matrix of G, the num-
ber and structure of paths of fixed length in G, and the generators of the
relative generalized graph ideal, presents aspects useful in various scientific
and statistical research areas.
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In more detail, the number of paths of length at least 2 is obtained in terms
of multiplicity of pairs of rows in the incidence matrix of G . Their struc-
ture is determined by joining alternatively on the rows and the columns of
the incidence matrix specific entries 1 related to the vertices of the paths
beginning from the inside, that is either from a combination of pairs of 1’s
on the rows or from the two 1’s on the columns of the matrix, respectively.
Increasing the length, by considering appropriate and sometimes innovative
strategies in the calculations, the problem is solved up to q= 6 .
The extension method is not at all simple, due especially to the presence
of cycle subgraphs in the graph G. Along the script, selected explanatory
examples are given.

1 Preliminary notions

Throughout the paper, following [1], let G be a graph with vertex set
V (G) = {v1, . . . , vn} and edge set E(G) = {e1, . . . , em}.
A walk of G is a sequence of alternating vertices (or points) and edges
v1, e1, v2, . . . , eq−1, vq, where each ei = {vi, vi+1}. A walk is closed if end-
points coincide. The length of a walk is the number of its edges.

A graph G is connected if all the pairs of vertices in G are joined by a path,
namely a walk with no repeated vertices and edges.

A tree is a connected graph with no cycles, that is with no closed paths.

A cycle graph or a circular graph consists of a single cycle. A cycle graph
with n vertices is denoted by Cn .

A graph is complete if every pair of its distinct vertices is connected by an
edge. A complete graph with n vertices is denoted by Kn .

Definition 1 Let G be a connected graph having vertices v1, . . . , vn . The
generalized graph ideal Iq(G), N ∋ q ≤ n , is the ideal of the polynomial ring
K[x1, . . . , xn ], where K is a field and each variable xi corresponds to vi,
generated by all the square-free monomials xi1 · · · xiq of degree q such that
the vertex vij is adjacent to vij+1 , for all 1 ≤ j ≤ (q−1) .

Remark 1 I2 (G) is the generalized graph ideal generated by the edges of
G , the so-called edge ideal. More generally, the generators of Iq(G) are
paths of G of length q−1, simply called (q−1)-paths.

Definition 2 A monomial ideal Lq ⊂K[x1,. . . , xm; y1,. . . , yn] is called an
ideal of mixed products if it is writable as Lq = Ip Jr + Is Jt , where

q = p+ r = s+ t , for p, r, s, t non-negative integers;
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Ip or Is (resp. Jr or Jt) are ideals of K[x1,. . . , xm; y1,. . . , yn] gener-
ated by square-free monomials of degree p or s (resp. r or t) in the
variables x1,. . . , xm (resp. y1, . . . , yn) .

Remark 2 Setting I0 = J0 = R , there are essentially only the following
two cases for these ideals:

a) Lq = Ip Jr + Is Jt 0 ≤ p < s or 0 ≤ t < r ,
b) Lq = Ip Jr p ≥ 1 or r ≥ 1 .

Proposition 1 [7] All the powers of the ideals Ip, Jr are integrally closed
(or complete). Therefore Ip, Jr are normal ideals.

Some interesting properties and results about normality of Lq can be found
in [6] , where a complete characterization of normal ideals of mixed products
is given.

Theorem 1 Let R = K[x1, . . . , xm; y1, . . . , yn ] be a polynomial ring over
a field K. Let Lq = Ip Jr + Is Jt ̸= R be an ideal of mixed products with
q = p+ r = s+ t. Then Lq is normal if and only if it can be written (up to
permutation of p, s and r, t) in one of the following forms:

(a) Lq = Ip Jr + Ip+1 Jr−1 p ≥ 0 and r ≥ 1 ;

(b) Lq = Ip Jr p ≥ 1 or r ≥ 1 ;

(c) Lq = Ip Jr + Is Jt 0 = p < s = m, or 0 = t < r = n,

or p = t = 0, s = 1 .

Proof. See [6, Theorem 2.9]. □

Definition 3 A graph G is called bipartite if V (G) can be partitioned into
two subsets V1 = {x1,. . . , xm} and V2 = {y1,. . . , yn} such that every edge of
G joins a vertex in V1 to a vertex in V2 .
A bipartite graph G is complete if it contains all the edges that can join V1

and V2. It is denoted by Km,n .

For a complete bipartite graph G, the associated generalized graph ideal
Lq(G) is a particular ideal of mixed products.
To this purpose, the following results hold.

Proposition 2 Let G be a complete bipartite graph having vertex set V (G)=
{x1,. . . , xm; y1,. . . , yn} . Then, for 2≤ q < (m+ n) , the generalized graph
ideal Lq(G) is of the form
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Lq(G) =

{
Ih Jh+1 + Ih+1 Jh if q = 2h+1
Ih Jh if q = 2h .

Such an ideal is normal for all q ≥ 2 .

Proof. Since G is complete bipartite, every vertex xi has degree n and every
vertex yj has degree m . The edges of G are pairs of the form {xi, yj } and
their number is mn .
Evidently Lq(G), for all q ≥ 2, is an ideal of one of the forms as in the
enunciate, and its normality is a consequence of Theorem 1 . □

Proposition 3 Let Lq ⊂ K[x1,. . . , xm; y1,. . . , yn ] , 2≤ q< (m+ n) , be an
ideal of mixed products of the form

a) Ih Jh+1 , or Ih+1 Jh , or Ih Jh+1 + Ih+1 Jh for h =
q − 1

2
;

b) Ih Jh for h =
q

2
.

