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1 Introduction

Due to the memory and nonlocal features that it contains, the study of
fractional-order calculus has garnered a large amount of attention from a number of
research organizations in recent years. Over several centuries, these characteristics
have changed as mathematical perspectives have changed. In point of fact,
fractional-order models are superior to integer-order models in terms of its capacity
to appropriately solve complex mathematical problems and offer a description
of the nature of dynamical systems [5, 31]. As a direct consequence of this
fact, the fractional-order calculus has been applied in a wide number of fields,
including electrical engineering, biological systems, and viscoelastic systems,
amongst others.

It is conceivable to place the advent of fractional calculus in a time frame that is
not too distant from the emergence of classical calculus. In a letter to l’Hospital that
Leibniz composed and delivered to the l’Hospital, it was first referenced in 1695.
Leibniz also provided in this letter a suggestion for the concept of a semi-derivative.
Many well-known mathematicians, including Liouville, Grunwald, Riemann,
Euler, Lagrange, Heaviside, Fourier, and Abel, among others, contributed to the
development of the formal foundations for fractional calculus over time. These
mathematicians all significantly improved the subject. Many of them proposed
unique approaches, which are included in [33] in chronological order. The unique
features of both classical and fractional differential representations can be found
in the monographs [11, 24, 31, 34], and related research papers on fractional
differential systems can be found in [8–10, 14–18, 21–23, 27–30].

The notion Riemann-Liouville fractional derivatives and Caputo fractional
derivatives are used to describe fractional derivatives with a singular kernel.
Because the existence of the singularity in the operators for fractional derivatives
has a number of issues, Caputo and Fabrizio [13] proposed a novel fractional
derivative without a singular kernel in 2015. The CF fractional derivative is widely
acknowledged to be highly advantageous and useful when exploring real-world
difficulties. The CF fractional derivative has a wide range of practical applications,
some of which are given in [14]. As may be seen from the publications [1–
4, 6, 8, 12, 17, 20, 25, 26, 32] and references thereto, several mathematicians have
contributed to the development of CF fractional differential equations.

Neutral differential equations can be found in a wide variety of applications of
mathematics, which is one of the primary reasons why researchers have focused
so much emphasis on these equations over the past few decades. For additional
details on this theory, we suggest the reader to refer [19].

In recent years, the authors have discovered several fascinating findings on
fractional differential equations by the use of CFO with impulses, as shown in
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[3, 4, 12, 20, 32], and without impulses, as seen in [1, 2, 6–8, 13, 14, 17, 25, 26].
In specifically, the authors of [4] investigated existence results of fractional
differential system could be found in Banach spaces by using the CF derivative.
The coupled system of fractional differential system through CF derivative in
Banach spaces was studied by A. Boudaoui and A. Slama [12]. Eiman et al. [17]
analyzed the Caputo-Fabrizio fractional differential equations under krasnoselskii
fixed point theorem. After then, authors conducted research on the initial value
issues for the CF impulsive fractional differential equations and published their
findings in [3]. Very recently, Kanimozhi et al. [20] studied the existence results
for CF fractional differential system with impulses and boundary value conditions
in Banach spaces. According to a survey of numerous recent studies, the topic of
neutral differential and integro-differential equations via CFO of the form (1.1)-
(1.3) has not yet been addressed by anyone. This is the primary motive for this
work.

In light of the foregoing, we examine the existence and uniqueness findings for
a class of NDS through CF operator of the model

CFDϑ
ς [p(ς)−h(ς, p(ς))] = f (ς, p(ς)), ς ∈ [0,ξ], (1.1)

p(0) = p0, (1.2)

where CFDϑ
ς is the CFO of order ϑ ∈ (0,1), ξ > 0, f : [0,ξ]×R→R is continuous,

h : [0,ξ]×R→ R is continuously differentiable and p0 ∈ R.
Further, we examine the existence and uniqueness findings for a class of NIDS

via CF operator of the model

CFDϑ
ς [p(ς)−h(ς, p(ς))] = f

(
ς, p(ς),

∫
ς

0
h1(ς,s)p(s)ds

)
, ς ∈ [0,ξ] (1.3)

with the condition (1.2), where f : [0,ξ]×R×R→ R is continuous and h1(ς,s) is
continuous for all (ς,s) ∈ [0,ξ]× [0,ξ] and we can find a positive constant H in a
way that max

ς,s∈[0,ξ]
∥h1(ς,s)∥= H.

