ISSN 2066-6594

FIXED POINT RESULTS FOR MULTI-VALUED GRAPH CONTRACTIONS ON A SET ENDOWED WITH TWO METRICS*

A. Petruşel[†], G. Petruşel[‡]

DOI https://doi.org/10.56082/annalsarscimath.2023.1-2.147

Dedicated to Dr. Dan Tiba on the occasion of his 70^{th} anniversary

Abstract

In this paper we will study existence, uniqueness and data dependence of the fixed points of multi-valued operators on a set endowed with two metrics. The case of multi-valued graph contractions is considered. Then, an extension to a more general contraction type condition is also given.

MSC: 47H10, 54H25

keywords: metric space, fixed point, multi-valued graph contraction, data dependence.

^{*}Accepted for publication on February 20-th, 2023

[†]adrian.petrusel@ubbcluj.ro Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca & Academy of Romanian Scientists, Bucharest, Romania

 $^{^{\}ddagger} \texttt{gabriela.petrusel@ubbcluj.ro}$ Department of Business, Babeş-Bolyai University, Cluj-Napoca Romania

1 Introduction

Throughout this paper, the standard notations and terminologies in nonlinear analysis (see [17], [18], [8]) are used. For the convenience of the reader we recall some of them.

Let (X, d) be a metric space. The following notations are used through the paper:

 $P(X) := \{Y \subset X | Y \text{ is nonempty}\}, P_{cl}(X) := \{Y \in P(X) | Y \text{ is closed}\}.$ If $Y, Z \in P(X)$, then the gap between these sets is defined by

$$D_d(Y,Z) = \inf\{d(y,z) \mid y \in Y, z \in Z\}.$$

In particular, for for $y \in X$, the value $D_d(y, Z) = D_d(\{y\}, Z)$ is called the distance from the point y to the set Z.

The Pompeiu-Hausdorff generalized distance between $Y, Z \in P(X)$ is defined by the following formula:

$$H_d(Y,Z) := \max\{\sup_{y \in Y} \inf_{z \in Z} d(y,z), \sup_{z \in Z} \inf_{y \in Y} d(y,z)\}.$$

If $T: X \to P(X)$ is a multivalued operator, then we denote by $Graph(T) := \{(x, y) \in X \times Y | y \in T(x)\}$ the graph of T and by $Fix(T) := \{x \in X | x \in T(x)\}$ the fixed point set of T. In particular, $SFix(T) := \{x \in X | \{x\} = T(x)\}$ is the strict fixed point set of T. Also, for $x \in X$, we denote $F^n(x) := F(F^{n-1}(x)), n \in \mathbb{N}^*$, where $F^0(x) := \{x\}$.

Let (X, d) be a metric space and $T : X \to P(X)$. Then T is said to be a multi-valued α -contraction if $\alpha \in [0, 1]$ and

$$H_d(F(x), F(y)) \le \alpha d(x, y)$$
, for every $(x, y) \in X \times X$.

In particular, if the above relation holds for any $(x, y) \in Graph(T)$, then T is called a multi-valued graph α -contraction.

The aim of this paper is to give some fixed point theorems for multivalued graph α -contractions on a set endowed with two metrics. Our results extend and generalize some results given in [3], [5], [12].

For the single-valued case, see R. P. Agarwal, D. O'Regan [1], I. A. Rus, A. Petruşel, G. Petruşel [17] and the references therein. For the multi-valued case see [12]. For related results see [2], [4], [6], [9], [10], [14], [15].

2 Multivalued graph contractions on a set with two metrics

The following notions are very important in our approach.

148

Fixed point results for multi-valued graph contractions

Definition 1. Let (X, d) be a metric space, and $T : X \to P(X)$ be a multi-valued operator. By definition, T is a multi-valued weakly Picard operator with respect to d if for each $(x, y) \in Graph(T)$ there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in X such that:

(i) $x_0 = x, x_1 = y;$

(ii) $x_{n+1} \in T(x_n)$, for each $n \in \mathbb{N}$;

(iii) the sequence $(x_n)_{n \in \mathbb{N}}$ is convergent in (X, d) to $x^*(x, y) \in Fix(T)$.

Remark 1. A sequence $(x_n)_{n \in \mathbb{N}}$ satisfying the conditions (i) and (ii) of Definition 1 is called an iterative sequence of Picard type for T starting from $(x, y) \in Graph(T)$.

Let (X, d) be a metric space. If $T : X \to P(X)$ is a multi-valued weakly Picard operator with respect to d, then we can define the multi-valued operator $T^{\infty} : Graph(F) \to P(FixF)$, by $T^{\infty}(x, y) := \{ x^* \in Fix(T) \mid \text{there}$ exists an iterative sequence of Picard type T starting from (x, y) that converges in (X, d) to $x^* \}$.

