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Abstract

This paper discusses the existence of solution for integro-differential
equations via resolvent operators in Banach space. Our approach is
based on a new fixed point theorem with respect to Meir-Keeler con-
densing operators. An example is given to show the application of our
result.
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1 Introduction

Integro-differential equations serve as powerful mathematical models for de-
scribing a wide range of phenomena in various scientific disciplines, including
physics, biology, and engineering, see in [11, 9]. The analysis of such equa-
tions poses significant challenges due to the combined presence of differential
and integral terms, leading to intricate dynamics and complex solution be-
haviors. One fundamental aspect in studying integro-differential equations
is the identification and analysis of fixed points, which provide valuable
insights into the long-term behavior of the system. (For more details see
[10, 19, 16, 17, 5, 6, 7]). Various authors have examined qualitative proper-
ties such as existence, uniqueness, and stability for many integral, differential
and integro-differential equations, (see [4, 5, 15, 21]).

Recently, the resolvent operators play a central role in the analysis of
integro-differential equations by transforming the original equation into a
more amenable form [11]. They allow for the conversion of an equation with
integral terms into an equivalent equation involving differential operators
only. This transformation simplifies the analysis and facilitates the applica-
tion of well-established techniques from the theory of ordinary differential
equations, (see for instance [13, 12]).

In addition to resolvent operators, we employ Meir-Keeler condensing
operators in our analysis [18]. These operators possess valuable properties
that make them particularly suitable for the investigation of fixed points
in integro-differential equations. Meir-Keeler condensing operators allow for
the characterization of the compactness properties of solution sets, capturing
essential aspects of the underlying dynamics and enabling the application of
powerful fixed point theorems, for more details see [1, 20].

In [2], and by using the Meir-Keeler condensing operators, the authors
considered the following problem:{

cDζ;ω
κ1+

y(δ) = Ψ(δ, y(δ)), δ ∈ [κ1, κ2],

y(κ1) = yκ1 , y(κ2) = yκ2 ,

where cDζ;ω
κ1+

is the ω-Caputo fractional derivative of order ζ ∈ (1, 2],Ψ :
[κ1, κ2] × k −→ k is a given function, k is a Banach space with norm ∥ · ∥
and yκ1 , yκ2 ∈ k.
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In this article, we discuss the existence of solutions for a new initial value
problem with the integro-differential equation in Banach space:{

y′(δ) = Z1(δ)y(δ) +
∫ δ
0 Z2(δ − s)y(s)ds+Ψ(δ, y(δ)); δ ∈ J := [0, T ],

y(0) = y0 ∈ k,
(1)

where T > 0,Ψ : J × k → k is a given function, (k, ∥·∥k) is a Banach
space, and {Z1(δ)}δ>0 is a family of linear closed (not necessarily bounded)
operators from D(Z1) into k that generates an integro-differential equation
system of resolvent operator {Y (δ)}δ∈J from k into k.

The structure of this paper is as follows: Section 2 provides general
results and preliminary information. In Section 3, we demonstrate the ex-
istence of a solution for the problem (1) using the Meir-Keeler fixed point
theorem in conjunction with the measure of noncompactness technique. To
further illustrate our findings, we present an example in Section 4.

2 Preliminaries

Let C(J, k) be the space of continuous functions from J into k and B(k) be
the space of all bounded linear operators from k into k, with the norm

∥𭟋∥B(k) = sup
∥y∥=1

∥𭟋(y)∥k.

A measurable function y : J → k is Bochner integrable if and only if ∥y∥k
is Lebesgue integrable.

Let L1(J, k) denotes the Banach space of measurable functions y : J → k
which are Bochner integrable, with the norm

∥y∥L1 =

∫ T

0
∥y(δ)∥kdδ.

and denote by L∞(J) the Banach space of measurable function y : J → k
which are essentially bounded with

∥y∥L∞ = inf{c > 0 : ∥y(δ)∥k ≤ c, a.e δ ∈ J}.