In general, we analyze the existence results of the model (1.1)-(1.3), when
p0 ∈X, f : [0,ξ]×X→X; f : [0,ξ]×X×X→X, and h : [0,ξ]×X→X are given
functions and X is real or complex Banach space with a norm ∥ · ∥.

The study’s important findings may be summed up as follows:

1. This is the first attempt, as far as we know, to handle the NIDS with CFO for
the system (1.1)-(1.3).

2. By utilizing the CFO along with the Laplace transform, we have introduced
the solution of the given system (1.1)-(1.3) for the first time in literature.
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In Lemma 2.2, we present and prove the solution to our addressing system,
which can be considered a novelty.

3. The fundamental insights are derived with the help of Banach’s and
Krasnoselskii’s fixed point theorems. In the final part of our discussion,
we will give a few examples to illustrate how our major findings might be
applied.

4. Additionally, the outcomes of this work generalized and enhanced earlier
research that have been published in the literature, including those by
[3, 4, 20].

The plan for carrying out this research has been laid out in the following
manner: In Section 2, we explore the notion of a solution to our problem, along
with some notations, a review of certain ideas, and a summary of the results from
prior studies. The first result is based on the Banach contraction principle, while the
second result is based on Krasnoselskii fixed point theorem, which we present in
Section 3. In the final section of this paper, which is Section 4, we will demonstrate
how our primary findings may be implemented by presenting a few examples.

2 Preliminaries

This section provides an overview of the essential concepts and outcomes of
the CFO, which will be of use to us in establishing our primary conclusions.

The functions designated by the notation L1([0,ξ],X) that are integrable in the
Bochner concept with reference to the Lebesgue measure and come furnished with
the notation

∥p∥L1 =
∫

ξ

0
∥p(x)||dx

are referred to as p : [0,ξ]→ X.
Let AC([0,ξ]) be the space of all absolutely continuous functions from [0,ξ]

into X.

Definition 2.1. [26] The CFO of order 0 < ϑ < 1 for a function g ∈ AC([0,ξ]) is
described by

(CFDϑ
0 g)(ζ) =

(2−ϑ)N(ϑ)

2(1−ϑ)

∫
ζ

0
e

(
− ϑ

1−ϑ
(ζ− x)

)
g′(x)dx, ζ ∈ [0,ξ], (2.1)

where N(ϑ) is a constant depending on ϑ that satisfies the condition N(0) = 1 and
N(1) = 2. Note that CFDϑ

0 g = 0 iff g is a constant function.
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Definition 2.2. [26] The CFO of integral order 0 < ϑ < 1 for a function g ∈
L1([0,ξ]) described by

(CF Iϑ
0 g)(ζ) =

2(1−ϑ)

N(ϑ)(2−ϑ)
g(ζ)+

2ϑ

N(ϑ)(2−ϑ)

∫
ζ

0
g(x)dx, ζ ≥ 0. (2.2)

Remark 2.1. (i) The fractional integral of CF type of a function of order
ϑ ∈ (0,1) is an average of function g and its integral of order one, according
to the authors of [26].

We get an explicit formula for N(ϑ) by imposing

2(1−ϑ)

N(ϑ)(2−ϑ)
+

2ϑ

N(ϑ)(2−ϑ)
= 1.

Then
N(ϑ) =

2
2−ϑ

, 0 ≤ ϑ ≤ 1.

(ii) If we take N(ϑ) =
2

2−ϑ
, then (2.2) becomes

(CF Iϑ
0 g)(ζ) = (1−ϑ)g(ζ)+ϑ

∫
ζ

0
g(x)dx, ζ ≥ 0.

By substituting N(ϑ) in (2.1), we obtain the definition of the CFO of order
0 < ϑ < 1 for a function g as follows:

Definition 2.3. Let 0 < ϑ < 1. The CFO of order ϑ of a function g is given by

(CFDϑ
0 g)(ζ) =

1
(1−ϑ)

∫
ζ

0
e

(
− ϑ

1−ϑ
(ζ− x)

)
g′(x)dx, ζ ∈ [0,ξ].