Then Lq=Lq(G), where G is a complete bipartite graph with m+n vertices.

Proof. It is enough apply Proposition 2 . □

Definition 4 Let G be an undirected graph with n vertices and m edges.
The incidence matrix MG of G is a (n × m)-matrix whose entries aij are
equal to 1 if the i-th vertex of G belongs to the j-th edge, 0 otherwise.

Remark 3 Each row of MG has as many entries 1 as the degree of the
corresponding vertex of G . Each column of MG has two entries 1 and the
remaining are 0 .

Definition 5 Let G be a connected graph and MG be the incidence matrix
of G. When two rows in MG correspond to a pair of vertices in G, having
degrees α and β respectively, we call multiplicity of such pair of rows the

product (α−1) (β−1), and denote it by
[
α
β

]
.

Remark 4 Let G and MG be as in Definition 5. The multiplicity of a pair
of rows in MG, that correspond to a pair of vertices of G joined by a (q−1)-
path, q≥2, and that have the degrees α≥2 and β≥2 , gives the number of
walks of length q+1 in G containing the (q−1)-path inside.
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2 Generators of generalized graph ideals

In this section we analyze the problem of computing up to q=6 the number
and the structure of the (q−1)-paths of a connected graph G and the gen-
erators of the corresponding generalized graph ideal Iq(G) using only the
incidence matrix of G. We count in lexicographical order.

− 2-paths of G and generators of I3(G)

Theorem 2 A connected graph G having n ≥ 3 vertices and m edges has
n∑

i=1

(
λi

2

)
2-paths, where λi denotes the number of entries 1 in the i-th row

of the incidence matrix MG .
On each row of MG let’s consider every pair ai2 h , ai2 k of entries 1 , and let
ai1 h , ai3 k be the other entries 1 of the corresponding columns.
Then all the 2-paths of G and the generators of I3(G) are of the type xi1 xi2 xi3 ,
1 ≤ i1 ̸= i2 ̸= i3 ≤ n .

Proof. Observe that the number of non-zero entries on any row of the
incidence matrix of a graph G represents the number of edges incident to
the vertex of the graph related to such a row.
All the possible combinations of pairs of these edges determine 2-paths for
G having that vertex as inner vertex.
With an analogous reasoning on every vertex of G , the number of the 2-
paths follows.
Moreover, taking in pairs the λ non-zero entries of the row Ri2 of MG , we

give place to
(
λ
2

)
distinct 2-paths for G, each having inner vertex xi2 .

The ends xi1 , xi3 of such 2-paths are related to the rows Ri1 , Ri3 of MG on
which the remaining non-zero entry of each of the two columns determined
by every single pair stays.
From the definition of generalized graph ideal, the generators of I3(G) are all
the 2-paths ofG obtained as above for every choice of Ri2 , up to permutation
of indices. □

− 3-paths of G and generators of I4(G)

Theorem 3 A connected graph G having n ≥ 4 vertices, m edges, and s

cycle subgraphs C3, has
m∑
j=1

[
αj

βj

]
− 3 s 3-paths, where

[
αj

βj

]
, αj ≥ βj ≥ 2 ,

denotes the multiplicity of the rows of the incidence matrix MG on which
the entries 1 of its j-th column lie.
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If ai2 j , ai3 j are such entries, let’s combine the pairs of 1’s on the row
Ri2 that contain ai2 j together with the pairs of 1’s on Ri3 that contain
ai3 j , and let ai2 h , ai3 k be the other entries 1 in the pairs for each of these
combinations, ai1 h , ai4 k be the remaining entries 1 of the relative columns.
Then all the 3-paths of G are of the type xi1 xi2 xi3 xi4 , 1 ≤ i1 ̸= i2 ̸= i3 ̸=
i4≤n , and the generators of I4(G) are the 3-paths of G different from one
another for at least an index.

Proof. A 3-path of the graph G can be thought as a pair of 2-paths having
a common edge and the other two edges of it without a common vertex.
Observe that the non-zero entries on any column of the incidence matrix of
G represent an edge of G with ends the vertices of G related to the rows on
which such entries stay.
If ℓ is the multiplicity of such rows, all the possible pairs of 2-paths having
a common edge related to that column determine ℓ 3-walks of G with inner
vertices the ends of their common edge.
With an analogous reasoning on every edge of G , all the 3-walks of G are
obtained.
The number of 3-paths follows excluding 3-walks with the same ends: in
fact such walks belong to cycle subgraphs C3 of G , each of which has three
distinct.