Definition 2. Let (X, d) be a metric space and $T : X \to P(X)$ be a multivalued weakly Picard operator with respect to d. Then T is called a c-multivalued weakly Picard operator with respect to d if c > 0 and there exists a mapping $t^{\infty} : Graph(T) \to Fix(T)$, such that:

(a) $t^{\infty}(x, y) \in T^{\infty}(x, y)$, for each $(x, y) \in Graph(T)$;

(b) the following relation takes place

$$d(x, t^{\infty}(x, y)) \le cd(x, y), \text{ for all } (x, y) \in Graph(T).$$
(1)

The relation (1) is called the retraction-displacement condition for T with respect to the set retraction $t^{\infty} : Graph(T) \to Fix(T)$ in (X, d).

Notice that, by the Multi-valued Contraction Principle proved by Covitz and Nadler (see [3], [7]) we have that any multi-valued α -contraction on a complete metric space (X, d) is a $\frac{1}{1-\alpha}$ -multi-valued weakly Picard operator with respect to d.

Our first main result is a multi-valued version of Maia's fixed point theorem for multi-valued graph α -contractions.

Theorem 1. Let X be a nonempty set, d and ρ be two metrics on X and $T: X \to P(X)$ be a multi-valued operator. We suppose that:

(i) (X, d) is a complete metric space;

(ii) there exists $\beta > 0$ such that $d(x, y) \leq \beta \rho(x, y)$, for each $x, y \in X$; (iii) Graph(T) is closed in the metric topology of (X, d); (iv) there exists $\alpha \in [0,1[$ such that $H_{\rho}(T(x),T(y)) \leq \alpha \rho(x,y)$, for each $(x,y) \in Graph(T)$.

Then we have:

(a) T is a multi-valued weakly Picard operator with respect to d;

(b) If we denote by $x^* := x^*(x_0, x_1)$ the fixed point of T which is the limit in (X, d) of an iterative sequence of Picard type for T starting from $(x_0, x_1) \in Graph(T)$, then

$$\rho(x_0, x^*) \le \frac{1}{1 - \alpha} \rho(x_0, x_1).$$

Proof. As in the proof of Theorem 4.1 in [13], by hypothesis (iv) we obtain an iterative sequence $(x_n)_{n \in \mathbb{N}}$ of Picard type for T starting from arbitrary $(x, y) \in Graph(T)$ which is a Cauchy sequence in (X, ρ) . From (ii) it follows that the sequence $(x_n)_{n \in \mathbb{N}}$ is Cauchy in (X, d) too. By (i) we get that the sequence $(x_n)_{n \in \mathbb{N}}$ is convergent in (X, d). Let us denote by $x^* \in X$ the limit of this sequence in (X, d). By (iii) we get that $x^* \in T(x^*)$. The conclusion (b) follows by a similar approach as that given in the proof of Theorem 4.1 in [13]. The proof is complete. \Box

Remark 2. The conclusion (b) means that a retraction-displacement condition for T with respect to ρ holds.

The second main result of this section is the following extension of the above result.

Theorem 2. Let X be a nonempty set, d and ρ be two metrics on X and $T: X \to P(X)$ be a multi-valued operator. We suppose that:

(i) (X, d) is a complete metric space;

(ii) there exists $\beta > 0$ such that $d(x, y) \leq \beta \rho(x, y)$, for each $x, y \in X$;

(iii) Graph(T) is closed in the metric topology of (X, d);

(iv) there exists $\alpha \in [0, 1[$ such that $D_{\rho}(y, T(y)) \leq \alpha \rho(x, y)$, for each $(x, y) \in Graph(T)$.

Then, the following conclusions hold:

(a) T is a multi-valued weakly Picard operator with respect to d;

(b) If we denote by $x^* := x^*(x_0, x_1)$ the fixed point of T which is the limit in (X, d) of an iterative sequence of Picard type for T starting from $(x_0, x_1) \in Graph(T)$, then

$$\rho(x_0, x^*) \le \frac{1}{1 - \alpha} \rho(x_0, x_1).$$

Proof. Let $x_0 \in X$ and $x_1 \in T(x_0)$ be arbitrary. Then, for arbitrary q > 1 there exists $x_2 \in T(x_1)$ such that $\rho(x_1, x_2) \leq qD_{\rho}(x_1, T(x_1))$. Then, we have $\rho(x_1, x_2) \leq q\alpha\rho(x_0, x_1)$. By mathematical induction, we obtain an iterative sequence $(x_n)_{n \in \mathbb{N}}$ of Picard type for T starting from $(x_0, x_1) \in Graph(T)$ satisfying

$$\rho(x_n, x_{n+1}) \le (q\alpha)^n \rho(x_0, x_1), \text{ for each } n \in \mathbb{N}.$$
(2)

Let us choose now $1 < q < \frac{1}{\alpha}$. Then, by the above relation we immediately get that $(x_n)_{n \in \mathbb{N}}$ is Cauchy in (X, ρ) . By (ii) we get that $(x_n)_{n \in \mathbb{N}}$ is Cauchy in (X, d). By (i) it follows that there exists $x^* := x^*(x_0, x_1) \in X$ such that $(x_n)_{n \in \mathbb{N}}$ converges to x^* in (X, d). By (iii) the element x^* belongs to $T(x^*)$. For the conclusion (b) notice first that by (2), we also get that

$$\rho(x_n, x_{n+p}) \le \frac{(q\alpha)^n}{1 - q\alpha} \rho(x_0, x_1), \text{ for each } n, p \in \mathbb{N}, p \ge 1.$$
(3)