Lemma 2.1. [6, Theorem 2] Let g ∈ L1([0,ξ]). Then a function p ∈ C ([0,ξ]) is a
solution of the following system

(CFDϑ
0 p)(ς) = g(ς), ς ∈ [0,ξ],

p(0) = p0,
(2.3)

iff p fulfills the subsequent integral equation

p(ς) = p0 +
2(1−ϑ)

(2−ϑ)N(ϑ)
g(ς)+

2ϑ

(2−ϑ)N(ϑ)

∫
ς

0
g(s)ds. (2.4)
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From this point onwards, for simplicity, we take

Aϑ =
2(1−ϑ)

(2−ϑ)N(ϑ)
and Bϑ =

2ϑ

(2−ϑ)N(ϑ)
.

Then (2.4) can be written as

p(ς) = p0 +Aϑg(ς)+Bϑ

∫
ς

0
g(s)ds. (2.5)

Based on the above Lemma 2.1, we can define the solution of the given system
(1.1)-(1.3) in the subsequent Lemma.

Lemma 2.2. A function p ∈ C ([0,ξ],X) is a solution of the system (1.1)-(1.2) iff p
fulfills the subsequent integral equation

p(ς) = p0 −h(0, p0)+h(ς, p(ς))+Aϑ f (ς, p(ς))+Bϑ

∫
ς

0
f (s, p(s))ds, ς ∈ [0,ξ].

(2.6)

Note 2.1. In order to prove the above Lemma, first we need to recall the Laplace
transform of CFO. From [13], we have

L{CFDϑ p(ς)}(s) = (2−ϑ)N(ϑ)

2(s+ϑ(1− s))
[sL{p(ς)}(s)− p(0)]

L{CFDϑh(ς, p(ς))}(s) = (2−ϑ)N(ϑ)

2(s+ϑ(1− s))
[sL{h(ς, p(ς))}(s)−h(0, p(0))].

Proof. We use the Laplace transform on both the left and right sides of (1.1):

L{CFDϑ[p(ς)−h(ς, p(ς))]}(s) = L{ f (ς, p(ς))}(s)

=⇒ (2−ϑ)N(ϑ)

2(s+ϑ(1− s))
[sL{p(ς)}(s)− p(0)]

− (2−ϑ)N(ϑ)

2(s+ϑ(1− s))
[sL{h(ς, p(ς))}(s)−h(0, p(0))]

= L{ f (ς, p(ς))}(s)

=⇒ L{p(ς)}(s)−L{h(ς, p(ς))}(s) = 1
s

p(0)− 1
s

h(0, p(0))

+
2ϑ

s(2−ϑ)N(ϑ)
L{ f (ς, p(ς))}(s)

+
2(1−ϑ)

(2−ϑ)N(ϑ)
L{ f (ς, p(ς))}(s). (2.7)
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Applying inverse Laplace transform on both sides of (2.7), we get

p(ς) = p0 −h(0, p0)+h(ς, p(ς))+Aϑ f (ς, p(ς))+Bϑ

∫
ς

0
f (s, p(s))ds.

Now, we are going to show that the solution (2.6) satisfies the given system
(1.1). For this, we rewrite the solution (2.6) as follows.

p(ς)−h(ς, p(ς)) = p0 −h(0, p0)+
2(1−ϑ)

(2−ϑ)N(ϑ)
f (ς, p(ς))

+
2ϑ

(2−ϑ)N(ϑ)

∫
ς

0
f (s, p(s))ds.

Then

p′(ς)−h′(ς, p(ς)) =
2(1−ϑ)

(2−ϑ)N(ϑ)
f ′ (ς, p(ς))+

2ϑ

(2−ϑ)N(ϑ)
f (ς, p(ς)) ,

if f (0, p0) = 0.

Multiply by
(2−ϑ)N(ϑ)

2(1−ϑ)
and integrate from 0 to ς, we have

(2−ϑ)N(ϑ)

2(1−ϑ)

∫
ς

0
p′(s)ds− (2−ϑ)N(ϑ)

2(1−ϑ)

∫
ς

0
h′(s, p(s))ds =

∫
ς

0
f ′(s, p(s))ds

+
∫

ς

0

ϑ

1−ϑ
f (s, p(s))ds.