Moreover, let [ α
β
] , α ≥ β ≥ 2 , be the multiplicity of the rows Ri2 , Ri3 of

MG to which the non-zero entries of the column Γj belong.
Observe that there exist, on the row Ri2 of MG , α−1 pairs having the
first entry always belonging to the column Γj , the other one to the column
Γh , h ̸= j ; analogously, on the row Ri3 , there exist β−1 pairs having the
first entry always belonging to Γj , the other one to the column Γk , k ̸= j .
Combining in all possible ways one of the above pairs on the row Ri2 with
one of those on the row Ri3 , (α−1) (β−1) distinct 3-walks of G are obtained,
each having inner vertices xi2 , xi3 .
The ends xi1 , xi4 of such 3-walks are related to the row Ri1 of MG on which
the remaining non-zero entry of the column Γh stays, and to the row Ri4 to
which the other non-zero entry of Γk belongs.
When the rows Ri1 and Ri4 of MG are distinct, the first assertion is proved.
From the definition of generalized graph ideal, the generators of I4(G) are all
the 3-paths of G obtained as above for every choice of Γj , up to permutation
of indices. □

Example 1 Consider connected graphs on 3 and 4 vertices and determine
all their (q−1)-paths, 2 ≤ q ≤ 4 .
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∗ 3 verticesb 2 edges ( complete bipartite graph K1, 2 )








J
J
J
r

r r
x1

x2 x3

MG =

 1 1
1 0
0 1


There is 1 2-path: x2 x1 x3 .

So L3 (K1, 2) = I1 J2 = (x1 x2 x3) .

b 3 edges ( cycle graph C3, complete graph K3 )








J
J
J
r

r r
x1

x2 x3

MG =

 1 1 0
1 0 1
0 1 1


There are 3 2-paths: x1 x2 x3, x1 x3 x2, x2 x1 x3 .

So I3 (K3) = (x1 x2 x3) .

∗ 4 verticesb 2 edges (bipartite graph)r
r

r
r

x1 x2

x3 x4

MG =


1 0
0 1
1 0
0 1


There are no paths of length more than 1.

b 3 edges (bipartite graph)

�
�
�
�

r
r

r
r

x1 x2

x3 x4

MG =


1 0 0
0 1 1
1 1 0
0 0 1


There are 2 2-paths: x1 x3 x2, x3 x2 x4 ;

1 3-path: x1 x3 x2 x4 .

So I3 = (x1 x2 x3, x2 x3 x4) ; I4 = (x1 x2 x3 x4) .

3 edges (complete bipartite graph K1, 3 )
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J
J

J
J










rr
r
r

x4

x1

x2 x3

MG =


1 1 1
1 0 0
0 1 0
0 0 1


There are 3 2-paths: x2 x1 x3, x2 x1 x4, x3 x1 x4 .

So L3 (K1, 3) = I1 J2 = (x1 x2 x3, x1 x2 x4, x1 x3 x4 ) .

b 4 edges

�
�
�
�

r
r

r
r

x1 x2

x3 x4

MG =


1 1 0 0
1 0 1 1
0 1 1 0
0 0 0 1


There are 5 2-paths: x1 x2 x3, x1 x2 x4, x1 x3 x2,

x2 x1 x3, x3 x2 x4 ;

2 3-paths: x1 x3 x2 x4, x3 x1 x2 x4 .

So I3 = (x1 x2 x3, x1 x2 x4, x2 x3 x4) ; I4 = (x1 x2 x3 x4) .

4 edges (cycle graph C4 )r
r

r
r

x1 x2

x3 x4

MG =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1


There are 4 2-paths: x1 x2 x4, x1 x3 x4, x2 x1 x3, x2 x4 x3 ;

4 3-paths: x1 x2 x4 x3, x1 x3 x4 x2,

x2 x1 x3 x4, x3 x1 x2 x4 .

So I3(C4) = (x1 x2 x3, x1 x2 x4, x1 x3 x4, x2 x3 x4) ;

I4(C4) = (x1 x2 x3 x4) .

4 edges (complete bipartite graph K2, 2 )

�
�
�
�@

@
@
@

r
r

r
r

x1 x2

x3 x4

MG =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


There are 4 2-paths: x1 x3 x2, x1 x4 x2, x3 x1 x4, x3 x2 x4 ;

4 3-paths: x1 x3 x2 x4, x1 x4 x2 x3,
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x2 x3 x1 x4, x2 x4 x1 x3 .

So L3 (K2, 2) = I2 J1 + I1 J2 =

= (x1 x2 x3, x1 x2 x4, x1 x3 x4, x2 x3 x4) ;

L4(K2, 2) = I2 J2 = (x1 x2 x3 x4) .

b 5 edges

�
�
�
�

r
r

r
r

x1 x2

x3 x4

MG =


1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1


There are 8 2-paths: x1 x2 x3, x1 x2 x4, x1 x3 x2, x1 x3 x4,

x2 x1 x3, x2 x3 x4, x2 x4 x3, x3 x2 x4 ;

6 3-paths: x1 x2 x3 x4, x1 x2 x4 x3, x1 x3 x2 x4,

x1 x3 x4 x2, x2 x1 x3 x4, x3 x1 x2 x4 .

So I3 = (x1 x2 x3, x1 x2 x4, x1 x3 x4, x2 x3 x4) ;

I4 = (x1 x2 x3 x4) .

b 6 edges (complete graph K4 )

�
�
�
�@

@
@
@

r
r

r
r

x1 x2

x3 x4

MG =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1


There are 12 2-paths: x1 x2 x3, x1 x2 x4, x1 x3 x2, x1 x3 x4,

x1 x4 x2, x1 x4 x3, x2 x1 x3, x2 x1 x4,

x2 x3 x4, x2 x4 x3, x3 x1 x4, x3 x2 x4 ;

12 3-paths: x1 x2 x3 x4, x1 x2 x4 x3, x1 x3 x2 x4,

x1 x3 x4 x2, x1 x4 x2 x3, x1 x4 x3 x2,

x2 x1 x3 x4, x2 x1 x4 x3, x2 x3 x1 x4,

x2 x4 x1 x3, x3 x1 x2 x4, x3 x2 x1 x4 .