Letting $p \to \infty$ in (3) we get that

$$\rho(x_n, x^*) \le \frac{(q\alpha)^n}{1 - q\alpha} \rho(x_0, x_1), \text{ for each } n \in \mathbb{N}.$$
(4)

Taking n = 0 in (4) and letting then $q \searrow 1$, we obtain

$$\rho(x_0, x^*) \le \frac{1}{1 - \alpha} \rho(x_0, x_1),$$

which proves that a retraction-displacement condition for T with respect to ρ holds.

A data dependence result is the following theorem.

Theorem 3. Let X be a nonempty set, d and ρ two metrics on X and $T, S : X \to P(X)$ be two multivalued operators. We suppose that:

(i) (X, d) is a complete metric space;

(ii) there exists $\beta > 0$ such that $d(x, y) \leq \beta \rho(x, y)$, for each $x, y \in X$; (iii) Graph(T) is closed in the metric topology of (X, d);

(iv) there exists $\alpha \in [0,1[$ such that $H_{\rho}(T(x),T(y)) \leq \alpha \rho(x,y)$, for each $(x,y) \in Graph(T)$;

(v) $F_S \neq \emptyset$;

(vi) there exists $\eta > 0$ such that $H_{\rho}(T(x), S(x)) \leq \eta$, for each $x \in X$. Then, for each $s^* \in Fix(S)$ there exists $x^* \in Fix(T)$ such that

$$\rho(s^*, x^*) \leq \frac{\eta}{1-\alpha} \text{ and } d(s^*, x^*) \leq \frac{\beta\eta}{1-\alpha}$$

Proof. Let $s^* \in Fix(S)$ and $t \in T(s^*)$ be arbitrary chosen. From the conclusion (b) of Theorem 1 we have that $\rho(s^*, x^*) \leq \frac{1}{1-\alpha}\rho(s^*, t)$, where x^* is the fixed point of T which is the limit of an iterative sequence of Picard type starting from $(s^*, t) \in Graph(T)$. Now, for any q > 1 and $s^* \in S(s^*)$ there exists $t^* \in T(s^*)$ such that $\rho(s^*, t^*) \leq qH_{\rho}(S(s^*), T(s^*)) \leq q\eta$. Thus, we get that

$$\rho(s^*, x^*) \le \frac{q\eta}{1-\alpha}.$$

Letting $q \searrow 1$ we get the conclusion.

Remark 3. A similar data dependence result can be given in association with the assumptions of Theorem 2.

References

- R. P. Agarwal, D. O'Regan, Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl. 248(2000), 402-414.
- [2] L. B. Cirić, Fixed points for generalized multi-valued contractions, Math. Vesnik 9(24)(1972), 265-272.
- [3] H. Covitz, S.B. Nadler Jr., Multi-valued contraction mapping in generalized metric spaces, Israel J. Math. 8(1970), 5-11.
- [4] W. A. Kirk, B. Sims (eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001.
- [5] T.-C. Lim, On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110(1985), 436–441.
- [6] C. Mihiţ, G. Moţ, A. Petruşel, Fixed point theory for multivalued Feng-Liu-Subrahmanyan contractions, Axioms 2022, 11(10), 563; https://doi.org/10.3390/axioms11100563
- [7] S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 30(1969), 475-488.
- [8] A. Petruşel, Generalized multivalued contractions, Nonlinear Analysis 47(2001), 649-659.

- [9] A. Petruşel, Multivalued weakly Picard operators and applications, Sci. Math. Jpn. 59(2004), 167-202.
- [10] A. Petruşel, G. Petruşel, Fixed points of multi-valued Subrahmanyan contractions, Appl. Set-Valued Anal. Optim.4(2022), 367-373.
- [11] A. Petruşel, I. A. Rus, Multivalued Picard and weakly Picard operators, Fixed Point Theory and Applications (J. Garcia Falset, E. LLorens Fuster, B. Sims eds.), Yokohama Publishers 2004, pp. 207-226.
- [12] A. Petruşel, I. A. Rus, Fixed point theory for multivalued operators on a set with two metrics, Fixed Point Theory 8(2007), 97-104.
- [13] A. Petruşel, G. Petruşel, J.-C. Yao, Multi-valued graph contraction principle with applications, Optimization 69(2020), no. 7–8, 1541-1556.
- [14] A. Petruşel, G. Petruşel, J.-C. Yao, On some stability properties for fixed point inclusions, J. Nonlinear Convex Anal. 22(2021), no. 8, 1465-1474.
- [15] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. 5(1972), 26-42.
- [16] I. A. Rus, Generalized Contractions and Applications, Transilvania Press Cluj-Napoca, 2001.
- [17] I. A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory 1950-2000 : Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002.
- [18] I. A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Analysis, 52(2003), 1947-1959.