Multiply the integrand by e−
ϑ(ς−s)

1−ϑ in the above equation, we have

(2−ϑ)N(ϑ)

2(1−ϑ)

∫
ς

0
p′(s)e−

ϑ(ς−s)
1−ϑ ds− (2−ϑ)N(ϑ)

2(1−ϑ)

∫
ς

0
h′(s, p(s))e−

ϑ(ς−s)
1−ϑ ds

=
∫

ς

0
f ′(s, p(s))e−

ϑ(ς−s)
1−ϑ ds+

∫
ς

0

ϑ

1−ϑ
f (s, p(s))e−

ϑ(ς−s)
1−ϑ ds

=
∫

ς

0

d
ds

[
f (s, p(s))e−

ϑ(ς−s)
1−ϑ

]
ds.

By thinking definition of CFO and if f (0, p0)= 0, then the above equation becomes

CFDϑ[p(ς)−h(ς, p(ς))] = f (ς, p(ς)) , ς ∈ [0,ξ], 0 < ϑ < 1.

Remark 2.2. (i) The above Lemma 2.2 is true only when f (0, p0) = 0.
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(ii) If f (0, p0) ̸= 0, then

p(ς) = p0 −h(0, p0)+h(ς, p(ς))−Aϑ f (0, p0)+Aϑ f (ς, p(ς))

+Bϑ

∫
ς

0
f (s, p(s))ds

is the solution of the following system

CFDϑ[p(ς)−h(ς, p(ς))] = f (ς, p(ς))− f (0, p0)e−
ϑ

1−ϑ
ς,

p(0) = p0,

where ς ∈ [0,ξ], 0 < ϑ < 1.

Definition 2.4. A function p ∈ C ([0,ξ],X) is said to be a solution of (1.1)-(1.2) if
it fulfills p(0) = p0,

CF Dϑ
ς [p(ς)−h(ς, p(ς))] = f (ς, p(ς)) with f (0, p(0)) = 0.

Definition 2.5. A function p ∈ C ([0,ξ],X) is said to be a solution of
(1.3) with condition (1.2) if it fulfills p(0) = p0,

CF Dϑ
ς [p(ς) − h(ς, p(ς))] =

f
(

ς, p(ς),
∫

ς

0
h1(ς,s)p(s)ds

)
with f (0, p(0),0) = 0.

Lemma 2.3. A function p ∈ C ([0,ξ],X) is a solution of the system (1.3) with the
condition (1.2) iff p fulfills the subsequent integral equation

p(ς) = p0 −h(0, p0)+h(ς, p(ς))+Aϑ f
(

ς, p(ς),
∫

ς

0
h1(ς,s)p(s)ds

)
+Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
ds, ς ∈ [0,ξ].

Define the mapping ϒ : C ([0,ξ],X)→ C ([0,ξ],X) by

(ϒp)(ς) = p0 −h(0, p0)+h(ς, p(ς))+Aϑ f
(

ς, p(ς),
∫

ς

0
h1(ς,s)p(s)ds

)
+Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
ds, ς ∈ [0,ξ]. (2.8)

3 Existence Results

In this part, we will give and establish the existence findings for the system
(1.1)-(1.3) under the Banach contraction principle, and Krasnoselskii fixed point
theorems.

In order to apply above fixed point theorems, we need to list the subsequent
conditions:
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(A1) (i) The function f : [0,ξ]×X→X is continuous and we can find a positive
constant M f in a way that

∥ f (ς,u)− f (ς, ū)∥ ≤ M f ∥u− ū∥, for each ς ∈ [0,ξ], u, ū ∈ X.

(ii) There exist positive constants M̂ f ,M̃ f in ways that

∥ f (ς, p)∥ ≤ M̂ f +M̃ f ∥p∥, ς ∈ [0,ξ], p ∈ X.

(A1∗) (i) The function f : [0,ξ]×X×X → X is continuous and we can find a
positive constant M f in a way that

∥ f (ς,u,v)− f (ς, ū, v̄)∥ ≤ M f [∥u− ū∥+∥v− v∥],

for each ς ∈ [0,ξ], u, ū,v,v ∈ X.