So I3(K4) = (x1 x2 x3, x1 x2 x4, x1 x3 x4, x2 x3 x4) ;

I4(K4) = (x1 x2 x3 x4) .

− 4-paths of G and generators of I5(G)
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Proposition 4 Let G be a connected graph having n≥5 vertices v1, . . . , vn ,
m edges, s cycle subgraphs C3 , r cycle subgraphs C4 , and incidence matrix
MG . Let dh be the number of vertices of G adjacent to C3, h = 1, . . . , s .

For every (n×2)-submatrix Aℓ of MG with only one row of 1’s, let
[
αℓ

βℓ

]
,

αℓ≥βℓ≥2 , be the multiplicity of the rows of MG corresponding to the rows
of Aℓ with a unique entry 1 .

Then G has
∑
ℓ

[
αℓ

βℓ

]
−

s∑
h=1

( 3 + 2 dh)− 4 r 4-paths.

Proof. A 4-path of G can be thought as a pair of 3-paths having a common
2-path and the remaining two edges without a common vertex.
According to Proposition 2 , the inner vertex and the endpoints of any 2-
path of G characterize a (n×2)-submatrix Aℓ of MG having only one row of
1’s, and these vertices correspond in Aℓ to the row of 1’s and to the pair of
rows with a unique entry 1, respectively.

The number of such submatrices is
n∑

i=1

(
deg vi
2

)
.

If mℓ is the multiplicity of the rows in MG that correspond to the rows of
Aℓ with a unique entry 1 , every pair of 3-paths having a common 2-path
determines mℓ walks of length 4 in G having as inner vertices the three
vertices of their common 2-path.

For ℓ = 1, . . . ,

n∑
i=1

(
deg vi
2

)
, all these walks of length 4 in G are found. The

assertion follows excluding walks having some repeated vertex, that is:b for every cycle subgraph C3 of G, there are

− 3 distinct walks, having the same start and end edges,

− twice the sum of the degrees of the vertices of C3 minus twice
the sum of the degrees of the vertices of a triangular cycle graph
distinct walks, having one pair of equal vertices not at both the
ends,b for every cycle subgraph C4 of G, there are

− 4 distinct walks, having the same start and end edges. □

Theorem 4 Let G,MG, and Aℓ be as in the Proposition 4 , and Ri3 be the
row of 1’s in any Aℓ .
Let Ri2 , Ri4 denote the rows of MG relative to the rows of Aℓ with a unique
entry 1 , and Ri1 , Ri5 be the rows of MG on which the remaining entry 1
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of the columns, not belonging to Aℓ , located by an entry 1 in Ri2 and an
entry 1 in Ri4 lies.
Then all the 4-paths of G are of the type xi1 xi2 xi3 xi4 xi5 , 1 ≤ i1 ̸= i2 ̸=
̸= i3 ̸= i4 ̸= i5 ≤n , where the vertices correspond to the above rows of MG ,
and the generators of I5(G) are the 4-paths of G different from one another
for at least an index.

Proof. To construct 4-paths in G, let’s start from a 2-path whose middle
vertex is given by the row Ri3 of 1’s in any (n×2)-submatrix Aℓ of MG , and
whose ends by the two rows of Aℓ with a unique 1 .
These three vertices represent the inner vertices of the 4-paths can be ob-
tained from Aℓ .
To determine the ends of such 4-paths, let’s consider all the entries 1 lying on
each of the rows Ri2 ,Ri4 ofMG relative to the rows of Aℓ with a unique entry
1 . If one of these rows in MG contains only the entry 1 of the correspondent
row in Aℓ , no 4-path is formed.
Otherwise, let Sp , p≥1 , denote every set whose elements are two pairs of
entries 1, a pair on Ri2 , the other one on Ri4 , such that an entry of each
pair always lies on Aℓ . If Γh and Γk , h ̸= k , are the columns of MG to
which the entry not lying on Aℓ in each pair of any Sp belongs, let Ri1 , Ri5

be the rows of MG on which the remaining entry 1 of Γh and Γk lies.
When Ri1 , Ri5 are different from each other and from Ri2 , Ri3 , Ri4 , they
give the ends of the 4-paths in G that come from Aℓ .
Such 4-paths, for every choice of Aℓ , have the form xi1 xi2 xi3 xi4 xi5 .

The last assertion derives from the definition of generalized graph ideal. □

Example 2 Consider the following tree G on 8 nodes








J
J

J

r r
r

r
r r r

r

1

2

3

4

5

6

7
8

Vertices of G are the generators of I1(G) = {x1, x2, x3, x4, x5, x6, x7, x8} .
Edges of G are the generators of



Counting paths via incidence matrices 68

I2(G) = {x1 x3, x2 x3, x3 x4, x4 x5, x4 x7, x6 x7, x7 x8} .

The incidence matrix of G is MG =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 1 1 0 0 0 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 1 1
0 0 0 0 0 0 1


.

Observe that the maximal length of the paths of G is 4 ;
therefore the generalized graph ideal Iq(G) exists for 2≤q≤5 .