As usual, by C(J) we denote the Banach space of all continuous functions
from J into k with

∥y∥∞ = sup
δ∈J

∥y(δ)∥k.
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We consider the following linear Cauchy problem{
y′(δ) = Z1y(δ) +

∫ δ
0 Z2(δ − s)y(s)ds; for δ ≥ 0,

y(0) = y0 ∈ k.
(2)

The existence and properties of a resolvent operator has been discussed
in [12].

Definition 1 ([12]). A resolvent operator for a Cauchy problem (2) is a
bounded linear operator-valued function Y ∈ B(k) for δ ≥ 0, verifying the
following conditions:

(1) Y (0) = I and ∥Y (δ)∥B(k) ≤Meηδ for M > 0 and η ∈ R.

(2) For each y ∈ k, δ → Y (δ)y is strongly continuous for δ ≥ 0.

(3) Y ∈ B(k) for δ ≥ 0. For y ∈ k, Y (·)y ∈ C1(R+, k) ∩ C(R+, k) and

Y ′(δ)y = Z1Y (δ)y +

∫ δ

0
Z2(δ − s)Y (s)yds

= Y (δ)Z1y +

∫ δ

0
Y (δ − s)Z2(s)yds,

for δ ≥ 0.

From now on, we assume that:

(P1) The operator Z1 is the infinitesimal generator of a uniformly continu-
ous semigroup {T (δ)}δ>0.

(P2) For all δ ≥ 0, Z2(δ) is closed linear operator from D(Z1) to k and
Z2(δ) ∈ B(k). For any y ∈ k, the map δ → Z2(δ)y is bounded,
differentiable and the derivative δ → Z2

′(δ)y is bounded uniformly
continuous on R+.

Theorem 1 ([12]). Assume that (P1)−(P2) hold, then there exists a unique
resolvent operator for the Cauchy problem (2).

The resolvent operator gives some results for the existence of solutions
for the following integro-differential problem:{

y′(δ) = Z1y(δ) +
∫ δ
0 Z2(δ − s)y(s)ds+ φ(δ); for δ ≥ 0,

y(0) = y0 ∈ k.
(3)

where φ : R+ → k is a continuous function.
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Definition 2 ([12]). A continuous function y : R+ → k is said to be a strict
solution of equation of problem (3) if y ∈ C1(R+,k) and y satisfies problem
(3).

Theorem 2 ([12]). assume that (P1)− (P2) hold. If y is a strict solution
of problem (3), then

y(δ) = Y (δ)y0 +
∫ δ
0 Y (δ − s)φ(s)ds for δ ≥ 0.

Definition 3 ([22]). The function Ψ : J ×k → k is said to be Carathéodory
if

(i) δ → Ψ(δ, y) is measurable for each y ∈ k.

(ii) y → Ψ(δ, y) is continuous for almost all δ ∈ J .

The function Ψ is said to be L∞-Carathéodory if (i), (ii) and the following
condition holds.

(iii) For k > 0, there exists hk ∈ L∞(J,R+) where

∥Ψ(δ, y)∥k ≤ hk(δ),

for all ∥y∥k ≤ k and almost each δ ∈ J .

Definition 4 ([3]). Let k be a Banach space and Λ a bounded subsets of k.
Then the Hausdorff measure of non-compactness of Λ is defined by

ξ(Λ) = inf

{
j > 0 : Λ can be covered by

finitely many balls with radius < j

}
.

Lemma 1 ([3]). Let Z1,Λ ⊂ k be bounded. Thus, the Hausdorff measure of
non-compactness verifies:

(1) ξ(Z1) = 0 ⇐⇒ Z1 is relatively compact,

(2) Z1 ⊂ Λ =⇒ ξ(Z1) ≤ ξ(Λ),

(3) ξ(Z1 ∪ Λ) = max{ξ(Z1), ξ(Λ)},

(4) ξ(Z1) = ξ(Z1) = ξ(conv(Z1)),

(5) ξ(Z1 + Λ) ≤ ξ(Z1) + ξ(Λ), where Z1 + Λ = {x+ y : x ∈ Z1, y ∈ Λ},

(6) ξ(λZ1) ≤ |λ|ξ(Z1), for any λ ∈ R.