(ii) There exist positive constants M f ,M̃ f > 0 in ways that

∥ f (ς,u,v)∥ ≤ M f [∥u∥+∥v∥]+M̃ f , ς ∈ [0,ξ], p ∈ X.

(A2) (i) The function h : [0,ξ]×X → X is continuously differentiable and we
can find a positive constant Mh in a way that

∥h(ς,u)−h(ς, ū)∥ ≤ Mh∥u− ū∥, for each ς ∈ [0,ξ], u, ū ∈ X.

(ii) There exist positive constants M̂h,M̃h in ways that

∥h(ς, p)∥ ≤ M̂h +M̃h∥p∥, ς ∈ [0,ξ], p ∈ X

and M̂h = ∥h(ς,0)∥.

(A3) h1(ς,s) is continuous for all (ς,s) ∈ [0,ξ]× [0,ξ] and we can find a positive
constant H in a way that max

ς,s∈[0,ξ]
∥h1(ς,s)∥= H.

Theorem 3.1. Suppose f ,h, and h1 are satisfy the conditions (A1∗)(i), (A2)(i) and
(A3). If

µ̃1 = [Mh +µ∗M f [1+Hξ]]< 1, (3.1)

where µ∗ = (Aϑ+Bϑξ), then the system (1.3) with the condition (1.2) has a unique
solution on [0,ξ].
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Proof. Now, we show that ϒBQ ⊂ BQ, where ϒ : C ([0,ξ],X) → C ([0,ξ],X) is
described by (2.8). To do this, let f (·,0,0) = 0, and let BQ = B(0,Q) = {p ∈

C ([0,ξ],X) : ∥p∥C ≤ Q} with radius Q ≥ ∥Ω1∥
1− µ̃1

, where µ̃1 = Mh +µ∗M f [1+Hξ]

and µ∗ = (Aϑ +Bϑξ).
By thinking of (A1)∗(i),(A2)(i) and (A3), for each ς ∈ [0,ξ] and p ∈ BQ, we

sustain

∥(ϒp)(ς)∥

=

∥∥∥∥∥p0 −h(0, p0)+h(ς, p(ς))+Aϑ f
(

ς, p(ς),
∫

ς

0
h1(ς,s)p(s)ds

)

+Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
ds

∥∥∥∥∥
≤ ∥p0∥+∥h(0, p0)∥+∥h(ς, p(ς))−h(ς,0)∥+∥h(ς,0)∥

+Aϑ

[
∥ f

(
ς, p(ς),

∫
ς

0
h1(ς,s)p(s)ds

)
− f (ς,0,0)∥+∥ f (ς,0,0)∥

]
+Bϑ

∫
ς

0

[
∥ f

(
s, p(s),

∫ s

0
h1(s,τ)p(τ)dτ

)
− f (s,0,0)∥+∥ f (s,0,0)∥

]
ds

≤ ∥Ω1∥+MhQ+AϑM f [1+Hξ]Q+BϑξM f [1+Hξ]Q

≤ ∥Ω1∥+[Mh +(Aϑ +Bϑξ)M f [1+Hξ]]Q

≤ Q,

where ∥Ω1∥= ∥p0∥+∥h(0, p0)∥+M̂h.
Thus, for ς ∈ [0,ξ], and p ∈ C , we have

∥ϒ(p)∥C ≤ ∥Ω1∥+(Mh +µ∗M f [1+Hξ])Q ≤ Q.

This demonstrates that the operator ϒ causes the ball BQ to be transformed into
itself. Next, for p, p ∈ PC and ς ∈ [0,ξ], we sustain

∥(ϒp)(ς)− (ϒp)(ς)∥
≤ ∥h(ς, p(ς))−h(ς, p(ς))∥

+Aϑ

[∥∥∥∥ f
(

ς, p(ς),
∫

ς

0
h1(ς,s)p(s)ds

)
− f

(
ς, p(ς),

∫
ς

0
h1(ς,s)p(s)ds

)∥∥∥∥]
+Bϑ

∫
ς

0

[∥∥∥∥ f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
− f

(
s, p(s),

∫ s

0
h1(s,τ)p(τ)dτ

)∥∥∥∥]ds

≤ Mh∥p− p∥C +AϑM f (1+Hξ)∥p− p∥C +BϑξM f (1+Hξ)∥p− p∥C

≤ [Mh +(Aϑ +Bϑξ)M f (1+Hξ)]∥p− p∥C .
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Thus, for all ς ∈ [0,ξ], we obtain

∥(ϒp)− (ϒp)∥C ≤ [Mh +µ∗M f (1+Hξ)]∥p− p∥C .