By Theorem 2, the number of 2-paths of G is (3
2
)+ (3

2
)+ (3

2
) = 9 .

The 2-paths of G are:

x1 x3 x2, x1 x3 x4, x2 x3 x4, x3 x4 x5, x3 x4 x7,

x4 x7 x6, x4 x7 x8, x5 x4 x7, x6 x7 x8 .

So I3(G) = (x1 x3 x2, x1 x3 x4, x2 x3 x4, x3 x4 x5, x3 x4 x7,

x4 x7 x6, x4 x7 x8, x5 x4 x7, x6 x7 x8 )

is generated by 9 2-paths.

By Theorem 3, the number of 3-paths of G is [ 3
3
]+ [ 3

3
]= 2 · 4 = 8 .

The 3-paths of G are:

x1 x3 x4 x5, x1 x3 x4 x7, x2 x3 x4 x5, x2 x3 x4 x7,

x3 x4 x7 x6, x3 x4 x7 x8, x5 x4 x7 x6, x5 x4 x7 x8 .

So I4(G) = (x1 x3 x4 x5, x1 x3 x4 x7, x2 x3 x4 x5, x2 x3 x4 x7,

x3 x4 x7 x6, x3 x4 x7 x8, x5 x4 x7 x6, x5 x4 x7 x8 )

is generated by 8 3-paths.

By Proposition 4, the number of 4-paths of G is [ 3
3
]= 4 .

By Theorem 4, the 4-paths of G are:

x1 x3 x4 x7 x6, x1 x3 x4 x7 x8, x2 x3 x4 x7 x6, x2 x3 x4 x7 x8 .

So I5(G) = (x1 x3 x4 x7 x6, x1 x3 x4 x7 x8, x2 x3 x4 x7 x6, x2 x3 x4 x7 x8 )

is generated by 4 4-paths.

− 5-paths of G and generators of I6(G)

Proposition 5 Let G be a connected graph having n≥6 vertices v1, . . . , vn ,
m edges, s cycle subgraphs C3 , r cycle subgraphs C4 , p cycle subgraphs C5 ,
and incidence matrix MG .
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For any C3 in G , let dh be the number of vertices viλ of G adjacent to C3,
h = 1, . . . , s , and ρ be the number of pairs of C3 with a common edge.
For any C4 in G , let δk be the number of vertices of G, not belonging to
C4, adjacent to C4 , k = 1, . . . , r .
For every (n×3)-submatrix Bℓ of MG having exactly two rows both with two

1’s, let
[
αℓ

βℓ

]
, αℓ≥βℓ≥2, be the multiplicity of the rows of MG corresponding

to the rows of Bℓ with a unique entry 1.Then the number of 5-paths of G is∑
ℓ

[
αℓ

βℓ

]
− 2

( dh∑
λ=1

(deg viλ − 1)

)
+ 2 ρ−

r∑
k=1

( 4 + 2 δk) − 5 p .

Proof. A 5-path of G can be thought as a pair of 4-paths having a common
3-path and the remaining two edges without a common vertex.
According to Proposition 3 , the two inner vertices and the endpoints of any
3-path of G characterize a (n×3)-submatrix Bℓ of MG having exactly two
rows both with two 1’s, and these vertices correspond in Bℓ to the rows with
two 1’s and to the pair of rows with a unique entry 1, respectively.
The number of such submatrices is

∑
νj − 3 s, where νj is the multiplicity

of the rows of MG on which the entries 1 of its j-th column lie, j = 1, . . . , t .
If mℓ is the multiplicity of the rows in MG that correspond to the rows of
Bℓ with a unique entry 1 , every pair of 4-paths having a common 3-path
determine mℓ 5-walks in G having as inner vertices the four vertices of their
common 3-path.
For ℓ = 1, . . . ,

∑
νj − 3 s , all such 5-walks in G are found. The assertion

follows excluding walks with some repeated vertex. In particular:b for every cycle subgraph C3 of G, by considering all the vertices of G
adjacent to each node of C3, there are

− twice the sum of the degrees of such vertices minus 1 distinct
walks, having at least one pair of equal vertices not at both the
ends,

but if a vertex of G is adjacent to a pair of nodes of C3, another
triangular cycle subgraph of G that has a common edge with C3 is
formed, so 2 walks, whose middle edge is the one in common, are
obtained twice, in the procedure of C3 as well as in the other one,
then for each pair of cycle subgraphs C3 of G with a common edge, 2
walks from the above computation are needed to be taken off;b for every cycle subgraph C4 of G, there are

− 4 distinct walks, having the same start and end edges,
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− twice the sum of the degrees of the vertices of C4 minus twice
the sum of the degrees of the vertices of a squared cycle graph
distinct walks, having at least one pair of equal vertices not at
both the ends,

but if an edge of G joins two non-consecutive vertices of C4, a pair of
cycle subgraphs C3 contained in C4 arise, so 4 walks, having two pairs
of equal vertices, are the same walks obtained in the single procedures
of such C3 ,
then for each of the above edges of G, 4 walks from the above compu-
tation are needed to be taken off;b for every cycle subgraph C5 of G, there are

− 5 distinct walks, having the same start and end edges. □

Theorem 5 Let G,MG, and Bℓ be as in the Proposition 5 , and Ri3 , Ri4

be the rows both with two 1’s in any Bℓ .
Let Ri2 , Ri5 denote the rows of MG relative to the rows of Bℓ with a unique
entry 1 , and Ri1 , Ri6 be the rows of MG on which the remaining entry 1
of the columns, not belonging to Bℓ , located by an entry 1 in Ri2 and an
entry 1 in Ri5 lies.
Then all the 5-paths of G are of the type xi1 xi2 xi3 xi4 xi5 xi6 , 1≤ i1 ̸= i2 ̸=
i3 ̸= i4 ̸= i5 ̸= i6 ≤ n , where the vertices correspond to the above rows of
MG , and the generators of I6(G) are the 5-paths of G different from one
another for at least an index.