Initial Value Problem For Integro-Differential Equations 48

Definition 5 ([18]). Let (k, d) be a metric space. Then a mapping N on k
is said to be a Meir-Keeler contraction if for any j > 0, there exists ℘ > 0
where

j ≤ d(q, y) < j + ℘⇒ d(Nq, Ny) < j, ∀q, y ∈ k.

In [1], the authors defined the notion of Meir-Keeler condensing operators
on a Banach space and give some fixed point results.

Definition 6 ([1]). Let Λ be a nonempty subset of a Banach space k and
ξ arbitrary measure of noncompactness on k. We say that an operator N :
Λ → Λ is a Meir-Keeler condensing operator if for any j > 0, there exists
℘ > 0 such that

j ≤ ξ(Θ) < j + ℘⇒ ξ(NΘ) < j,

for any bounded subset Θ of Λ.

Theorem 3 ([1]). Let Θ be a nonempty, bounded, closed and convex subset
of a Banach space k. Also, let ξ be an arbitrary measure of noncompactness
on k. If N : Θ → Θ is a continuous and Meir-Keeler condensing operator,
then N has at least one fixed point and the set of all fixed points of N in Θ
is compact.

Lemma 2 ([1]). Let k be a Banach space, and let Λ ⊂ C(J, k) be bounded
and equicontinuous. Then ξ(Λ(δ)) is continuous on J , and

ξC(Λ) = max
δ∈J

ξ(Λ(δ)).

Lemma 3 ([8]). Let k be a Banach space and let Λ ⊂ k be bounded. Then
for each j, there is {yi}∞i=1 ⊂ Λ, where

ξ(Λ) ≤ 2ξ({yi}∞i=1) + j.

We call Λ ⊂ L1(J, k) uniformly integrable if there exists b ∈ L1(J,R+)
where

∥y(ς)∥k ≤ b(ς), for all y ∈ Λ and a.e. ς ∈ J.

Lemma 4 ([14]). If {yi}∞i=1 ⊂ L1(J,k) is uniformly integrable, then δ 7→
ξ({yi(δ)}∞i=1) is measurable, and

ξ

({∫ δ

a
yi(ς)dς

}∞

i=1

)
≤ 2

∫ δ

a
ξ({yi(ς)}∞i=1)dς.



K. Bensatal, A. Salim, M. Benchohra 49

3 Main Results

Definition 7. We say that a continuous function y(·) : J → k is a mild
solution of (1) if y verifies

y(δ) = Y (δ)y0 +
∫ δ
0 Y (δ − s)Ψ(s, y(s))ds, for each δ ∈ J .

The hypotheses:

(H1) The resolvent operator is uniformly continuous and there exists a con-
stant ϑ ≥ 1 such that

∥Y (δ)∥B(k) ≤ ϑ for every δ ≥ 0.

(H2) The function Ψ : J × k → k is L∞-Carathéodory.

(H3) There exist pΨ ∈ C(J,R+) and a continuous nondecreasing function
ϖ : R+ −→ R+ where

∥Ψ(δ, y)∥k ≤ pΨ(δ)ϖ(∥y∥k), for a.e. δ ∈ J, and each y ∈ k.

(H4) For each bounded set Λ ⊂ k, and each δ ∈ J , the following inequality
holds,

ξ(Ψ(δ,Λ)) ≤ pΨ(δ)ξ(Λ).

(H5) There exists γ > 0 such that

γ ≥ ϑ∥y0∥k + ϑp∗Ψϖ(|γ|)T,

Theorem 4. Assume that the hypotheses (H1)–(H5) are satisfied and that

4ℓψ < 1,

where ℓψ = ϑp∗ΨT and p∗Ψ := supδ∈J pΨ(δ). Then (1) has at least one mild
solution defined on J .