Based on (3.1) and the Banach fixed point theorem [17], we conclude that ϒ

contains a unique fixed point p ∈ C that is a solution of the equation (1.3) with the
condition (1.2) on [0,ξ].

Theorem 3.2. Suppose f and h satisfy the conditions (A1)(i) and (A2)(i). If

µ̃1 = [Mh +µ∗M f ]< 1, (3.2)

where µ∗ = (Aϑ +Bϑξ), then the system (1.1)-(1.2) has a unique solution on [0,ξ].

Proof. The proof of this theorem is similar to the proof of Theorem 3.1, hence, we
omit it here.

Finally, using Krasnoselskii fixed point theorem (KFPT) [17], we demonstrate
the existence results to the equation (1.3) with the condition (1.2).

Theorem 3.3. Suppose that the conditions (A1∗), (A2) and (A3) hold with
[Mh +AϑM f (1+Hξ)]< 1 and 1− µ̃2 > 0, where µ̃2 = M̃h +µ∗M f [1+Hξ]. Then
the system (1.3) with the condition (1.2) has at least one solution on [0,ξ].

Proof. Allow us to define two operators from (2.8) as follows:

(ϒ1 p)(ς) = p0 −h(0, p0)+h(ς, p(ς))

+Aϑ f
(

ς, p(ς),
∫

ς

0
h1(ς,s)p(s)ds

)
, ς ∈ [0,ξ] (3.3)

and

(ϒ2 p)(ς) = Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
ds, ς ∈ [0,ξ]. (3.4)

Let BQ = {p ∈ C ([0,ξ],X) : ∥p∥C ≤ Q} with radius Q ≥
∥Ω1∥+µ∗M̃ f

1− µ̃2
, where

µ̃2 = M̃h +µ∗M f (1+Hξ) and µ∗ = (Aϑ +Bϑξ).
In view of (A1∗)(ii),(A2)(ii) and (A3), for each ς ∈ [0,ξ] and p, p1 ∈ BQ, we

find that

∥ϒ1 p(ς)+ϒ2 p1(ς)∥

≤

∥∥∥∥∥p0 −h(0, p0)+h(ς, p(ς))+Aϑ f
(

ς, p(ς),
∫

ς

0
h1(ς,s)p(s)ds

)
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+Bϑ

∫
ς

0
f
(

s, p1(s),
∫ s

0
h1(s,τ)p1(τ)dτ

)
ds

∥∥∥∥∥
≤ ∥p0∥+∥h(0, p0)∥+M̂h +M̃hQ+AϑM̃ f +AϑM f Q+AϑM f HξQ+BϑξM̃ f

+BϑM f ξQ+BϑM f Hξ
2Q

≤ ∥Ω1∥+(Aϑ +Bϑξ)M̃ f +
[
M̃h +(Aϑ +Bϑξ)M f [1+Hξ]

]
Q

≤ Q,

where ∥Ω1∥= ∥p0∥+∥h(0, p0)∥+M̂h.
Thus, for ς ∈ [0,ξ], and p ∈ BQ, we have

∥ϒ1(p)+ϒ2(p1)∥C ≤ ∥Ω1∥+µ∗M̃ f + µ̃2Q ≤ Q.

Thus ϒ1(p)+ϒ2(p1) ∈ BQ. Next, we prove that ϒ1 is contraction. Since f and
h1 are continuous, so is ϒ1, and letting p, p ∈ BQ, from (3.3), (A1∗)(i),(A2)(i) and
(A3), for each ς ∈ [0,ξ], we have

∥(ϒ1 p)(ς)− (ϒ1 p)(ς)∥
≤ ∥h(ς, p(ς))−h(ς, p(ς))∥

+Aϑ

[∥∥∥∥ f
(

ς, p(ς),
∫

ς

0
h1(ς,s)p(s)ds

)
− f

(
ς, p(ς),

∫
ς

0
h1(ς,s)p(s)ds

)∥∥∥∥]
≤ [Mh +AϑM f (1+Hξ)]∥p− p∥C .