Proof. To construct 5-paths in G, let’s start from a 3-path whose inner
vertices are given by the rows Ri3 , Ri4 with two 1’s in any (n×3)-submatrix
Bℓ of MG , and whose ends by the rows Ri2 , Ri5 of Bℓ with a unique 1 .
These four vertices represent the inner vertices of the 5-paths can be ob-
tained from Bℓ .
By similar reasoning as in the proof of Theorem 4, the ends of the 5-paths
in G that come from Bℓ are given by well-determined rows Ri1 , Ri6 of MG ,
different from each other and from Ri2 , Ri3 , Ri4 , Ri5 .
Such 5-paths, for every choice of Bℓ , have the form xi1 xi2 xi3 xi4 xi5 xi6 .

The last assertion derives from the definition of generalized graph ideal. □

3 Computing paths of significant graphs

In this section we examine important classes of connected graphs and calcu-
late the totality of their paths, highlighting the structure of the generalized
graph ideals Iq(G), q integer at most 6.
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Property 1 The number of paths of any length and the generators of the
generalized graph ideals for lengths less than 6 related to cycle graphs, com-
plete graphs and complete bipartite graphs are the following ones

1. Cycle graphs Cn , n ≥ 3 .

Vertices in Cn have degree 2 ; the incidence matrix MCn is an (n×n)-matrix.
Cn has n edges (or 1-paths) ;
Cn has n 2-paths (n , number of the rows of MCn) ;
Cn has n 3-paths (n , number of the columns of MCn) ;
· · · · · · · · · · · · · · · · · · · · ·
Cn has n (n−1)-paths .

When 3≤q≤6 , Theorems 2, 3 4, 5 give the structure of (q−1)-paths of Cn

and the generators of the generalized graph ideals Iq(Cn) .

2. Complete graphs Kn , n ≥ 3 .

Vertices in Kn have degree n−1 ; there are
(k−1) !

2

(
n
k

)
cycles Ck, k ≥ 3 ;

the incidence matrix MKn is an

(
n×n (n−1)

2

)
-matrix.

Kn has
(
n
2

)
=

n (n−1)

2
edges (or 1-paths) ;

Kn has n
(
n−1
2

)
=

n (n−1) (n−2)

2
2-paths ;

Kn has
(
n
2

) [
n−1
n−1

]
− 3

(
n
3

)
=

n (n−1) (n−2) (n−3)

2
3-paths ;

Kn has n
(
n−1
2

) [
n−1
n−1

]
− (3 + 2 · 3 (n− 3))

(
n
3

)
− 4 · 3

(
n
4

)
=

=
n (n−1) (n−2) (n−3) (n−4)

2
4-paths ;

Kn has
n (n−1) (n−2) (n−3)

2

[
n−1
n−1

]
− 2 · 3 (n− 2) (n− 3)

(
n
3

)
+

+2
(
n
2

)(
n− 2
2

)
− 3 (4 + 2 · 4 (n− 4))

(
n
4

)
− 5 · 12

(
n
5

)
=

=
n (n−1) (n−2) (n−3) (n−4) (n−5)

2
5-paths ;

· · · · · · · · · · · · · · · · · · · · ·

Kn has
n (n−1) (n−2) · · · 2 · 1

2
=

n !

2
(n−1)-paths .

When 3≤q≤6 , Theorems 2, 3 4, 5 give the structure of (q−1)-paths of Kn

and the generators of the generalized graph ideals Iq(Kn) .

3. Complete bipartite graphs Km,n , m+n ≥ 3 .
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m vertices of Km,n have degree n ; n vertices have degree m ;

in Km,n there are
k ! k !

2 k

(
m
k

)(
n
k

)
cycles C2 k , k ≥ 2 ;

the incidence matrix MKm,n is an ((m+n)×mn)-matrix.

Km,n has mn edges (or 1-paths) ;

Km,n has m
(
n
2

)
+ n

(
m
2

)
2-paths ;

Km,n has mn
[
m
n

]
= m (m−1)n (n−1) = 2

(
m
2

)
2
(
n
2

)
3-paths ;

Km,n has m
(
n
2

) [
m
m

]
+ n

(
m
2

) [
n
n

]
− 4

2 ! 2 !

4

(
m
2

)(
n
2

)
=

= 2
(
m
2

)
2
(
n
2

) m−1

2
+ 2

(
m
2

)
2
(
n
2

) n−1

2
− 2

(
m
2

)
2
(
n
2

)
=

= m (m−1)n (n−1)
(m−2)+(n−2)

2
=

= 3 !
(
m
3

)(
n
2

)
+
(
m
2

)
3 !

(
n
3

)
4-paths ;

Km,n has mn
[
m
n

] [
m
n

]
− (4+2 (2 (m− 2)+2 (n− 2)))

2 ! 2 !