Proof. Consider the operator N : C(J, k) −→ C(J, k) defined by:

Ny(δ) = Y (δ)y0 +

∫ δ

0
Y (δ − s)Ψ(s, y(s))ds.

It is clear that N is well defined due to (H2)-(H3). Then, (1) verifies

y = Ny.
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Define the set

Θγ = {y ∈ C(J, k) : ∥y∥∞ ≤ γ} .

We shall prove that N verifies all the requirements of Theorem 3.

Step 1: Suppose that y ∈ Θγ . By the assumption (H5), we have

∥Ny(δ)∥k ≤ ∥Y (δ)∥B(k)∥y0∥k +
∫ δ

0
∥Y (δ − s)∥B(k)∥Ψ(s, y(s))∥kds

≤ ϑ∥y0∥k + ϑ

∫ δ

0
pΨ(s)ϖ(∥y(s)∥k)ds

≤ ϑ∥y0∥k + ϑp∗Ψ

∫ δ

0
ϖ(|γ|)ds

≤ ϑ∥y0∥k + ϑp∗Ψϖ(|γ|)T
≤ γ.

Thus,
∥Ny∥k ≤ γ.

Step 2: Suppose that {yi} is a sequence where yi → y in Θγ as i →
∞. Then, Ψ(s, yi(s)) → Ψ(s, y(s)), as i → +∞, due to the Carathéodory
continuity of Ψ. For δ ∈ J we have

∥Nyi(δ)−Ny(δ)∥k = ∥
∫ δ

0
Y (δ − s)(Ψ(s, yi(s))−Ψ(s, y(s)))ds∥k

≤ ϑ

∫ δ

0
∥Ψ(s, yi(s))−Ψ(s, y(s))∥kds.

It follows that ∥Nyi−Ny∥k → 0 as i→ +∞. Which implies the continuity
of the operator N .

Step 3: The set N(Θγ) is equicontinuous. For any 0 < σ1 < σ2 < T
and y ∈ Θγ , we get

∥N(y)(σ2)−N(y)(σ1)∥k
≤ ∥Y (σ2)− Y (σ1)∥B(k)∥y0∥k

+

∥∥∥∥∫ σ1

0
(Y (σ2 − s)− Y (σ1 − s))Ψ(s, y(s))ds

∥∥∥∥
k

+

∥∥∥∥∫ σ2

σ1

(Y (σ2 − s)Ψ(s, y(s))ds

∥∥∥∥
k
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≤ ∥Y (σ2)− Y (σ1)∥B(k)∥y0∥k

+

∫ σ1

0
∥Y (σ2 − s)− Y (σ1 − s)∥B(k)pΨ(δ)ϖ(∥y∥k)ds

+

∫ σ2

σ1

∥Y (σ2 − s)∥B(k)pΨ(δ)ϖ(∥y∥k)ds

≤ ∥Y (σ2)− Y (σ1)∥B(k)∥y0∥k

+ p∗Ψϖ(∥y∥k)
∫ σ1

0
∥Y (σ2 − s)− Y (σ1 − s)∥B(k)ds

+ ϑp∗Ψϖ(∥y∥k)(σ2 − σ1)

−→ 0, as σ2 → σ1.

Thus, N(Θγ) ⊆ C(J,k) is bounded and equicontinuous.

Step 4: N : Θγ → Θγ is a Meir-Keeler condensing operator.
We suppose j > 0 is given. We will demonstrate that there exists ℘ > 0
where

j ≤ ξC(Λ) < j + ℘⇒ ξC(NΛ) < j, for any Λ ⊂ Θγ .

For every bounded subset Λ ⊂ Θγ and j′ > 0 using Lemma 3 and the
properties of ξ, there exists sequence {yi}∞i=1 ⊂ Λ such that

ξ (N(Λ)(δ)) ≤ 2ξ

(
Y (δ)y0 +

∫ δ

0
Y (δ − s)Ψ(s, {yi(s)}∞i=1)ds

)
+ j′.

Next, by Lemma 4 and (H1),(H3) we have

ξ (N(Λ)(δ)) ≤ 4

∫ δ

0
Y (δ − s)ξ (Ψ(s, {yi(s)}∞i=1)) ds+ j′

≤ 4

∫ δ

0
Y (δ − s)pΨ(δ)ξ ({yi(s)}∞i=1) ds+ j′

≤ 4ϑp∗ΨξC(Λ) + j′.