Thus, for all ς ∈ [0,ξ], we obtain

∥(ϒ1 p)− (ϒ1 p)∥C ≤ [Mh +AϑM f (1+Hξ)]∥p− p∥C .

The continuous nature of the operator ϒ2 is deduced from the fact that the function
f and h1 are continuous. Also ϒ2 is uniformly bounded on BQ as

∥(ϒ2 p)(ς)∥ ≤
∥∥∥∥Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
ds
∥∥∥∥

≤ Bϑξ(M̃ f +M f [1+Hξ]Q) = A,

which implies that ∥ϒ2 p∥ ≤ A. Thus ϒ2 is uniformly bounded. To prove that the
operator ϒ2 is compact, it remains to show that ϒ2 is equi-continuous. Now, for
any τ1,τ2 ∈ [0,ξ] with τ1 < τ2 and p ∈ BQ, we find that

∥(ϒ2 p)(τ2)− (ϒ2 p)(τ1)∥

≤

∥∥∥∥∥Bϑ

∫
τ2

0
f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
ds



S. Jasmin Swetha, V. Kavitha, M. Mallika Arjunan, D. Baleanu 17

−Bϑ

∫
τ1

0
f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
ds

∥∥∥∥∥
≤

∥∥∥∥∥Bϑ

∫
τ2

0
f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
ds

+Bϑ

∫ 0

τ1

f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
ds

∥∥∥∥∥
≤ Bϑ

∫
τ2

τ1

∥ f
(

s, p(s),
∫ s

0
h1(s,τ)p(τ)dτ

)
∥ds

≤ Bϑ(M̃ f +M f [1+Hξ]Q)(τ2 − τ1). (3.5)

From (3.5), we see that if τ2 → τ1, then the right-hand side of (3.5) goes to
zero, so ∥(ϒ2 p)(τ2)− (ϒ2 p)(τ1)∥ → 0 as τ1 → τ2. Thus, ϒ2 is equi-continuous.
Due to the fact that ϒ2(X) ⊂ X as well, ϒ2 is considered to be compact, and the
Arzela-Ascoli theorem states that ϒ possesses at least one fixed point. Therefore,
there is at least one solution to the problem posed by the related system.

Theorem 3.4. Suppose that the conditions (A1) and (A2) hold with
[Mh +AϑM f ]< 1 and 1− µ̃2 > 0, where µ̃2 = M̃h +µ∗M̃ f . Then the system (1.1)-
(1.2) has at least one solution on [0,ξ].

Proof. The proof of this Theorem is similar to Theorem 3.3, hence, we omit it
here.

4 Applications

Example 4.1.

Consider the subsequent impulsive neutral system through CFO of the form

CFD
1
4

[
p(ς)− e−ς

9+ eς
· p(ς)

1+ p(ς)

]
=

e−ς∥p(ς)∥
(16+ eς)(1+∥p(ς)∥)

, ς ∈ [0,1], (4.1)

p(0) = 0. (4.2)

Set ϑ =
1
4
, ξ = 1, Aϑ =

3
4
, Bϑ =

1
4
, N(ϑ) =

8
7
,

h(ς, p) =
e−ς p

(9+ eς)(1+ p)
, (ς, p) × [0,1] × [0,∞) and

f (ς, p) =
e−ς p

(16+ eς)(1+ p)
, (ς, p)× [0,1]× [0,∞).
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Let u,u ∈ [0,∞) and ς ∈ [0,1]. Then, we have

∥ f (ς,u)− f (ς,u)∥ ≤ e−ς

(16+ eς)

∥∥∥∥ u
1+u

− u
1+u

∥∥∥∥
≤ 1

17
∥u−u∥

and

∥h(ς,u)−h(ς,u)∥ ≤ e−ς

(9+ eς)

∥∥∥∥ u
1+u

− u
1+u

∥∥∥∥
≤ 1

10
∥u−u∥.