4

(
m
2

)(
n
2

)
=

= 2
(
m
2

)
2
(
n
2

)
((m− 1) (n− 1)− (1 + (m− 2) + (n− 2))) =

= m (m−1)n (n−1) (mn−m− n+ 1−m− n+ 3 ) =

= m (m−1) (m−2)n (n−1) (n−2)= 3 !
(
m
3

)
+ 3 !

(
n
3

)
5-paths ;

· · · · · · · · · · · · · · · · · · · · ·

Km,n has
h !

2

(
m
h

)
(h+1) !

(
n

h+1

)
+(h+1) !

(
m

h+1

) h !

2

(
n
h

)
(m+n−1)-paths

if m+n = 2h+1 is odd ,

h !
(
m
h

)
h !

(
n
h

)
(m+n−1)-paths if m+n = 2h is even .

(see [2, Corollary 4]).

When 3≤ q ≤ 6 , Theorems 2, 3 4, 5 give the structure of (q−1)-paths of
Km,n and the generators of the generalized graph ideals Lq(Km,n) . □

Example 3 Consider the following graph G with triangular and square
cycle subgraphs in it

�
���

H
HHH ��

��

H
HHH �

���

H
HHH

r r
r r r r

r1

2

3

4 5

6

7



M. Imbesi, M. La Barbiera 73

and compute the number of (q−1)-paths of G and the generators of the
generalized graph ideal Iq(G) , q>2 , using only the incidence matrix of G .

Vertices of G are the generators of I1(G) = (x1, x2, x3, x4, x5, x6, x7 ) .

Edges of G are the generators of
I2(G) = (x1 x2, x1 x3, x2 x3, x2 x4, x3 x4, x4 x5, x5 x6, x5 x7, x6 x7 ) .

The incidence matrix of G is MG =



1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1


.

Observe that the maximal length of the paths of G is 6 ;
therefore the generalized graph ideal Iq(G) exists for q ≤ 7 .

The number of 2-paths of G is:(
2
2

)
+
(
3
2

)
+
(
3
2

)
+
(
3
2

)
+
(
3
2

)
+
(
2
2

)
+
(
2
2

)
= 15 .

Such 2-paths are: x1 x2 x3, x1 x3 x2, x1 x2 x4, x1 x3 x4, x2 x1 x3,

x2 x3 x4, x2 x4 x3, x2 x4 x5, x3 x2 x4, x3 x4 x5,

x4 x5 x6, x4 x5 x7, x5 x6 x7, x5 x7 x6, x6 x5 x7 .

So I3(G) = (x1 x2 x3, x1 x2 x4, x1 x3 x4, x2 x3 x4, x2 x4 x5, x3 x4 x5,

x4 x5 x6, x4 x5 x7, x5 x6 x7 ) is generated by 9 2-paths.

The number of 3-paths is:[
3
2

]
+
[
3
2

]
+
[
3
3

]
+
[
3
3

]
+
[
3
3

]
+
[
3
3

]
+
[
3
2

]
+
[
3
2

]
+
[
2
2

]
− 3 · 3 =

= 4
[
3
3

]
+4

[
3
2

]
+
[
2
2

]
− 9 = 16 + 8 + 1− 9 = 16 .

Such 3-paths are: x1 x2 x3 x4, x1 x2 x4 x3, x1 x2 x4 x5, x1 x3 x2 x4,

x1 x3 x4 x2, x1 x3 x4 x5, x2 x1 x3 x4, x2 x3 x4 x5,

x2 x4 x5 x6, x2 x4 x5 x7, x3 x1 x2 x4, x3 x2 x4 x5,

x3 x4 x5 x6, x3 x4 x5 x7, x4 x5 x6 x7, x4 x5 x7 x6 .

So I4(G) = (x1 x2 x3 x4, x1 x2 x4 x5, x1 x3 x4 x5, x2 x3 x4 x5, x2 x4 x5 x6,

x2 x4 x5 x7, x3 x4 x5 x6, x3 x4 x5 x7, x4 x5 x6 x7 )

is generated by 9 3-paths.

To determine the number of 4-paths of G , consider the (7×2)-submatrices
of MG having one row of 1’s and other two rows both with a unique 1 :
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1 1
1 0
0 1
0 0
0 0
0 0
0 0


,



1 0
1 1
0 1
0 0
0 0
0 0
0 0


,



1 0
1 1
0 0
0 1
0 0
0 0
0 0


,



1 0
0 1
1 1
0 0
0 0
0 0
0 0


,



1 0
0 0
1 1
0 1
0 0
0 0
0 0


,



0 0
1 1
1 0
0 1
0 0
0 0
0 0


,



0 0
1 0
1 1
0 1
0 0
0 0
0 0


,



0 0
1 0
0 1
1 1
0 0
0 0
0 0


,



0 0
1 0
0 0
1 1
0 1
0 0
0 0


,



0 0
0 0
1 0
1 1
0 1
0 0
0 0


,



0 0
0 0
0 0
1 0
1 1
0 1
0 0


,



0 0
0 0
0 0
1 0
1 1
0 0
0 1


,



0 0
0 0
0 0
0 0
1 1
1 0
0 1


,



0 0
0 0
0 0
0 0
1 0
1 1
0 1


,



0 0
1 0
0 1
0 0
1 0
0 1
1 1


.