As the last inequality is true, for every j′ > 0, we infer

ξ (N(Λ)(δ)) ≤ 4ℓψξC(Λ).

As N(Λ) ⊂ Θγ is bounded and equicontinuous, by Lemma 2, we have

ξC (N(Λ)) = max
δ∈J

ξ (N(Λ)(δ)) .
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Therefore, we have

ξC (N(Λ)) ≤ 4ℓψξC(Λ).

Observe that from the last estimates

ξC (N(Λ)) ≤ 4ℓψξC(Λ) < j ⇒ ξC(Λ) <
1

4ℓψ
j.

Consequently, for given j > 0, and taking ℘ =
1−4ℓψ
4ℓψ

j we get the following

implication:

j ≤ ξC(Λ) < j + ℘⇒ ξC(NΛ) < j, for any Λ ⊂ Θγ .

This means that N : Θγ → Θγ is a Meir-Keeler condensing operator. By
Theorem 3, (1) has at least one mild solution y ∈ Θγ .

4 An Example

Consider the following integro-differential equation:


∂
∂δz(δ, p) = − ∂

∂pz(δ, p)− πz(δ, p)−
∫ δ
0 Γ(δ − s)( ∂∂pz(s, p) + πz(s, p))ds

+
{

1
eδ+3

(
1

(δ+1)2
+ arctan(|z(δ, p)|)

)}
if δ ∈ J, p ∈ (0, 1),

z(δ, 0) = z(δ, 1) = 0, δ ∈ R+,
z(0, p) = ep, p ∈ (0, 1).

(4)
Let Z1 be defined by

(Z1φ)(p) = −
(
d

dp
φ(p) + πφ(p)

)
,

and

D(Z1) = {φ ∈ L2(0, 1) / φ, Z1φ ∈ L2(0, 1) ; φ(0) = φ(1) = 0}.

The operator Z1 is the infinitesimal generator of a C0-semigroup on L2(0, 1)
with domain D(Z1), and with more appropriate conditions on operator
Z2(·) = Γ(·)Z1, the problem (4) has a resolvent operator (Y (δ))δ≥0 on
L2(0, 1) which is norm continuous.
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Now, define
y(δ)(p) = z(δ, p),

and Ψ : J × L2(0, 1) −→ L2(0, 1) by

Ψ(δ, y)(p) =

{
1

eδ + 3

(
1

(δ + 1)2
+ arctan(|z(δ, p)|)

)}
, for δ ∈ J, p ∈ (0, 1).

With these settings, system (4) can be written in the abstract form y′(δ) = Z1y(δ) + Ψ (δ, y(δ)) +
∫ δ
0 Z2(δ − s)y(s)ds, if δ ∈ J,

y(0) = y0.

(5)

It is clear that condition (H2) holds, and as

∥Ψ(δ, y(δ))(p)∥B(k) ≤
1

eδ + 3
(1 + ∥y(δ, p)∥k)

= pΨ(δ)ϖ(∥y(δ, p)∥k).

Therefore, assumption (H3) of the Theorem 4 is satisfied with

pΨ(δ) =
1

eδ + 3
, δ ∈ J and ϖ(p) = 1 + p, p ∈ R+.

For any bounded set Λ ⊂ L2(0, 1), we get

ξ(Ψ(δ,Λ)) ≤ pΨ(δ)ξ(Λ), a.e. δ ∈ J.

Hence (H4) is satisfied. Now, we shall check that condition 4ℓψ ≤ 1 is
satisfied. Indeed, we have

4ℓψ = 0, 2203 < 1,

and

2 + (1 + γ)ℓψ ≤ γ.

Thus,

γ ≥
2 + ℓψ
1− ℓψ

= 2, 1716.

Then, we can put γ = 2, 5. All the hypotheses of Theorem 4 are verified
and we deduce that (4) has at least one solution y ∈ C(J, L2(0, 1)).
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