Thus, assumptions (A1)(i)(ii),(A2)(i)(ii) hold with M f = M̃ f =
1

17 ,Mh = M̃h =
1
10 , and M̂ f = M̂h = 0.

Furthermore

Mh +µ∗M f = Mh +(Aϑ +Bϑξ)M f

=
1
10

+

(
3
4
+

1
4

)
1

17
= 0.159 < 1.

As a result, the criterion (3.2) satisfied when Mh + µ∗M f = 0.159 < 1.
Accordingly, the provided impulsive fractional neutral system (4.1)-(4.2), has a
unique solution in [0,1] in light of Theorem 3.2.

Moreover

Mh +AϑM f =
1
10

+
3
4

(
1

17

)
= 0.144 < 1

and 1− µ̃2 = 0.159 > 0.
From the above, we note that all the assumptions of Theorem 3.4 are also

satisfied. Hence, the given system (4.1)-(4.2) has at least one solution in [0,1].

Example 4.2.

Consider the subsequent impulsive neutral system through CFO of the form

CFD
1
4

[
p(ς)− e−ς

9+ eς
· p(ς)

1+ p(ς)

]
=

2+∥p(ς)∥+
∥∥∥∥∫ 1

0
eς−s p(s)ds

∥∥∥∥
2eς+1

(
1+∥p(ς)∥+

∥∥∥∥∫ 1

0
eς−s p(s)ds

∥∥∥∥) ,

(4.3)
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p(0) = 0, (4.4)

where ς ∈ [0,1]. Set ϑ =
1
4
, ξ = 1, Aϑ =

3
4
, Bϑ =

1
4
, N(ϑ) =

8
7
,

h(ς, p) =
e−ς p

(9+ eς)(1+ p)
, (ς, p) × [0,1] × [0,∞) and

f (ς,u,v) =
2+∥u∥+∥v∥

2eς+1(1+∥u∥+∥v∥)
, (ς,u,v) ∈ [0,1]× [0,∞)× [0,∞).

Let u,v,u,v ∈ [0,∞) and ς ∈ [0,1]. Then, we have

∥ f (ς,u,v)− f (ς,u,v)∥ ≤ 1
2e2 [∥u−u∥+∥v− v∥]

and

∥ f (ς,u,v)∥ ≤ 1
2e2 [2+∥u∥+∥v∥].

Thus, assumptions (A1∗)(i)(ii) and (A3) hold with M f =
1

2e2 , M̃ f = 0 and
H = e respectively. Assumptions (A2)(i)(ii) hold in light of Example 4.1.

Furthermore

µ̃1 = Mh +µ∗M f [1+Hξ] =
1

10
+1

(
1

2e2

)
(1+ e)

= 0.3516 < 1

and

Mh +AϑM f (1+Hξ) =
1
10

+
3
4
·1

(
1

2e2

)
(1+ e)

= 0.2886 < 1.

From the above, we note that all the assumptions of Theorem 3.1 and 3.3 are
fulfilled. Therefore, the given system (4.3)-(4.4) has a unique and at least one
solution in [0,1] respectively.

5 Conclusion

We have provided a definition for the existence theory of solutions to fractional
order exponential kernel-type differential equations. During the process of
formulating the aforementioned theory, we relied entirely on the well-established
theorems on fixed points that Banach and Krasnoselskii had derived. Lemma
2.2 presents and proves the solution to our addressing system, which is a new
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development and may be thought of as a novelty. In Theorem 3.2, we analyse
the existence of the addressing model (1.1)-(1.2) by means of a contractive map.
Theorem 3.4 is designed to investigate the existence results of the system (1.1)-
(1.2) under condensing map conditions. The addressing model (1.3) with the
criteria (1.2) is examined for existence and uniqueness in Theorem 3.1 using a
contractive map. Under condensing map conditions, Theorem 3.3 is employed to
explore the existence outcomes of the considered system (1.3) with the condition
(1.2). There are fascinating instances offered to support the facts that have
been obtained. These conclusions are completely original when considered in
the context of neutral differential and integro-differential equations that include
CFO. The usefulness of the present research might be enhanced in the not-too-
distant future by employing an appropriate fixed point theorem to approximate
controllability with instantaneous and non-instantaneous impulses for a number of
different models.
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