Then it is:
[
3
3

]
+
[
3
2

]
+
[
3
2

]
+
[
3
2

]
+
[
3
2

]
+
[
3
3

]
+
[
3
3

]
+
[
3
3

]
+
[
3
3

]
+
[
3
3

]
+
[
3
2

]
+

+
[
3
2

]
+
[
2
2

]
+
[
3
2

]
+
[
3
2

]
−(3 + 4)−(3 + 6)−(3 + 2)−4 =

= 6
[
3
3

]
+8

[
3
2

]
+
[
2
2

]
− 7−9−5−4 = 24 + 16 + 1− 25 = 16 .

Such 4-paths are:

x1 x2 x3 x4 x5, x1 x2 x4 x5 x6, x1 x2 x4 x5 x7, x1 x3 x2 x4 x5,

x1 x3 x4 x5 x6, x1 x3 x4 x5 x7, x2 x1 x3 x4 x5, x2 x3 x4 x5 x6,

x2 x3 x4 x5 x7, x2 x4 x5 x6 x7, x2 x4 x5 x7 x6, x3 x1 x2 x4 x5,

x3 x2 x4 x5 x6, x3 x2 x4 x5 x7, x3 x4 x5 x6 x7, x3 x4 x5 x7 x6 .

So I5(G) = (x1 x2 x3 x4 x5, x1 x2 x4 x5 x6, x1 x2 x4 x5 x7,

x1 x3 x4 x5 x6, x1 x3 x4 x5 x7, x2 x3 x4 x5 x6,

x2 x3 x4 x5 x7, x2 x4 x5 x6 x7, x3 x4 x5 x6 x7 )

is generated by 9 4-paths.

To determine the number of 5-paths of G , consider the (7×3)-submatrices
of MG having just two rows both with two 1’s and other two rows both with
a unique 1 :

1 1 0
1 0 1
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0


,



1 1 0
1 0 0
0 1 1
0 0 1
0 0 0
0 0 0
0 0 0


,



1 0 0
1 1 0
0 1 1
0 0 1
0 0 0
0 0 0
0 0 0


,



1 0 0
1 1 0
0 0 1
0 1 1
0 0 0
0 0 0
0 0 0


,



1 0 0
1 1 0
0 0 0
0 1 1
0 0 1
0 0 0
0 0 0


,



1 0 0
0 1 1
1 1 0
0 0 1
0 0 0
0 0 0
0 0 0


,
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1 0 0
0 1 0
1 0 1
0 1 1
0 0 0
0 0 0
0 0 0


,



1 0 0
0 0 0
1 1 0
0 1 1
0 0 1
0 0 0
0 0 0


,



0 0 0
1 1 0
1 0 0
0 1 1
0 0 1
0 0 0
0 0 0


,



0 0 0
1 0 0
1 1 0
0 1 1
0 0 1
0 0 0
0 0 0


,



0 0 0
1 0 0
0 0 0
1 1 0
0 1 1
0 0 1
0 0 0


,



0 0 0
1 0 0
0 0 0
1 1 0
0 1 1
0 0 0
0 0 1


,



0 0 0
0 0 0
1 0 0
1 1 0
0 1 1
0 0 1
0 0 0


,



0 0 0
0 0 0
1 0 0
1 1 0
0 1 1
0 0 0
0 0 1


,



0 0 0
0 0 0
0 0 0
1 0 0
1 1 0
0 1 1
0 0 1


,



0 0 0
0 0 0
0 0 0
1 0 0
1 1 0
0 0 1
0 1 1


.

Then it is:[
3
3

]
+
[
3
3

]
+
[
3
2

]
+
[
3
2

]
+
[
3
2

]
+
[
3
2

]
+
[
3
2

]
+
[
3
2

]
+
[
3
3

]
+
[
3
3

]
+
[
3
2

]
+
[
3
2

]
+
[
3
2

]
+

+
[
3
2

]
+
[
3
2

]
+
[
3
2

]
−2 ( (2+2)+(1+1+2)+2 )+2 · 1−(4+6−2·2) =

= 4
[
3
3

]
+12

[
3
2

]
− 2·10 + 2− 6 = 16 + 24− 24 = 16 .

Such 5-paths are:

x1 x2 x3 x4 x5 x6, x1 x2 x3 x4 x5 x7, x1 x2 x4 x5 x6 x7, x1 x2 x4 x5 x7 x6,

x1 x3 x2 x4 x5 x6, x1 x3 x2 x4 x5 x7, x1 x3 x4 x5 x6 x7, x1 x3 x4 x5 x7 x6,

x2 x1 x3 x4 x5 x6, x2 x1 x3 x4 x5 x7, x2 x3 x4 x5 x6 x7, x2 x3 x4 x5 x7 x6,

x3 x1 x2 x4 x5 x6, x3 x1 x2 x4 x5 x7, x3 x2 x4 x5 x6 x7, x3 x2 x4 x5 x7 x6 .

So I6(G) = (x1 x2 x3 x4 x5 x6, x1 x2 x3 x4 x5 x7, x1 x2 x4 x5 x6 x7,

x1 x3 x4 x5 x6 x7, x2 x3 x4 x5 x6 x7 )

is generated by 5 5-paths.

Since in G there not exist paths of length greater than 6, the generalized
graph ideal I7(G) is generated by 1 6-path, namely x1 x2 x3 x4 x5 x6 x7 .
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